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Abstract: Worldwide, motor vehicle accidents are one of the leading causes of death, with alcohol-
related accidents playing a significant role, particularly in child death. Aiming to aid in the prevention
of this type of accidents, a novel non-invasive method capable of detecting the presence of alcohol
inside a motor vehicle is presented. The proposed methodology uses a series of low-cost alcohol
MQ3 sensors located inside the vehicle, whose signals are stored, standardized, time-adjusted, and
transformed into 5 s window samples. Statistical features are extracted from each sample and a feature
selection strategy is carried out using a genetic algorithm, and a forward selection and backwards
elimination methodology. The four features derived from this process were used to construct an
SVM classification model that detects presence of alcohol. The experiments yielded 7200 samples,
80% of which were used to train the model. The rest were used to evaluate the performance of the
model, which obtained an area under the ROC curve of 0.98 and a sensitivity of 0.979. These results
suggest that the proposed methodology can be used to detect the presence of alcohol and enforce
prevention actions.

Keywords: drinking and driving; smart vehicle; smart infotainment; alcohol detection; genetic algorithm

1. Introduction

One of the leading causes of death among young people are motor vehicle crashes [1],
young drivers are 5 to 10 times more likely to experience injuries related to road crashes,
and young males have a higher crash rate than young females [2]. There are several factors
that may contribute to the increased number of crashes, such as social, situational, and
exposure factors. Among social and situational factors include: the presence of passengers
of similar age that may distract the driver [3], fatigue is also a risk factor among young
people as they are affected by sleepiness more often [4], and social and economic status
also plays and important role as they social group may affect their driving behaviors by
encouraging them to take greater risks [5]. Recently, the grow of mobile phone usage have
increased the risk of crashing among young people, due the increase in the level of cognitive
and behavioral associated with people that use their phones while driving [6,7]. Alcohol
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consumption and drug usage while driving increases the crash risk for all drivers despite
their age group affecting the cognitive process, thus increasing the risk of crashing [8,9].

On the other hand, exposure related factors include the weather condition, as it plays
an important influence on the crash rates, as the young people exhibit less experience
dealing with such conditions, such as snow, fog, rain, black ice conditions, etc., [10]. The
type of road also affect the risk of crashing as urban, regional, and rural roads present
different conditions [11]. The time also increase the risk for young people as their are more
likely to crash at night and over the weekend [12], as we can see those risk factors plays an
important role, thus measuring the safety efficiency of the drivers is very important [13].

Among all motor vehicle crashes involving young people, 25% of crash-related deaths
among child passengers aged less than 15 years involves alcohol use [1]. Alcohol con-
sumption while driving is illegal, nevertheless, and despite government penalties, the act
of drinking and driving is a worldwide problem. In order to mitigate this issue, a wide
variety of research has been conducted on smart systems able to detect this behavior. The
research community has tried to develop smart systems that can be incorporated into
next-generation vehicles in order to detect unsafely behaviors and prevent such accidents.
These systems are known as infotainment systems, and their rapid development has turned
traditional systems into smart-infotainment systems able to use contextual information to
detect and react to changes inside the vehicle and inform the driver accordingly.

Recently, Wakana et al. [14] developed a portable device that uses a non-contact breath
sensor to detect breath-based alcohol. The device measures the saturated water vapor in
the human breath using gas sensors to detect ethanol; alcohol concentration was calculated
using an algorithm based on a differential evolution method at each gas sensor’s output.
The authors reported an accuracy of approximately ±10 ppm, however, the distance from
the driver’s mouth to the sensor should be within 20 mm of distance. Another sensor-based
approach was presented by Sandeep et al. [15], a novel Internet of Things (IoT) system
that includes a touch sensor, an alcohol concentration sensor, facial recognition, heart rate
measurement, and a GPS module. This systems aims at safeguarding drowsy drivers, but
only the concept of the system was presented, neither an implementation nor a validation
were conducted by the authors. Murata et al. presented a system capable of monitoring the
condition of a driver by measuring biological signals using a custom seat with an air-pack
sensor. Using a frequency time series analysis, the authors were able to determine whether
drivers were intoxicated or not. Nevertheless, the authors reported that their system could
not perform an accurate classification without baseline data of a non-drinking state for
each subject [16].

