
RESEARCH ARTICLE

Fast, Simple and Accurate Handwritten Digit
Classification by Training Shallow Neural
Network Classifiers with the ‘Extreme
Learning Machine’ Algorithm
Mark D. McDonnell1*, Migel D. Tissera1, Tony Vladusich1, André van Schaik2,
Jonathan Tapson2

1Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research,
School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes,
SA 5095, Australia, 2 Biomedical Engineering and Neuroscience Group, The MARCS Institute, The
University of Western Sydney, Penrith, NSW 2751, Australia

* mark.mcdonnell@unisa.edu.au

Abstract
Recent advances in training deep (multi-layer) architectures have inspired a renaissance in

neural network use. For example, deep convolutional networks are becoming the default

option for difficult tasks on large datasets, such as image and speech recognition. However,

here we show that error rates below 1% on the MNIST handwritten digit benchmark can be

replicated with shallow non-convolutional neural networks. This is achieved by training such

networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very

rapid training time (* 10 minutes). Adding distortions, as is common practise for MNIST,

reduces error rates even further. Our methods are also shown to be capable of achieving

less than 5.5% error rates on the NORB image database. To achieve these results, we intro-

duce several enhancements to the standard ELM algorithm, which individually and in com-

bination can significantly improve performance. The main innovation is to ensure each

hidden-unit operates only on a randomly sized and positioned patch of each image. This

form of random ‘receptive field’ sampling of the input ensures the input weight matrix is

sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with

a small number of iterations of a single-batch backpropagation method can significantly

reduce the number of hidden-units required to achieve a particular performance. Our close

to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy

of the ELM algorithm for designing a single-hidden-layer neural network classifier should

cause it to be given greater consideration either as a standalone method for simpler prob-

lems, or as the final classification stage in deep neural networks applied to more difficult

problems.

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 1 / 20

a11111

OPEN ACCESS

Citation: McDonnell MD, Tissera MD, Vladusich T,
van Schaik A, Tapson J (2015) Fast, Simple and
Accurate Handwritten Digit Classification by Training
Shallow Neural Network Classifiers with the ‘Extreme
Learning Machine’ Algorithm. PLoS ONE 10(8):
e0134254. doi:10.1371/journal.pone.0134254

Editor: Friedhelm Schwenker, Ulm University,
GERMANY

Received: February 11, 2015

Accepted: July 7, 2015

Published: August 11, 2015

Copyright: © 2015 McDonnell et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: Mark D. McDonnell’s contribution was
supported by an Australian Research Fellowship from
the Australian Research Council (www.arc.gov.au,
Discovery Project DP1093425). André van Schaik’s
contribution was supported by the Australian
Research Council (www.arc.gov.au, Discovery
Project DP140103001). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134254&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134254&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134254&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.arc.gov.au
http://www.arc.gov.au

Introduction
The current renaissance in the field of neural networks is a direct result of the success of various
types of deep network in tackling difficult classification and regression problems on large data-
sets. It may be said to have been initiated by the development of Convolutional Neural Net-
works (CNN) by LeCun and colleagues in the late 1990s [1] and to have been given enormous
impetus by the work of Hinton and colleagues on Deep Belief Networks (DBN) during the last
decade [2]. It would be reasonable to say that deep networks are now considered to be a default
option for machine learning on large datasets.

The initial excitement over CNN and DBNmethods was triggered by their success on the
MNIST handwritten digit recognition problem [1], which was for several years the standard
benchmark problem for hard, large dataset machine learning. A high accuracy on MNIST is
regarded as a basic requirement for credibility in a classification algorithm. Both CNN and
DBNmethods were notable, when first published, for posting the best results up to that respec-
tive time on the MNIST problem.

The standardised MNIST database consists of 70,000 images, each of size 28 by 28 greyscale
pixels [3]. There is a standard set of 60,000 training images and a standard set of 10,000 test
images, and numerous papers report results of new algorithms applied to these 10,000 test
images, e.g. [1, 4–9].

In this report, we introduce variations of the Extreme Learning Machine algorithm [10] and
report their performance on the MNIST test set. These results are equivalent or superior to the
original results achieved by CNN and DBN on this problem, and are achieved with signifi-
cantly lower network and training complexity. This poses the important question as to whether
the ELM training algorithm should be a more popular choice for this type of problem, and a
more commonplace algorithm as a first step in machine learning.

Table 1 summarises our results, and shows some comparison points with results obtained
by other methods in the past (note that only previous results that do not use data augmentation
methods are shown, and only one of our new results is for such a case). Our new results surpass
results using earlier deep networks, but recent regularisation methods such as drop connect
[6], stochastic pooling [7], dropout [8] and so-called ‘deeply supervised networks’ [9] have
enabled deep convolutional networks to set new state-of-the-art performance for MNIST for
the case where no data-augmentation is used. Nevertheless, our best result for a much simpler
single-hidden-layer neural network classifier trained using the very fast ELM algorithm, and
without using data augmentation, is within just 41 errors out of 10000 test images of the state-
of-the-art.

The Extreme Learning Machine: Notation and Training
The Extreme Learning Machine (ELM) training algorithm [10] is relevant for a single hidden
layer feedforward network (SLFN), similar to a standard neural network. However, there are
three key departures from conventional SLFNs. These are (i) that the hidden layer is frequently
very much larger than a neural network trained using backpropagation; (ii) the weights from
the input to the hidden layer neurons are randomly initialised and are fixed thereafter (i.e.,
they are not trained); and (iii) the output neurons are linear rather than sigmoidal in response,
allowing the output weights to be solved by least squares regression. These attributes have also
been combined in learning systems several times previously [11–14].

The standard ELM algorithm can provide very good results in machine learning problems
requiring classification or regression (function optimization); in this paper we demonstrate
that it provides an accuracy on the MNIST problem superior to prior reported results for simi-
larly-sized SLFN networks [1, 15].

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 2 / 20

Competing Interests: The authors of this manuscript
have read the journal’s policy and have the following
competing interests: Mark D. McDonnell is a member
of the editorial board of PLOS ONE. This does not
alter the authors’ adherence to PLOS ONE policies
on sharing data and materials.

We begin by introducing three parameters that define the dimensions of an ELM used as an
N-category classifier: L is the dimension of input vectors,M is the number of hidden layer
units, and N is the number of distinct labels for training samples. For the case of classifying P
test vectors, it is convenient to define the following matrices:

• Xtest, of size L × P, is formed by setting each column to equal a single test vector.

• Ytest, of size N × P, numerically represents the prediction vector of the classifier.

