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Abstract
Background: Whole-genome sequencing projects are rapidly producing an enormous number of
new sequences. Consequently almost every family of proteins now contains hundreds of members.
It has thus become necessary to develop tools, which classify protein sequences automatically and
also quickly and reliably. The difficulty of this task is intimately linked to the mechanism by which
protein sequences diverge, i.e. by simultaneous residue substitutions, insertions and/or deletions
and whole domain reorganisations (duplications/swapping/fusion).

Results: Here we present a novel approach, which is based on random sampling of sub-sequences
(probes) out of a set of input sequences. The probes are compared to the input sequences, after a
normalisation step; the results are used to partition the input sequences into homogeneous groups
of proteins. In addition, this method provides information on diagnostic parts of the proteins. The
performance of this method is challenged by two data sets. The first one contains the sequences
of prokaryotic lyases that could be arranged as a multiple sequence alignment. The second one
contains all proteins from Swiss-Prot Release 36 with at least one Src homology 2 (SH2) domain –
a classical example for proteins with modular architecture.

Conclusion: The outcome of our method is robust, highly reproducible as shown using bootstrap
and resampling validation procedures. The results are essentially coherent with the biology. This
method depends solely on well-established publicly available software and algorithms.

Background
Whole-genome sequencing projects are currently produc-
ing an enormous amount of new sequences. As a conse-
quence, protein sequence databases are rapidly increasing
in size, thus resulting in severe practical consequences. For
example, a simple database search can now yield hun-
dreds of matches. An automated but sensible grouping of
those proteins appears as an indispensable solution to
analyse such an output in a timely manner.

Proteins are often described as the assembly of several
structural/functional units called domains. Isolation of
the domain sub-sequences renders a multiple alignment
possible, from which domain descriptors are built based
on efficient methods for remote homology detection
(PSSM [1], generalised profiles [2], hidden Markov mod-
els (HMM) [3]). This led to the thriving development of
protein-domain databases such as PROSITE [4], Pfam [5],
Blocks [6], PRINTS [7], IDENTIFY [8], ProDom [9], Domo
[10], SMART [11] and ADDA [12]. Classification of
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domain sub-sequences is relatively straightforward
through direct sequence comparison but does not address
the problem of whole multi-domain protein
classification.

As a possible alternative to direct sequence comparison,
proteins could be classified according to their domain
architecture [13,14]. Although no general methodology
has yet emerged, many review articles on particular fami-
lies are available [15-17]. The highly modular proteins
that are involved in signalling pathways are a typical
example where domain architecture usually is diagnostic
for the protein function (such an example is treated
below). Unfortunately, in the course of evolution, the lin-
ear and modular organisation of proteins is not always
preserved because of rare genetic events that are responsi-
ble for domain swapping, duplication or deletion. One
must realise that the number of these particular cases
increases with the number of genome sequences [18-20]
and renders automated classification difficult.

Finally, the emerging picture of the human proteome pro-
vides evidence that alternative splicing is not anecdotal
[21]. Indeed, this mechanism is a potential source of
sequence variation and the proper handling of splice var-
iants by clustering protocols is a challenge.

Several recent contributions addressed the clustering of
very large sets of possibly unrelated protein sequences
(e.g. TRIBE-MCL [22], Picasso [23], Systers [24], COG
[25], ProtoMap [26], ProtoNet [27], ClusTr [28] and Pro-
Class [29]). All these approaches are based on pairwise or
multiple alignments of the sequences to be analysed.
Alternatively alignment-free sequence comparison meth-
ods were proposed ([30] and references therein). How-
ever, they have not yet been widely used for the clustering
of very large sets.

Here we present a novel method called JACOP (just
another classification of proteins), which stands some-
where between pairwise alignment methods and align-
ment-free methods. We will employ a collection of
unordered short sub-sequences as an intermediary layer in
the comparison of two sequences. As a consequence, the
linearity of the domain architecture – present in the inves-
tigated protein set – no longer plays an important role. In
comparison to existing methods, our protocol is remarka-
bly simple but nevertheless appears to be robust and
highly reproducible on difficult test sets.