Chen et al. [3] proposed a system to distinguish drunk driving from normal driv-
ing under simulated driving conditions, the author proposed a simulated system, using
electromyogram, electrodermal activity, photo-plethysmography sensors, and a Tobii eye
tracker, then, using a support vector machine, the systems detected normal and drunk
driving; the authors reported an accuracy of 70%. On the other hand, Harkous et al. [17],
presented a two stage machine learning method for drunk driving detection, the proposed
methodology uses a series of sensors placed in the vehicle to feed a hidden Markov model
that select the best subset of sensors to be used by a recurrent neural network, the system
was based on the detection of the vehicle movement rather than the alcohol presence,
the system achieved a 75–98% of accuracy depending of the number of sensors used by
the model. Recently, Hyder et al. [18], developed a system based on an SoC (System
on Chip), to detect drowsiness, the system uses a IoT sensor to detect the presence of
alcohol, for this the system placed the alcohol detection sensor near the steering wheel to
be close of the driver, then using a threshold, the presence of alcohol was detected, the
system also detected the drowsiness by using cameras to detect the eye aspect ratio, the
authors reported up to 92% of accuracy for the detection of the drowsiness when using
the cameras, for the alcohol detection, only the threshold was reported. Vijayan et al. [19]
also proposed a system to detect driver drowsiness based on the use of image processing,
here the authors proposed a system that recorded the drivers’s face then was feed to deep
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neural networks to infer the state of the driver, the system used ResNet50, VGG16, and
InceptionV3 to classify the driver’s state, the authors reported an accuracy of 76.16%,
71.22%, and 78.43%, respectively.

Another non-invasive approach was presented by Dai et al. [20]. They developed a
system aimed at early detection and alert of dangerous vehicle maneuvers typically related
to drunk driving. The system only needs information derived from the accelerometer and
the orientation sensor of a mobile phone placed inside the vehicle; the system computes
accelerations based on sensor readings, and compares them with typical drunk driving
patterns extracted from real driving tests. The authors reported a false-positive rate of
0.49% and 2.39% in detecting abnormal curvilinear movements and speed control problems,
respectively. Unfortunately, the performance of the system is heavily impacted by the
phone placement and sliding. You et al. proposed a preliminary design for a personal
alcohol tracking system with the aim to improve the reliability of current transdermal
ethanol tracking devices to be used to raise the awareness of alcohol use, the system was
able to detect the presence of alcohol using trans dermal alcohol concentration through
the skin, nevertheless, the system showed a delay of 28–124 min from the ingestion up to
detection [21].

An approach to road safety was also presented by Jamil et al., who proposed a system
that uses a webcam coupled to a Raspberry Pi to detect blinks per minute as a measure of
fatigue. The authors suggest that such a metric can be used to detect bad driving behaviors,
although drinking was not tested. Additionally, their results demonstrated that different
conditions, such as recently having a heavy meal, could affect the measuremente [22]; a
similar approach was explored by Kulkarni et al. [23]. Finally, and related to the topic of
ubiquitous approaches to detect unsafely behaviors, Celaya et al. [24] presented a system
that detects when a subject is texting and driving. The authors used a wide angle camera
inside the vehicle to record and analyze the behavior of the driver, detecting the use of a
cellphone while driving by means of a deep neuronal network, with an accuracy of 0.89.

As it can be seen, most of the current approaches to detect drunk driving rely on
external sensors that typically uses thresholds to detect such behaviors, such as comparing
acceleration measurements with previously recorder unsafe patterns. Other researchers
have developed systems that accurately detect alcohol, but such systems are heavily
dependent on the sensors being close to the mouth of the driver or on having them wear
a wristband with a transdermal sensor. We propose the use of low-cost IoT sensors to
characterize the air and detect the presence of alcohol in the vehicle by processing the
signals with genetic algorithms. In Section 2, the complete proposed methodology is
detailed and the experimental setup is shown. Next, in Section 3, we show our findings.
Finally, in Sections 4 and 5, we comment on what these results mean, the main limitations
of this work, and the next steps of this project.