To map from input vectors to network outputs, two weights matrices are required:

• Win, of sizeM × L, contains the input weight matrix that maps length-L input vectors to
lengthM hidden-unit inputs.

• Wout, of size N ×M, contains the output weights that project from theM hidden-unit activa-
tions to a length N class prediction vector.

We also introduce matrices to describe inputs and outputs to/from the hidden-units:

Table 1. Comparison of our results on the MNIST data set with published results using other methods.
The percentages listed in brackets are the mean error percentage we obtained from 10 independent realisa-
tions of each method. The remaining percentage for the results obtained in this report are from the trained
ELM out of the 10 repeats with the best results. Values for each trial shown in Figs 3 and 4 demonstrate small
spreads either side of the mean value. The abbreviations CIW, C and RF are explained in later sections.
Note: SLFN is “Single-hidden Layer Feedforward Network”; DLFN is “Dual-hidden Layer Feedforward Net-
work.” The result described as ‘Distortions’ was obtained by augmenting the training set using affine and elas-
tic distortions, as describe in the main text. ‘Deep. Conv. Net’ is an abbreviation for ‘Deep Convolutional
Network’.

Grouping Method Error in testing Reference

Selected Non-ELM SLFN, 784–1000–10 4.5% [1]

Deep Belief Network 1.25% [2]

Deep Conv. Net LeNet-5 0.95% [1]

Deep Conv. Net (dropconnect) 0.57% [6]

Deep Conv. Net (stochastic pooling) 0.47% [7]

Deep Conv. Net (maxout units and dropout) 0.45% [8]

Deep Conv. Net (deeply-supervised) 0.39% [9]

Past ELM ELM, 784–1000–10 6.05% [15]

C-ELM * 5% [21]

CIW-ELM, 784–1000–10 3.55% [15]

ELM, 784–7840-10 2.75% [27]

ELM, 784-unknown-10 2.61% [20]

CIW-ELM, 784–7000-10 1.52% [15]

ELM+backpropagation, 784–2048-10 1.45% [23]

Deep ELM, 784–700-15000–10 0.97% [20]

ELM & backprop RF-(CIW & C)-ELM, 784—(2 × 6400)-20-500-10 0.91% (1.04%) This report

SLFN ELM RF-ELM,784–15000–10 1.36% (1.48%) This report

CIW-ELM,784–15000–10 1.28% (1.45%) This report

C-ELM, 784–15000–10 1.26% (1.33%) This report

RF-CIW-ELM, 784–15000–10 1.03%(1.10%) This report

RF-C-ELM, 784–15000–10 0.9% (0.99%) This report

RF-C-ELM, 784–25000-10, Distortions 0.57% (0.62%) This report

DLFN ELM RF-(CIW& C)-ELM, 784-(2 × 15000)-20-500-10 0.83% (0.87%) This report

doi:10.1371/journal.pone.0134254.t001

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 3 / 20

• Dtest: =WinXtest, of sizeM × P, contains the linear projections of the input vectors that are
inputs to each of theM hidden-units. A bias for each hidden unit can be added by expanding
the size of the input dimension from L to L+1, and setting the additional input element to
always be unity for all training and test data, with the bias values included as an additional
column inWin.

• Atest, of sizeM × P, contains the hidden-unit activations that occur due to each training vec-
tor, and is given by

Atest :¼ f ðDtest Þ; ð1Þ

where f(�) is shorthand notation for the fact that each element ofDtest is nonlinearly converted
term-by-term to the corresponding element of Atest. For example, if the hidden unit response is
given by the logistic sigmoid function, then

ðAtest Þi;j ¼ f ððDtest Þi;j Þ ¼
1

1þ exp ð�ðDtest Þi;j Þ
: ð2Þ

Many nonlinear activation functions can be equally effective, such as the rectified linear unit
(ReLU) function [16], the absolute value function or the quadratic function. As with standard
artificial neural networks, the utility of the nonlinearity is that it introduces hidden-unit
responses that represent correlations or ‘interactions’ between input elements, rather than sim-
ple linear combinations of them.

The overall conversion of test data to prediction vectors can be written as

Ytest ¼ Wout f ðWinXtest Þ: ð3Þ

We now describe the ELM training algorithm. We introduce K to denote the number of
training vectors available. It is convenient to introduce the following matrices that are relevant
for training an ELM: Xtrain, of size L × K, Atrain, of sizeM × K, and Ytrain =WoutAtrain, of size N
× K are defined analogously to Xtest, Atest and Ytest above. We also introduce Ylabel, of size N ×
K, which numerically represents the labels of each class of each training vector; it is convenient
to define this mathematically such that each column has a 1 in a single row, and all other
entries are zero. The only 1 entry in each column occurs in the row corresponding to the label
class for each training vector.

Ideally we seek to find to findWout that satisfies

Ylabel ¼ WoutAtrain : ð4Þ

However, the number of unknown variables inWout is NM, and the number of equations is
NK. Although an exact solution potentially exists ifM = K, it is usually the case thatM< K
(i.e., there are many more training samples than hidden units) so that the system is overcom-
plete. The usual approach then, is to seek the solution that minimises the mean square error
between Ylabel and Ytrain. This is a standard least squares regression problem for which the

exact solution isWout ¼ YlabelA
>
trainðAtrainA

>
trainÞ�1, assuming that the inverse exists (in prac-

tice it usually does).
It can also be useful to regularise the problem to reduce overfitting, by ensuring that the

weights ofWout do not become large. The standard ridge-regression approach [17] produces
the following closed form solution for the output weights:

Wout ¼ YlabelA
>
trainðAtrainA

>
train þ cIÞ�1

; ð5Þ

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 4 / 20

where I is theM ×M identity matrix, and c can be optimised using cross-validation techniques.
As is discussed in more detail below, we have found QR decomposition [18] to be the most
effective method for solving forWout.

Faster and more accurate performance by shaping the input
weights non-randomly
In the conventional ELM algorithm, the input weights are randomly chosen, typically from a
continuous uniform distribution on the interval [−1, 1] [19], but we have found that other dis-
tributions such as bipolar binary values from {−1, 1} are equally effective.

Beyond such simple randomisation of the input weights, small improvements can be made
by ensuring the rows ofWin are as mutually orthogonal as possible [20]. This cannot be
achieved exactly unlessM� L, but simple random weights typically produce dot products of
distinct rows ofWin that are close to zero, albeit not exactly zero, while a dot product of each
row with itself is always much larger than zero. In addition, it can be beneficial to normalise
the length of each row ofWin, as occurs in the orthogonal case.

In contrast, we can also aim to find weights that, rather than being selected from a random
distribution, are instead chosen to be wellmatched to the statistics of the data, with the hope
that this will improve generalisation of the classifier. Ideally we do not want to have to learn
these weights, but rather just form the weights as a simple function of the data.

Here we focus primarily on improving the performance of the ELM algorithm by biasing the
selection of input layer weights in six different ways, several of which were recently introduced in
the literature, and several of which are novel in this paper. These methods are as follows:

1. Select input layer weights that are random, but biased using the training data samples, so
that the dot product between weights and training data samples is likely to be large. This is
called Computed Input Weights ELM (CIW-ELM) [15].

2. Ensure input weights are constrained to a set of difference vectors of between-class samples
in the training data. This is called Constrained ELM (C-ELM) [21].

3. Restrict the weights for each hidden layer neuron to be non-zero only for a small, random
rectangular patch of the input visual field; we call this Receptive Field ELM (RF-ELM).
Although we believe this method to be new to ELM approaches, it is inspired by other
machine learning approaches that aim to mimic cortical neurons that have limited visual
receptive fields, such as convolutional neural networks [22].

4. Combine RF-ELM with CIW-ELM, or RF-ELM with C-ELM; we show below that the com-
bination is superior to any of the three methods individually.

5. Pass the results of a RF-CIW-ELM and a RF-C-ELM into a third standard ELM (thus pro-
ducing a two-layer ELM system); we show below that this gives the best overall performance
of all methods considered in this paper.

6. Application of the backpropagation method of [23]. This method highlights that the perfor-
mance of an ELM can be enhanced by adjusting all input layer weights simultaneously,
based on all training data. The output layer weights are maintained in their least-squares
optimal state by recalculating them after input layer backpropagation updates. The process
of backpropagation updating of the input weights followed by standard ELM recalculation
of the output weights can be repeated iteratively until convergence.

RF-ELM and its combination with CIW-ELM and C-ELM, and the two-layer ELM are
reported here for the first time. We demonstrate below that each of these methods

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 5 / 20

independently improves the performance of the basic ELM algorithm, and in combination
they produce results equivalent to many deep networks on the MNIST problem [1, 2]. First,
however, we now describe each method in detail.

Computed Input Weights for ELM
The CIW-ELM approach is motivated by considering the standard backpropagation algorithm
[24]. A feature of weight-learning algorithms is that they operate by adding to the weights
some proportion of the training samples, or a linear sum or difference of training samples. In
other words, apart from a possible random initialization, the weights are constrained to take
final values which are drawn from a space defined in terms of linear combinations of the input
training data as basis vectors—see Fig 1. While it has been argued, not without reason, that it is
a strength of ELM that it is not thusly constrained [25], the use of this basis as a constraint on
input weights will bias the ELM network towards a conventional (backpropagation) solution.

The CIW-ELM algorithm is as follows [15]:

1. For use in the following steps only, normalize all training data by subtracting the mean over
all training points and dimensions and then dividing by the standard deviation.

2. Divide theM hidden layer neurons into N blocks, one for each of N output classes; for data
sets where the number of training data samples for each class are equal, the block size isMn

=M/N. We denote the number of training samples per class as Kn, n = 1, . . ., N. If the train-
ing data sets for each class are not of equal size, the block size can be adjusted to be propor-
tional to the data set size.

3. For each block, generate a random sign (±1) matrix, Rn of sizeMn × Kn.

4. Multiply Rn by the transpose of the input training data set for that class, X>
train;n, to produce

Mn × L summed inner products, which are the weights for that block of hidden units.

5. Concatenate these N blocks of weights for each class into theM × L input weight matrix
Win.

6. Normalize each row of the input weight matrix,Win, to unity length.

7. Solve for the output weights of the ELM using standard ELMmethods described above.

ConstrainedWeights for ELM
Recently, Zhu et al. [21] have published a method for constraining the input weights of ELM to
the set of difference vectors of between-class samples. The difference vectors of between-class
samples are the set of vectors connecting samples of one class with samples of a different class,
in the sample space—see Fig 1. In addition, a methodology is proposed for eliminating from
this set the vectors of potentially overlapping spaces (effectively, the shorter vectors) and for
reducing the use of near-parallel vectors, in order to more uniformly sample the weight space.

The Constrained ELM (C-ELM) algorithm we used is as follows [21]:

1. Randomly selectM distinct pairs of training data such that:

a. each pair comes from two distinct classes;

b. the vector length of the difference between the pairs is smaller than some constant, �.

2. Set each row of theM × L input weight matrixWin to be equal to the difference between
each pair of randomly selected training data.

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 6 / 20

Fig 1. Illustration of the three core methods of shaping ELM input weights. In (a), which is a cartoon of the Computed Input Weights ELM (CIW-ELM)
process [15], two classes of input data are indicated by ‘+’ and ‘o’ symbols. The vectors to the ‘+’ symbols are multiplied by random bipolar binary {−1, 1})
vectors u1 and u2 to produce a biased random weight vectorw1. Similarly the weights to the ‘o’ class are also multiplied by random vectors u1 and u2 to
produce a biased randomweight vectorw2. Note that in practice we would not use the same random binary vectors. In (b), we show the Constrained ELM
(C-ELM) process [21]. The black arrows are weight vectors derived by computing the difference of two classes; in this case, the difference between the ‘+’
elements and the ‘o’ elements. In (c), we illustrate the Receptive Field ELM (RF-ELM) method; weights for each hidden layer neuron are restriced to being
non-zero for only a small random rectangular receptive field in the original image plane.

doi:10.1371/journal.pone.0134254.g001

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 7 / 20

3. Set the bias for each hidden unit equal to the scalar product of the sum of each pair of ran-
domly selected training data and the difference of each pair of randomly selected training
data.

4. Normalize each row of the input weight matrix,Win, and each bias value, by the vector of
the difference of the corresponding pair of randomly selected training data.

5. Solve for the output weights of the ELM using standard ELMmethods described above.

Receptive Fields for ELM
We have found that a data-blind (unsupervised) manipulation of the input weights improves
generalization performance. The approach has the added bonus that the input weight matrix is
sparse, with a very high percentage of zero entries, which could be advantageous for hardware
implementations, or if sparse matrix storage methods are used in software.

The RF-ELM approach is inspired by neurobiology, and strongly resembles some other
machine learning approaches [22]. Biological sensory neurons tend to be tuned with preferred
receptive fields so that they receive input only from a subset of the overall input space. The
region of responsiveness tends to be contiguous in some pertinent dimension, such as space for
the visual and touch systems, and frequency for the auditory system. Interestingly, this contigu-
ity aspect may be lost beyond the earliest neural layers, if features are combined randomly.