2. Materials and Methods

A flowchart of the proposed methodology is presented in Figure 1. Briefly, in order
to detect drunk drivers: (1) alcohol presence in the vehicle is measured and stored using
seven alcohol sensors, (2) the measurements are standardized according to the sensor-
specific sensibility and its longitudinal behavior, (3) statistical features are extracted from
the normalized signals, (4) a genetic algorithm is used to train several models in order
to find the optimal subset of features within the dataset, and (5) a model that accurately
classifies drunk and non-drunk drivers is constructed. Each stage is further detailed in the
following subsections.
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Figure 1. Flowchart of the proposed methodology.

2.1. Data Acquisition

A total of seven low-cost MQ3 sensors were placed near the driver in a test vehicle,
a Honda HR-V 2018 with all windows closed. The locations of the sensors were chosen
so that they would not hinder drivability, but were close to either air flow from the air
conditioning vents and/or to drink holders. Figure 2 shows the exact place where each
sensor was installed. The MQ3 sensors are low-cost metal oxide semiconductor devices
that can detect the presence of alcohol vapor at concentrations ranging from 0.05 mg/L
to 10 mg/L. This sensors work by measuring conductivity; the higher the higher the
concentration of alcohol vapor, the higher the conductivity. This device has a sensing
element made of Aluminum Oxide (AL2O3) based ceramic and has a coating of Tin Dioxide
(SnO2), the Tin Dioxide is sensitive towards alcohol, thus, the ceramic heats the Tin Dioxide
and forms a sensor by changing the resistance when the particles of Oxygen are absorbed
by the SnO2 surface, in the presence of alcohol, however, the surface density of adsorbed
oxygen decreases as it reacts with the alcohols, which lowers the resistance and changing
the generated value by the sensor. The sensor has a high sensitivity to alcohol and a low
sensitivity to smoke and gasoline [25].

Figure 2. Layout of the sensor placement.

For our experiment, samples were obtained from four 30 min sessions, two with no
alcohol in the vehicle and two with a 10 mL sample of 90◦ ethanol alcohol in a drink holder
between seats (red circle in Figure 2), a typical place for drivers to place their beverages
when driving, to avoid any external factor that may increase the levels when present; all
the people inside the vehicle had not drank any alcohol. This was implemented as the
goal of this research is to first detect the presence or absence of alcohol inside the vehicle,
and then in a future research, infer who is drinking/drunk. Experiments were carried
out on different days to lower the risk of cross-contamination. Data were acquired with
a sample rate of 2 Hz, yielding a total of 14,400 samples. MQ3 sensors produce analog
signals; we carried out an analog-to-digital conversion with a 10-bit MCP3008 converter
and a custom board.
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2.2. Data Standardization

The signal from the MQ3 sensors exhibit a sensor- and time-dependent variation in
amplitude. Regarding the former, Figure 3 shows the output signal for two sensors reacting
to the same sample, where a noticeable difference in amplitude can be seen. To account for
this variation, a sensor-specific standardization was carried out; new values were defined
using Equation (1), where Y represents the standardized value, V the output from a specific
sensor, and Vmin and Vmax the minimum and maximum amplitudes measured using that
specific sensor. The standardized signals exhibit a 0–1 range, Figure 4 shows the signals
from Figure 3 after this standardization took place.

Y =
V −Vmin

Vmax −Vmin
. (1)

Figure 3. Output from two MQ3 sensors exposed to the same alcohol sample.

Figure 4. Standardized signal from two MQ3 sensors exposed to the same alcohol sample.

We also noticed that the signal from the sensors was time-dependant regardless
of whether alcohol was present or not; the sensor decreased their output as time went
by. Figure 5 shows the standardized signal value obtained from a sensor during a 24 h
experiment with no alcohol nearby, as it can be seen, the standardized signal goes from
0.55 to 0.1.
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Figure 5. Longitudinal behavior of a sensor without an alcohol sample.