In order to loosely mimic this organisation of biological sensory systems, in this paper where
we consider only image classification tasks, for each hidden unit we create randomly positioned
and sized rectangular masks that are smaller than the overall image. These masks ensure only a
small subset of the length-L input data vectors influence any given hidden unit—see Fig 1.

The algorithm for generating these ‘receptive-field’masks is as follows:

1. Generate a random input weight matrixW (or instead start with a CIW-ELM or C-ELM
input weight matrix).

2. For each ofM hidden units, select two pairs of distinct random integers from {1, 2, . . . L} to
form the coordinates of a rectangular mask.

3. If any mask has total area smaller than some value q then discard and repeat.

4. Set the entries of a
ffiffiffi
L

p � ffiffiffi
L

p
square matrix that are defined by the two pairs of integers to 1,

and all other entries to zero.

5. Flatten each receptive field matrix into a length L vector where each entry corresponds to
the same pixel as the entry in the data vectors Xtest or Xtrain.

6. Concatenate the resultingM vectors into a receptive field matrix F of sizeM × L.

7. Generate the ELM input weight matrix by finding the Hadamard product (term by term
multiplication)Win = F�W.

8. Normalize each row of the input weight matrix,Win, to unity length.

9. Solve for the output weights of the ELM using standard ELMmethods described above.

We have additionally found it beneficial to exclude pixels from the mask if most or all train-
ing images have identical values for those regions. For the MNIST database, this typically
means ensuring all masks exclude the first and last 3 rows and first and last 3 columns. For
MNIST we have found that a reasonable value of the minimummask size is q = 10, which
enables masks of size 1 × 10 and 2 × 5 and larger, but not 3 × 3 or smaller.

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 8 / 20

Note that unlike the random receptive field patches described in [22] for use in a convolu-
tional network, our receptive field masks are not of uniform size, and not square; we found it
beneficial to ensure a large range of receptive field areas, and large diversity in ratios of lengths
to widths.

Combining RF-ELM with CIW-ELM and C-ELM
All three approaches described so far provide weightings for pixels for each hidden layer unit.
CIW-ELM and C-ELM weight the pixels to bias hidden-units towards a larger response for
training data from a specific class. The sparse weightings provided by RF-ELM bias hidden-
units to respond to pixels from specific parts of the image.

We have found that enhanced classification performance can be achieved by combining the
shaped weights obtained by either CIW-ELM or C-ELM with the receptive field masks pro-
vided by RF-ELM. The algorithm for either RF-CIW-ELM or RF-C-ELM is as follows.

1. Follow the first 5 steps of the above CIW-ELM or the first 2 steps of the C-ELM algorithm,
to obtain an un-normalized shaped input weight matrix,Win, s.

2. Follow the first 6 steps of the RF-ELM algorithm to obtain a receptive field matrix, F.

3. Generate the ELM input weight matrix by finding the Hadamard product (term by term
multiplication)Win = F�Win, s.

4. Normalize each row of the input weight matrix,Win, to unity length.

5. If RF-C-ELM, produce the biases according to steps 3 and 4 of the C-ELM algorithm, but
use the masked difference vectors rather than the unmasked ones.

6. Solve for the output weights of the ELM using standard ELMmethods described above.

Combining RF-C-ELM with RF-CIW-ELM in a two-layer ELM:
RF-CIW-C-ELM
We have found that results obtained with RF-C-ELM and RF-CIW-ELM are similar in terms
of error percentage when applied to the MNIST benchmark, but the errors follow different pat-
terns. As such, a combination of the two methods seemed to offer promise. We have combined
the two methods using a multiple-layer ELM which consists of an RF-C-ELM network and a
RF-CIW-ELM network in parallel, as the first two layers. The outputs of these two networks
are then combined using a further ELM network, which can be thought of as an ELM-autoen-
coder, albeit that it has twenty input neurons and ten output neurons; the input neurons are
effectively two sets of the same ten labels. The structure is shown in Fig 2. The two input net-
works are first trained to completion in the usual way, then the autoencoder layer is trained
using the outputs of the input networks as its input, and the correct labels as the outputs. The
result of this second-layer network, which is very quick to implement (as it uses a hidden layer
of typically only 500–1000 neurons), is significantly better than the two input networks (see
Table 1). Note that the middlemost layer shown in Fig 2 consists of linear neurons, and there-
fore it can be removed by combining its input and output weights into one connecting weight
matrix. However, it is computationally disadvantageous to do so because the number of multi-
plications will increase.

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 9 / 20

Fine Tuning by Backpropagation
In all of the variations of ELM described in this report, the hidden layer weights are not
updated or trained according to the output error, and the output layer weights are solved using
least squares regression. This considerably reduces the trainability of the network, as the num-
ber of free parameters is restricted to the output layer weights, which are generally* 104 in
number. It has been argued that any network in which the total number of weights in the out-
put layer is less than the number of training points will likely be enhanced by using backpropa-
gation to train weights in previous layers [26]. Hence, following the example of deep networks,
and specific ELM versions of backpropagation [23], we have experimented by using

Fig 2. Combined two-layer RF-CIW-ELM and RF-C-ELM network. This figure depicts the structure of our
multilayer ELM network that combines a CIW-RF-ELM network with a C-ELM network, using what is
effectively an autoencoder output. Note that the middle linear layer of neurons can be removed by combining
the output layer weights of the first network with the input layer weights of the second; we have not shown this
here, in order to clarify the development of the structure.

doi:10.1371/journal.pone.0134254.g002

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 10 / 20

backpropagation to fine-tune the hidden layer weights. This does re-introduce the possibility
of overfitting, but that is a well-understood problem in neural networks and the usual methods
for avoiding it will apply here. For simplicity, a batch mode backpropagation was implemented,
using the following algorithm. Note that as in Eq (2), we assume a logistic activation function
in the hidden layer neurons, for which the derivative can be expressed as f0 = f(1 − f).

1. Construct the ELM and solve for the output layer weightsWout as described above.

2. Perform iterative backpropagation as follows:

a. Compute the error for the whole training set: E = Ylabel−WoutAtrain.

b. Calculate the weights update, as derived by [23]: DWin ¼
x ðW>

outEÞ � ðAtrain �Atrain �Atrain Þ� �
X>

train where ξ is the learning rate, and � indi-
cates the Hadamard product (elementwise matrix multiplication).

c. Update the weights,Win =Win−ΔWin.

d. Re-calculate Atrain with the newWin.

e. Re-solve forWout using least squares regression and continue.

f. Repeat from step a) for a desired number of iterations or until convergence.

As illustrated in the Results section, this process has shown a robust improvement on all of
the SLFN ELM solutions tested here, provided learning rates which maintained stability were
used.

Results and discussion for the MNIST benchmark

SLFN with shaped input-weights
We trained ELMs using each of the six input-weight shaping methods described above, as well
as a standard ELM with binary bipolar ({−1, 1}) random input weights plus row-normalisation.
Following the normalisation of rows of the input weight matrix to unity, we multiplied the val-
ues of the entire input weight matrix by a factor of 2, for all seven methods, as this scaling was
found to be close to optimal in most cases.

Our results are shown in Fig 3. To obtain an indication of variance resulting from the ran-
domness inherent in each input-weight shaping method, we trained 10 ELMs using each
method, and then plotted the ensemble mean as a function of hidden-layer size,M. We also
plotted (see markers) the actual error rates for each trained network. It can be seen in Fig 3A
that the error rate decreases approximately log-linearly with the log ofM for smallM, before
slowing asM approaches about 104. Fig 3B shows the error rate when the actual training data
is used. Since our best test results occur when the error rate on the training data is smaller than
0.2%, and we found no significant test error improvement for largerM (see Figs 3C and 3D)
we conclude that increasingM further than shown here produces over fitting. This can be veri-
fied by cross-validation on the training data.

ELM with shaped input-weights and backpropagation
We also trained networks using each of the methods described in the previous section, plus 10
iterations of ELM-backpropagation using a learning rate of ξ = 0.001. As can be inferred from
the fact that the training set still has relatively high error rates for mostM (Fig 4B), this use of
backpropagation is far from optimal, and does not give converged results. As shown in Fig 4A,
in comparison with Fig 3A, these 10 iterations at a fixed learning rate still provide a significant

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 11 / 20

improvement in the error rate for smallM. On the other hand, the improvement for
M = 12800 is minimal, which is not surprising given that the error rate on the training data
without using backpropagation for this value ofM is already well over 99% (Fig 3B).

It is likely that we can get further enhancements of our error rates by optimising the back-
propagation learning rate and increasing the number of iterations used. Moreover, several
methods for accelerating convergence when carrying out backpropagation have been described
previously [23], and we have not used those methods here. However, the best error rate result
reported previously for those methods applied to the MNIST benchmark was 1.45%, achieved

Fig 3. Error rates for MNIST images for various SLFN ELMmethods with shaped input weights. The first row shows the mean error percentage from 10
different trained networks applied to classify (a) the 10000-point MNIST test data set, and (b) the 60000-point MNIST training data set used to train the
networks, for various different sizes of hidden layer,M. Markers show the actual error percentage from each of the 10 networks. Note that the data for the
combination RF-CIW-C-ELMmethod is plotted againstM used in just one of the three parts of the overall network; the total number of hidden units used is
actually 2M+500. Therefore RF-CIW-C-ELM does not outperform the other methods for the same total number of hidden-units for smallM. However it can be
seen that for largeM RF-CIW-C-ELM produces results below 1% error on the test data set and provide the best error rates overall. The second row illustrates
that increasing the number of hidden-units above aboutM = 15000 leads to overfitting, since as shown in (c), the total number of errors plateaus, whilst the
total number of errors on the training set continues to decrease (shown in (d)). Note that (c) and (d) show results from a single trained network only.

doi:10.1371/journal.pone.0134254.g003

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 12 / 20

with 2048 hidden units, and the best error rate for the backpropagation method we used is
3.73% [23]. Our results forM� 3200 hidden units and RF-C-ELM-BP or RF-CIW-ELM-CP
match or surpass the former result, despite using the least advanced backpropagation method
in prior work [23]. The latter value of 3.73% is easily surpassed by all 7 methods for just 800
hidden units. Moreover, the training time reported in prior work [23] is significantly slower
than the time we required when using shaped input weights (see the following section). These
outcomes indicate that the use of input-weight shaping prior to backpropagation outperforms
backpropagation alone by a large margin, in terms of both error rate and training time.

Runtime efficiency
In many applications, the time required to train a network is not considered as important as
the time required for the network to classify new data. However, there do exist applications in
which the statistics of training data change rapidly, meaning retraining is required, or deploy-
ment of a trained classifier is required very rapidly after data gathering. For example, in finan-
cial, sports, or medical data analysis, deployment of a newly trained classifier can be required
within minutes of acquiring data, or retraining may be required periodically, e.g. hourly.
Hence, we emphasize in this paper the rapidity of training. The speed for testing is negligible in
comparison.

The mean training runtime for each of our methods is shown in Fig 5. They were obtained
using Matlab running on a Macbook pro with a 3 GHz Intel Core i7 (2 dual cores, for a total of
4 cores), running OS X 10.8.5 with 8 GB of RAM. The times plotted in Fig 5 are the total times
for setup and training, excluding time required to load the MNIST data into memory from
files. The version of Matlab we used by default exploits all four CPU cores for matrix multipli-
cation and least squares regression. Note that the differences in run time for each method are
negligible, which is expected, since the most time-consuming part is the formation of the

Fig 4. ELM-backpropagation error rates for MNIST for various SLFN ELMmethods with shaped input weights. Each trace shows the mean error
percentage from 10 different trained networks applied to classify (a) the 10000-point MNIST test data set, and (b) the 60000-point MNIST training data set
used to train the networks, for various different sizes of hidden layer,M, when ten iterations of backpropagation were also used. Markers show the actual
error percentage from each of the 10 networks. In comparison with Fig 3, it can be seen that backpropagation significantly improves the error rate for smallM
with all methods, but has little impact whenM = 12800. The total number of hidden units used for RF-CIW-C-ELM is actually 2M+500, but each parallel ELM
hasM hidden-units.

doi:10.1371/journal.pone.0134254.g004

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 13 / 20

matrixAtrainA
>
train. The time for testing was not included in the shown data. We found, predict-

ably, that this scaled linearly withM, and was about 10 seconds forM = 12,800.
The most important conclusion we draw in terms of runtime is that our best results shown

here (forM = 15000 hidden units) for RF-CIW-ELM or RF-C-ELM individually take in the
order of 15 minutes total runtime and achieve* 99% correct classification on MNIST. In com-
parison, data tabulated previously for backpropagation shows at least 81 minutes in order to
achieve 98% accuracy, and a best result of 98.55% in 98 minutes [23]. In contrast, runtimes
reported for the standard ELM algorithm previously (28 seconds for 2048 hidden units [23]) are
comparable to ours (12 seconds for 1600 hidden units and less than 1 minute for 3200 hidden
units). This illustrates that improving error rate by shaping the input weights as we have done
here has substantial benefits for runtime and error rate in comparison to backpropagation.