In order to remove this time dependency, a linear regression (Equation (2)) was used
to adjust the value of the signal for each sensor. Here, Xi is the ith standardized value for
each sensor, Yi its corresponding regression value, and β0 and β1 represent the offset and
slope of the fitted line, respectively. Figure 6 shows, in red, the fitted line yielded from the
regression analysis performed to the sample from Figure 5.

Yi = β0 + β1 · Xi (2)

The linear regression was applied to sensors CH0–CH6 obtaining an R2 of 0.8091,
0.8540, 0.8541, 0.8902, 0.8613, 0.8396, and 0.7518, respectively. These values indicate a very
good fit for each sensor, thus allowing for the removal of the time dependency in the data.

Figure 6. Fitted line obtained after performing a linear regression.

Finally, the fitted line is subtracted from the standardized signal in order to remove
the time dependency. Figure 7 shows, in blue, the time-adjusted signal, first 10 s of the
standarized data set were omitted to remove the outliers generated by the initial heat up of
the sensor shown on Figure 7.
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Figure 7. Time-adjusted signal.

2.3. Feature Extraction

Recently, the community has presented novel approaches to perform alcohol detection
inside the vehicle; nevertheless, many of the approaches rely only on simple thresholds or
a combination of digital filters mainly dealing with the suppression of the noise. However,
our approach takes advantage of machine learning algorithms [26,27]. In order to charac-
terize the signal accurately and perform detection in quasi real-time conditions, data were
split into five-second windows. Eight features, detailed in Table 1, were extracted from
each window, yielding a database with 1440 observations and 56 features. The selection
of features to extract was based on previous work with time-dependent signals where we
tackle a similar problem, trying to characterize a signal coming from an analog sensor; our
work demonstrated that the first statistical moments (1–4) along with the Max and dynamic
range features could successfully characterize a time dependent signal and achieve a highly
accurate model [28].

Table 1. Extracted features.

Feature Formula

Mean (M1) x̄ = 1
n ∑n

i=1 Xi

Variance (M2) σ2 = ∑n
i=1(Xi−X)2

N

Skewness (M3) γ1 =
1
n ∑n

i=1(xi − x)3[
1

n−1 ∑n
i=1(xi − x)2

]3/2

kurtosis (M4) K = ∑N
i=1(Xi−X)4

Nσ4 − 3
Standard Deviation σ =

√
σ2

Max X(max) = max{X1, . . . , Xn }
Min X(min) = min{X1, . . . , Xn }
Dynamic range DR = X(max) − X(min)

Xi is the ith value within the 5 s window being processed.

2.4. Feature Selection

The dimension of our database was presented in the previous section. Finding an
optimal model within a 1440 × 56 matrix usually becomes a computational challenge,
therefore, we propose a feature selection process guided by a nature-driven approach.
This kind of processes has recently gathered attention because of the lower computational
requirements needed to solve complex problems [29]. From these, some of the most
powerful methods are evolution-driven approaches, such methodologies take advantage of
the evolutionary process presented by Charles Darwin [30]—the processes generate models
with features that reproduce, mutate, and migrate, following the evolutionary theory where
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the fittest models prevail generation after generation leaving low-fittest features behind.
For this research, we used a novel library of genetic algorithms called GALGO [31], a
powerful multivariate feature selection based on genetic algorithms.

The genetic algorithm evolved a set of random multivariate models following the
evolution theory, thus generating highly accurate models [28]. The highest the frequency
in which a feature appears in these models, the greater its importance in detecting drunk
drivers; therefore, the frequency of the features was used to sort and rank them. Then, a for-
ward selection and backwards elimination process was used to select the best performance
model keeping the number of features low [28].

The data set used for this research was split into two sets: the first “training” with
(80%) of the samples and the “test” set with (20%) of the samples. The genetic search was
then implemented to search for the best performing model using only the training data
set, keeping the model construction isolated from the test set. One thousand random five-
feature models were evolved throughout 200 generations; while performing this search,
fitness was evaluated as the accuracy of each model following a 3-fold cross-validation
strategy (using 70% to train the model and 30% to validate the model). This was performed
using the previously defined train samples; the test set was not used at this stage, genetic
parameters were chosen as suggested by Treviño et al. [31]. A support vector machine
(SVM) function with a radial kernel was used as the classifier. The SVM function maps
the training examples to points in space so as to maximize the width of the gap between
the two categories, new instances are then mapped into that same space and predicted to
belong to a category based on which side of the hyper-plane they belong [31,32].