Fig 5. Mean training times for MNIST for various SLFN ELM trainingmethods with shaped input weights. Each trace shows the mean run time from 10
different networks trained on all 60000 MNIST training data points, to achieve the test-date error rates shown in Fig 4. The total time for setup and training are
shown, excluding time to load the MNIST data from files. When backpropagation is applied, the runtime scales approximately linearly with the number of
iterations, but each backpropagation iteration is slower than each trace shown here, because both input and output weights are updated in each iteration.
The time for testing is not included in the figure, but was approximately 10 seconds forM = 12,800, and increases only linearly withM.

doi:10.1371/journal.pone.0134254.g005

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 14 / 20

Distorting and pre-processing the training set
Many other approaches to classifying MNIST handwritten digits improve their error rates by
preprocessing it and/or by expanding the size of the training set by applying affine (translation,
rotation and shearing), and elastic distortions of the standard set [4, 5, 28]. We have also exper-
imented with distorting the training set to improve on the error rates reported here. For exam-
ple, with 1 and 2 pixel affine translations, we are able to achieve error rates smaller than 0.8%.
When we added random rotations, scalings, shears and elastic distortions, we achieved a best
repeatable error rate of 0.62%, and an overall best error rate of 0.57%. However, adding distor-
tions of the training set substantially increases the runtime for two reasons. First, more training
points generally requires a larger hidden layer size. For example, when we increase the size of
the training set by a factor of 10, we have found we needM> 20000 to achieve error rates
smaller than 0.7%. This significantly affects the run time through the O(M2) matrix multiplica-
tion required.

At this stage, we have chosen to not systematically continue to improve the way in which we
implement distortions to approach state of the art MNIST results, but our preliminary results
show that ELM training is capable of using such methods to enhance error rate performance,
at the expense of a significant increase in runtime, as is expected in other non-ELMmethods.

Results on NORB
We briefly present some results on a second well-known image classification benchmark: the
NORB-small database [29]. This database consists of 48600 stereo greyscale images from five
classes, and there is a standard set of 24300 stereo images for training, and a standard set of
24300 for testing. Each of the images in the two stereo channels for each sample is of size
96 × 96 pixels.

Given the large size of each image relative to MNIST images, we preprocessed all images by
spatially lowpass filtering using a 9 × 9 pixel Gaussian kernel, with standard deviation of 4, and
then decimating to 13 × 13 pixel images. We then contrast-normalised each image by subtract-
ing its mean, and dividing by its standard deviation.

Fig 6 shows results for the error rate (ten repeats and the ensemble mean are shown) on the
test set from application of the RF-C-ELMmethod, as the number of hidden units increases.
We set the minimum receptive field size to 1, and the ridge regression parameter to
c = 5 × 10−6. Our test results peak at close to 95% correct, which is within 3% of state-of-the-art
[30], and superior to some results for deep convolutional networks [31].

Computationally efficient methods for ELM training: iterative methods for
large training sets
In practice, it is known to be generally computationally more efficient (and avoids other poten-
tial problems, such as those described in [32]) to avoid explicit calculation of matrix inverses or
pseudo-inverses when solving linear sets of equations. The same principle applies when using
the ELM training algorithm, and hence, it is preferable to avoid explicit calculation of the
inverse in Eq (5), and instead treat the following as a set of NM linear equations to be solved
for NM unknown variables:

YlabelA
>
train ¼ Wout ðAtrainA

>
train þ cIÞ: ð6Þ

Fast methods for solving such equations exist, such as the QR decomposition method [18],
which we used here. For largeM, the memory and computational speed bottleneck in an imple-

mentation then becomes the large matrix multiplication,AtrainA
>
train. However, there are

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 15 / 20

simple methods that can still enable solution of Eq (6) whenM is too large for this multiplica-
tion to be carried out in one calculation.

For example, when solving Eq (6) by implementation in MATLAB, it is computationally
efficient to use the overloaded ‘n’ function, which invokes the QR decomposition method. This
approach can be used either for the inverse or pseudo-inverse, but we have found it faster to
solve (6), which requires the inverse rather than the pseudo-inverse.

Well known software packages such as MATLAB (which we used) automatically exploit
multiple CPU cores available in most modern PCs to speed up execution of this algorithm
using multithreading. Alternative methods like explicitly calculating the pseudo-inverse, or sin-
gular value decomposition, are in comparison significantly (sometimes several orders of mag-
nitude) slower.

Fig 6. Error rates for NORB-small for RF-C-ELM. The error rate on the 24300 stereo-channel NORB-small test images as a function of the number of
hidden-units,M. The data was preprocessed by downsampling each channel of each image to 13 × 13 pixels, and then contrast normalising. Our best result
from all repeats was 94.76%, forM = 10000.

doi:10.1371/journal.pone.0134254.g006

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 16 / 20

When using the linear equation solution method, the main component of training runtime
for large hidden-layer sizes becomes the large matrix multiplication required to obtain

AtrainA
>
train. There is clearly much potential for speeding up this simple but time-consuming

operation, such as by using GPUs or other hardware acceleration methods.
The above text discusses the standard single-batch approach. There are also online and

incremental ELM solutions for real-time and streaming operations and large data sets [26, 27,
33, 34]. The use of singular value decomposition offers some additional insight into network
structure and further optimization [20]. Here we describe an iterative method that offers
advantages in training where the output weight matrix need not be calculated more than once.

One potential drawback of following the standard ELMmethod of solving for the output
weights using all training data in one batch is the large amount of memory that is potentially
required. For example, with the MNIST training set of 60000 images, and a hidden layer size of
M = 10000, the Atrain matrix has 6 × 108 elements, which for double precision representations
requires approximately 4.5 GB of RAM. Although this is typically available in modern PCs, the
amount of memory required becomes problematic if training data is enhanced by distortions,
or if the amount of hidden units needs to be increased significantly.

We have identified a simple solution to this problem, which is as follows. First, we introduce
sizeM × 1 vectors dj, j = 1, . . ., K, formed from the columns of Atrain. Then one of the two key
terms in Eq (6) can be expressed as

AtrainA
>
train ¼

XK

j¼1

djd
>
j : ð7Þ

That is, the matrix that describes correlations between the activations of each hidden unit is
just the sum of the outer products of the hidden-unit activations in response to all training
data. Similarly, we can simplify the other key term in Eq (6) by introducing size N × 1 vectors
yj, j = 1, . . . K to represent the K columns of Ylabel and write

YlabelA
>
train ¼

XK

j¼1

yjd
>
j : ð8Þ

In this way, theM ×MmatrixAtrainA
>
train and the N ×MmatrixYlabelA

>
train can be formed

from K training points without need to keep the Atrain matrix in memory, and once these are

formed, the least squares solution method applied. The matrixAtrainA
>
train still requires a large

amount of memory (M = 12000 requires over 1 GB of RAM), but using this method the num-
ber of training points can be greatly expanded and incur only a runtime cost. In practice, rather
than form the sum from K training points, it is more efficient to form batches of subsets of
training points and then form the sums: the size of the batch is determined by the maximum
RAM available.

It is important to emphasise that unlike other iterative methods for training ELMs that
update the output weights iteratively [26, 27, 33, 34], the approach described here only itera-

tively updatesAtrainA
>
train.

Conclusions
We have shown here that simple SLFNs are capable of achieving the same accuracy as deep
belief networks [2] and convolutional neural networks [1] on one of the canonical benchmark
problems in deep learning: image classification. The most accurate networks we consider here
use a combination of several non-iterative learning methods to define a projection from the
input space to a hidden layer. The hidden layer output is then solved simply using least squares

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 17 / 20

regression applied to a single batch of all training data to find the weights for a linear output
layer. If extremely high accuracy is required, the outputs of one or more of these SLFNs can be
combined using a simple autoencoder stage. The maximum accuracy obtained here is compa-
rable with the best published results for the standard MNIST problem, without augmentation
of the dataset by preprocessing, warping, noising/denoising or other non-standard modifica-
tion. The accuracies achieved for the basic SLFN networks are in some cases equal to or higher
than those achieved by the best efforts with deep belief networks, for example.

Moreover, when using the receptive field (RF) method to shape inputs weights, the resulting
input weight matrix becomes highly sparse: using the RF algorithm above, close to 90% of
input weights are exactly zero.

We note also that the implementations here were for the most part carried out on standard
desktop PCs and required very little computation in comparison with deep networks. It should
be highlighted that we have found significant speed increases for training by avoiding explicit
calculation of matrix inverses. Moreover, we have shown that it is possible to circumvent mem-
ory difficulties that could arise with large training sets, by iteratively calculating the matrix

AtrainA
>
train, and then still only computing the output weights once. This method could also be

used in streaming applications: the matrixAtrainA
>
train could be updated with every training

sample, but the output weights only updated periodically. In these ways, we can avoid previ-
ously identified potential limitations of the ELM training algorithm, regarding matrix inversion
discussed in [32] (see also [26, 35]).

The principles implemented in the ELM training algorithm, and in particular the use of sin-
gle-batch least squares regression in a linear output layer, following random projection to non-
linear hidden-units, parallel a principled approach to modelling neurobiological function,
known as the neural engineering framework (NEF) [14]. Recently this framework [14] was uti-
lized in a very large (2.5 million neuron) model of the functioning brain, known as SPAUN
[36, 37]. The computational and performance advantages we have demonstrated here could
potentially boost the performance of the NEF, as well as, of course, the many other applications
of neural networks.

Although deep networks and convolutional networks are now standard for hard problems
in image and speech processing, their merits were originally argued almost entirely on the basis
of their success in classification problems such as MNIST. The argument was of the form that
because no other networks were able to achieve the same accuracy, the unique hierarchy of
representation of features offered by deep networks, or the convolutional processing offered by
CNNs, must therefore be necessary to achieve these accuracies. However, If there exists a neu-
ral network that does not use a hierarchical representation of features, and which can obtain
the same accuracy as one that does, then this argument may be a case of confirmation bias. We
have shown here that results equivalent to those originally obtained with deep networks and
CNNs on MNIST can be obtained with simple single-layer feedforward networks, in which
there is only one layer of nonlinear processing; and that these results can be obtained with very
quick implementations. While the intuitive elegance of deep networks is hard to deny, and the
economy of structure of multilayer networks over single layer networks is proven, we would
argue that the speed of training and ease of use of ELM-type single layer networks makes them
a pragmatic first choice for many real-world machine learning applications.

Acknowledgments
Mark D. McDonnell’s contribution was by supported by an Australian Research Fellowship
from the Australian Research Council (project number DP1093425). André van Schaik’s con-
tribution was supported by Australian Research Council Discovery Project DP140103001.

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 18 / 20

Author Contributions
Conceived and designed the experiments: MMMT TV AvS JT. Performed the experiments:
MMMT JT. Analyzed the data: MMMT JT. Wrote the paper: MMMT TV AvS JT.

References
1. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE. 1998; 86:2278–2324. doi: 10.1109/5.726791

2. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural computation.
2006; 18:1527–1554. doi: 10.1162/neco.2006.18.7.1527 PMID: 16764513

3. LeCun Y, Cortes C, Burges CJC. The MNIST database of handwritten digits; Accessed August 2014.
http://yann.lecun.com/exdb/mnist/

4. CireŞan D, Meier U, Gambardella LM, Schmidhuber J. Deep, big, simple neural nets for handwritten
digit recognition. Neural Computation. 2010; 22:3207–3220. doi: 10.1162/NECO_a_00052 PMID:
20858131

5. CireŞan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In:
Proc. CVPR; 2012. p. 3642–3649.

6. Wan L, Zeiler M, Zhang S, LeCun Y, Fergus R. Regularization of neural networks using DropConnect.
In: Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA;
JMLR: W&CP volume 28; 2013.

7. Zelier MD, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks. In: In
Proc. International Conference on Learning Representations, Scottsdale, USA, 2013; 2013.

8. Goodfellow IJ, Warde-Farley D, Mirza M, Courville A, Bengio Y. Maxout networks. In: Proceedings of
the 30th International Conference on Machine Learning, Atlanta, Georgia, USA; JMLR: W&CP volume
28; 2013.

9. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. In: Deep Learning and Represen-
tation LearningWorkshop, NIPS; 2014.

10. Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing.
2006; 70:489–501. doi: 10.1016/j.neucom.2005.12.126

11. Schmidt PF, Kraaijveld MA, Duin RPW. Feed forward neural networks with random weights. In: Proc.
11th IAPR Int. Conf. on Pattern Recognition, Volume II, Conf. B: Pattern Recognition Methodology and
Systems (ICPR11, The Hague, Aug.30—Sep.3), IEEE Computer Society Press, Los Alamitos, CA,
1992, 1–4; 1992.