After performing the genetic search using GALGO, the forward selection and back-
wards elimination processes were computed using the whole training data set (80% of
the whole data). For this, the forward selection algorithm used the ranking generated by
GALGO to construct models adding one feature at a time, in this stage, when adding a
feature to the model, the accuracy was checked, if the model + the new feature achieved a
high accuracy, the feature was kept, and the rest were disregarded. Then, the backward
elimination process was performed to avoid redundant information and further reduce the
amount of features to be used. This process evaluated the model generated by the forward
selection strategy, then the process removed one of the features to check the accuracy. If
the model had not decreased its performance, that feature was removed from the final
model, otherwise, the feature was kept. This process was repeated until all features were
checked to vary its impact on the accuracy of the model. In order to avoid overfitting, a
cross-validation was performed in the training stage, here, using the features found by the
genetic process, a 5-fold cross-validation was performed to train and test the model and
assess bias towards a specific data partition. In Figure 8, the detailed process for the model
generation is presented.

Figure 8. Model generation and validation methodology.

Once the final model was constructed following said strategy, in order to measure the
true performance, the model was evaluated using the test subset (20% of the kept unseen
samples).

3. Results

Data collection resulted in a total of 1440 5 s recordings, with 56 features and a ground
true label extracted from each, yielding a 1440 × 57 matrix. Using this data set, the genetic
search generated 1000 models that evolved over 200 generations each. Figure 9 shows the
average model accuracy as models evolved and highlights that accuracy had converged,
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that is, no more generations were needed. Similarly, Figure 10 shows that the frequency in
which features appeared in the models had stabilized. There, it can be seen that the eleven
most frequent features are above the expected random frequency; thus, even with more
models or more generations, the rank of the most frequent features would not have changed.
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Figure 9. Average fitness of the models throughout the 200 generations.

Figure 10. Feature rank stability.
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As shown in Figure 11, the forward selection process yielded a 4-feature model. Since
no features were discarded with the backwards elimination process, the final model was
constructed with only four features, detailed in Table 2. Using these four features, a
support vector machine model was trained using the 80% training data set. To measure its
performance, the area under the Receiver Operator Characteristic (ROC) Curve (AUC) was
computed. Figure 12 shows the ROC curve for the training data set; the model achieved
an AUC of 0.9800 and an accuracy of 0.9800 with a 95% Confidence Interval (CI) ranging
between 0.9720 and 0.9880.

In order to test for a specific bias towards the data partition, a k = 5 cross-validation
strategy was performed using the 80% training data set; details are presented in Table 3.
Finally, to test the real performance on unseen data, the model was also evaluated using
the 20% unseen test data set, yielding an AUC of 0.9896 and an accuracy of 0.9896 with a
95% CI of 0.9779–1.0.

Table 2. Model features.

Feature Sensor Channel

Mean 5
Min 4

Std. Deviation 0
Max 4

Figure 11. Accuracy of the models during the forward selection methodology.

Table 3. Cross-validation performance of the proposed methodology.

Train Test
i AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity
1 0.9555 0.9555 0.9111 1 0.9565 0.9565 0.913 1
2 0.9663 0.9663 0.9326 1 0.9784 0.9784 0.9569 1
3 0.9751 0.9751 0.9501 1 0.9826 0.9826 0.9652 1
4 0.9957 0.9957 0.9913 1 0.9913 0.9913 0.9826 1
5 0.9772 0.9772 0.9544 1 0.9739 0.9739 0.9478 1

Average= 0.97396 0.97396 0.9479 1 0.97654 0.97654 0.9531 1
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Figure 12. ROC curve of the model on test data set.

Figure 13 shows the confusion matrix for the model evaluated using the train and test
sets. For the train data set, the model achieved a sensitivity of 0.9601 with an specificity of
1.0; for the test data set, the model achieved a sensitivity of 0.9792 with a specificity of 1.0;
the model misclassified only three observations.

(a) (b)
Figure 13. Model performance on train/test samples: (a) confusion matrix for the train samples. (b) confusion matrix for
the test samples.

4. Discussion

The proposed methodology was able to demonstrate the effectiveness of using genetic
algorithms and machine learning systems in smart cars; our model was able to detect
the presence of alcohol, inferring it would also be able to detect a drinking and driving
situation. The methodology includes the collection of raw data from the MQ3 sensors,
standardizing and time-adjusting the data, transforming them into five-second windows,
extracting statistical features, selecting the most relevant ones using genetic algorithms,
and training and evaluating the final model. The standardization stage removed the
variability in sensibility between sensors, and the linear regression eliminated longitudinal
variability, allowing for these sensors to be used in vehicle applications. Using the statistical
features, 1000 random models were evolved throughout 200 generations using a 3-fold
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cross-validation, producing a feature ranking based on their frequency, thus ensuring that
only the most relevant features would be included in the final model. A forward selection
and backwards elimination process was included to make the final model as accurate and
small as possible. Finally, the performance of the model was evaluated using the test data
set, i.e., samples that had not been used previously to train the model or during the feature
selection process.

The final model included the following features: average amplitude of the signal from
channel 5, minimum value of the signal from channel 4, standard deviation of the signal
obtained from channel 0, and maximum value of the signal from channel 4. It is important
to notice that, while many approaches use only a signal value over a threshold in order to
detect the presence of alcohol, the proposed model also includes other information, such
as the standard deviation of the signal. Additionally, the fact that none of these features
were discarded under the backwards elimination process also suggests that all features
contribute significantly to the performance of the multivariate model. Further, it is also
relevant that the model is constructed with information from sensors placed in different
locations, suggesting that sensing in different areas at the same time is needed to perform
this task accurately. Furthermore, the sensors whose information is included in the final
model are the three sensors closest to the sample; further experiments where the sample is
located near the door of the driver should help to identify whether the positions of the other
four sensors are adequate. The performance of the final model was evaluated in two ways,
first using a cross-validation approach with the training data, and then performing a blind
test with the test samples. In both cases, the model achieved AUC values just shy of
1.000, suggesting that the model is robust and therefore would perform accurately with
new samples.

We propose the use of a multivariate model for alcohol detection targeting quasi real-
time applications to detect drinking and driving behaviors. The presented methodology
builds an SVM classifier with four features derived from a genetic algorithm approach; the
procedure is accurate and robust. Once the model is trained and refined, the model could
be transferred to a smart infotainment system to detect unsafely behaviors. The proposed
methodology uses a 5 s window to analyze changes in the air and detect the presence of
alcohol. Comparing this methodology with other approaches, there is no need to exhale
near the sensor as with the system proposed by Wakana et al. proposed [14], and the speed
of the detection is quasi real-time, unlike that presented by You et al. [21], which takes
between 24 and 124 min.

One key component of the proposed methodology is the incorporation of the genetic
algorithms to perform the feature selection process, to validate the performance of such
an important process, we compared our approach (GALGO + SVM) to a commonly used
step-wise feature selection algorithm (LASSO) [33,34], to asses the performance of the
genetic selection vs step-wise selection we used the exactly same data sets (80% train,
20% test) to search for the best subset of features to construct a representative model,
afterwards, the same metrics were computed for train and test. LASSO methodology
yielded in a representative model with 14 features, Table 4 shows the breakdown of the
selected features.

Table 4. LASSO Model features.