12. Chen CLP. A rapid supervised learning neural network for function interpolation and approximation.
IEEE Transactions on Neural Networks. 1996; 7:1220–1230. doi: 10.1109/72.536316 PMID: 18263516

13. Eliasmith C, Anderson CH. Developing and applying a toolkit from a general neurocomputational
framework. Neurocomputing. 1999; 26:1013–1018. doi: 10.1016/S0925-2312(99)00098-3

14. Eliasmith C, Anderson CH. Neural Engineering: Computation, Representation, and Dynamics in Neuro-
biological Systems. MIT Press, Cambridge, MA; 2003.

15. Tapson J, de Chazal P, van Schaik A. Explicit computation of input weights in extreme learning
machines. In: Proc. ELM2014 conference, Accepted; 2014. p. arXiv:1406.2889.

16. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmannmachines. In: Proceedings of the
27th International Conference on Machine Learning (ICML), Haifa, Israel; 2010.

17. Marquardt DW, Snee RD. Ridge Regression in Practice. The American Statistician. 1975; 29:3–20. doi:
10.2307/2683673

18. Press WH, Teukolsky SA, VetterlingWT, Flannery BP. Numerical Recipes in C: The Art of Scientific
Computing. 2nd ed. Cambridge University Press, Cambridge, UK; 1992.

19. Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classifi-
cation. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics. 2012; 42:513–
529. doi: 10.1109/TSMCB.2011.2168604

20. Kasun LLC, Zhou H, Huang GB, Vong CM. Representational learning with extreme learning machine
for big data. IEEE Intelligent Systems. 2013; 28:31–34.

21. ZhuW, Miao J, Qing L. Constrained extreme learning machines: A study on classification cases; 2015.
ArXiv:1501.06115.

22. Coates A, Lee H, Ng AY. An analysis of single-layer networks in unsupervised feature learning. In:
Proc.14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011, Fort Lau-
derdale, FL, USA. Volume 15 of JMLR:W&CP 15; 2011.

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 19 / 20

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1162/NECO_a_00052
http://www.ncbi.nlm.nih.gov/pubmed/20858131
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/72.536316
http://www.ncbi.nlm.nih.gov/pubmed/18263516
http://dx.doi.org/10.1016/S0925-2312(99)00098-3
http://dx.doi.org/10.2307/2683673
http://dx.doi.org/10.1109/TSMCB.2011.2168604

23. Yu D, Ding L. Efficient and effective algorithms for training single-hidden-layer neural networks. Pattern
Recognition Letters. 2012; 33:554–558. doi: 10.1016/j.patrec.2011.12.002

24. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature.
1986; 323:533–536. doi: 10.1038/323533a0

25. Huang GB. An insight into extreme learning machines: Random neurons, random features and kernels.
Cognitive Computation. 2014; 6:376–390. doi: 10.1007/s12559-014-9255-2

26. Widrow B, Greenblatt A, Kim Y, Park D. The No-Prop algorithm: A new learning algorithm for multilayer
neural networks. Neural Networks. 2013; 37:182–188. doi: 10.1016/j.neunet.2012.09.020 PMID:
23140797

27. Tapson J, van Schaik A. Learning the pseudoinverse solution to network weights. Neural Networks.
2013; 45:94–100. doi: 10.1016/j.neunet.2013.02.008 PMID: 23541926

28. Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks applied to visual
document analysis. In: Proceedings of the Seventh International Conference on Document Analysis
and Recognition (ICDAR 2003); 2003.

29. LeCun Y, Huang FJ, Bottou L. Learning Methods for Generic Object Recognition with Invariance to
Pose and Lighting. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR). vol. 2; 2004. p. 97–104.

30. CireŞan DCD, Meier U, Masci J, Gambardella LM, Schmidhuber J. Flexible, high performance convolu-
tional neural networks for image classification. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence; 2011. p. 1237–1242.

31. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y. What is the best multi-stage architecture for object rec-
ognition? In: In Proc. IEEE 12th International Conference on Computer Vision; 2009.

32. Widrow B. Reply to the comments on the “No-Prop” algorithm. Neural Networks. 2013; 48:204. doi: 10.
1016/j.neunet.2013.11.003 PMID: 24314855

33. Liang NY, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate online sequential learning
algorithm for feedforward networks. IEEE Transactions on Neural Networks. 2006; 17:1411–1423. doi:
10.1109/TNN.2006.880583 PMID: 17131657

34. van Schaik A, Tapson J. Online and adaptive pseudoinverse solutions for ELM weights. Neurocomput-
ing. 2015; 149:233–238. doi: 10.1016/j.neucom.2014.01.071

35. Lim MH. Comments on the “No-Prop” algorithm. Neural Networks. 2013; 48:59–60. doi: 10.1016/j.
neunet.2013.07.004 PMID: 23945268

36. Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang C, et al. A Large-Scale Model of the Func-
tioning Brain. Science. 2012; 338:1202–1205. doi: 10.1126/science.1225266 PMID: 23197532

37. Stewart TC, Eliasmith C. Large-scale synthesis of functional spiking neural circuits. Proceedings of the
IEEE. 2014; 102:881–898. doi: 10.1109/JPROC.2014.2306061

Extreme Learning Machines with Shaped Input-Weights

PLOS ONE | DOI:10.1371/journal.pone.0134254 August 11, 2015 20 / 20

http://dx.doi.org/10.1016/j.patrec.2011.12.002
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/s12559-014-9255-2
http://dx.doi.org/10.1016/j.neunet.2012.09.020
http://www.ncbi.nlm.nih.gov/pubmed/23140797
http://dx.doi.org/10.1016/j.neunet.2013.02.008
http://www.ncbi.nlm.nih.gov/pubmed/23541926
http://dx.doi.org/10.1016/j.neunet.2013.11.003
http://dx.doi.org/10.1016/j.neunet.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24314855
http://dx.doi.org/10.1109/TNN.2006.880583
http://www.ncbi.nlm.nih.gov/pubmed/17131657
http://dx.doi.org/10.1016/j.neucom.2014.01.071
http://dx.doi.org/10.1016/j.neunet.2013.07.004
http://dx.doi.org/10.1016/j.neunet.2013.07.004
http://www.ncbi.nlm.nih.gov/pubmed/23945268
http://dx.doi.org/10.1126/science.1225266
http://www.ncbi.nlm.nih.gov/pubmed/23197532
http://dx.doi.org/10.1109/JPROC.2014.2306061