Feature Sensor Channel

Skewness 0, 1
Kurtosis 0, 1

Mean 3, 1
Min 0, 1, 3

Dinamic range 4
Max 0, 2, 4, 5
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Then we constructed two SVM models, one with a radial kernel as our approach, then
a linear kernel due the linearly optimization performed by LASSO, with those models
we compared the LASSO performance to our results using the GALGO + SVM model
with a radial kernel and a new GALGO + SVM with a linear kernel in order to compare
it with the LASSO model. Table 5 shows the performance of LASSO compared to our
approach, as we can see, the LASSO + SVM (linear) performs very similar to the presented
genetic search; nevertheless, the LASSO model contains 14 features compared to only
four features selected by our approach—this increase in the number of features tends to
exhibit a bias towards the data set, this is shown in the LASSO + SVM (Radial) row, where
the performance is lower with sensitivity of 0.559 and 0.4861 for the train and test sets,
respectively. Nevertheless, our approach with only four features exhibit almost the same
performance despite the kernel is being used, demonstrating that the features selected by
the genetic search are very robust.

Table 5. Genetic feature selection (GALGO) vs, step-wise feature selection (LASSO).

Train Test
Strategy # of Features AUC Sensitivity Specificity AUC Sensitivity Specificity

GALGO + SVM (Radial) 4 0.98 0.9601 1 0.9896 0.9792 1
GALGO + SVM (Linear) 4 0.9759 0.9565 1 0.9826 0.9652 1
LASSO + SVM( Radial) 14 0.7214 0.559 0.8837 0.6944 0.4861 0.9028
LASSO + SVM( Linear) 14 0.9948 0.9896 1 0.9965 0.9931 1

This work has some limitations, the most important one being that we only analyzed
the alcohol sample in one location. Further, all samples were derived from the same
vehicle; however, the promising results lead us to think that even if not the model, at least
the methodology will easily adapt to other vehicles and other placements of the alcohol
source. That is, once the model is trained with more diverse data, the model will only
become more robust. Another limitation was that the experiments were performed with
the windows closed; opening the windows may have a significant impact in the amplitude
of the signals from the sensors. Another possible limitation is the presence of other people
that have consumed alcohol inside the vehicle, as the concentration of Alcohol/O2/CO2
will vary, thus this behavior could impact in the alcohol detection rate, the size of the
vehicle along with the ventilation systems will play a role in the detection rate as each
vehicle will circulate the air in a different way, to solve this problem each type of car should
train a specific model to search for the best combination of sensors, to allow the correct
identification of alcohol inside. Nowadays, more vehicles are being equipped with high
efficiency filtration systems such as HEPA filters, for those filtration systems; the proposed
methodology should sense the air before passing through the filtration system in order
to minimize the impact on the detection rate. Nevertheless, having seven sensors in the
vehicle would allow for at least a few of them to be close to the source of alcohol, lowering
the impact of having the windows open; however, this is a variable that will have to be
further analyzed in the future.

5. Conclusions

We collected raw data from seven MQ3 sensor placed in strategic but not intrusive
places inside a vehicle. Data were standardized, time-adjusted, and transformed into
5 s windows. Eight statistical features were derived from each 5 s window, yielding a
1440 samples × 56 features database that was and split into train and test sets with a
80–20 ratio. Features were ranked using the train set and a genetic algorithm, and using
a forward selection and backwards elimination procedure, four features were selected.
Still using the train set, a model was trained and validated with a 3-fold cross-validation
strategy. Finally, the performance of the model was assessed using the test set, yielding
an accuracy of 0.98 and an AUC of 0.989. The model successfully detected the presence
of alcohol inside the vehicle in quasi real-time, thus detecting a potential drinking and
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driving behavior. The system takes into account features that were not previously studied
by other authors as well as information from three different locations, indicating that such
places may be optimal sensor locations. This system could be used to alert someone once
alcohol is detected, avoiding potential accidents.

6. Future Work

For the future of this research we propose the analysis of different concentrations of
alcohol to assess the sensitivity of the proposed methodology. The influence of factors such
as the influence of the type of vehicle, and the ventilation systems will be the subjects of
further study. External factors such as the impact of people that have consumed alcohol
will be explored to assess the detection rate in such scenarios. To further improve the
methodology, the incorporation of image-based recognition modules to monitor the driver
and passengers, merging both modules and developing a meta-heuristic system will be
explored. Then, the systems will be capable of reacting based on the alcohol in the vehicle
and also the behavior of the driver and passengers.
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