Results and discussion
Protocol
The different steps to partition a set of unaligned protein
sequences using the JACOP protocol are presented below
and summarised in Figure 1. The parameters used for the

reference protocol are those established after intense test-
ing leading to the most consistent results. The rationale
behind the selection of these parameters is presented fur-
ther down. The only prerequisite for a given sequence is a
length of at least 50 residues. Otherwise no a priori knowl-
edge about the protein sequences is needed.

1. Random probe generation
p subsequences of 50 residues length (probes) are ran-
domly sampled from the set of N input sequences. All
probes that can possibly be generated out of the input
sequences are equally likely. The sampling process is car-
ried out until the cumulated length of the probes exceeds
three times the cumulated length of the input sequences.

2. Pruning probes
An all-versus-all comparison of the probes is performed
using the SW algorithm with a Blosum62 [31] similarity
matrix and gap opening/extension penalties set to -12/-1.
The list of probes is then pruned as follows. The first probe
is kept. The second probe is compared with the first and
kept only if its SW score is below a threshold of 160. The
subsequent probes are successively compared with the list
of already kept probes and added to this list if their SW
scores are below 160, thus leaving a list of m probes.

3. Scoring input sequences with probes
A comparison of all probes of the pruned collection versus
all input sequences is performed using the SW algorithm
with a Blosum62 scoring matrix and gap opening/exten-
sion penalties set to -12/-1. The SW scores S are normal-
ised to obtain bitscores Sbit [32] using:

The parameter values for the above used scoring system
are λ = 0.312 and K = 0.076. These parameters were
obtained by simulation with random sequences (see
Materials and Methods). The bitscores are arranged in a
matrix of dimensions Nxm.

4. Protein distances
The above matrix is first transformed to a binary matrix
based on a threshold of 27 (equivalent to a p-value of 0.01
[33,34]). All bitscores below this threshold are set to 0 and
those above, to 1 (match). Since the binary variables are
asymmetric, a distance matrix between any pair of input
sequences represented by the rows of the binary matrix is
calculated using the Jaccard distance [35]:
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Schematic representation of the reference protocolFigure 1
Schematic representation of the reference protocol. The numbers correspond to the steps explained in the main text.
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where n11 is the number of probes which match both
sequences, and n10 and n01 are the number of probes,
which only match one of the two sequences. n00 is
excluded from the calculation of the distance (see below).
This distance measure ranges from 0 (closely related
sequences with all probes in common) to 1 (sequences
with no probe in common).

5. Identification of independent groups
One can identify groups that are separated by a distance of
1 (no match in common). These groups are called inde-
pendent groups. The set of N input sequences is split into
n independent groups containing li proteins (1≤i≤n).

6. Partitioning of proteins within an independent group
This is done using the PAM (Partitioning Around
Medoids) algorithm [36] which, based on the above dis-
tance matrix, calculates all possible partitions ranging
from 2 to li-1 subgroups. For each partition the overall
average silhouette width [37] is calculated and the parti-
tion that maximises it is considered optimal.

7. Hierarchical clustering
The protein sequences are clustered using average-linkage
agglomerative hierarchical clustering based on the Jaccard
distances. The resulting tree is particularly useful to estab-
lish the relations between subgroups.

8. Identification of diagnostic probes
For each probe the number of subgroups, to which it
matches, is determined. As a result one can distinguish
probes that only match one group, probes that match all
groups (conserved regions found in all members of an
independent group) and those in between.

Case 1: Prokaryotic lyases
A set of protein sequences that can legitimately be
arranged into a multiple sequence alignment is first con-
sidered to facilitate the comparison of the outcome of the
JACOP protocol with other classification methods. All
prokaryotic sequences retrieved with the Pfam (Version
7.3) HMM Lyase_1 (PF00206) in Swiss-Prot release 36
were retained as a test set. These are enzymes involved in
double bond isomerisation, and catalyse five different
reactions. A short sequence flanking a conserved methio-
nine, described by the PROSITE pattern PS00163, is also
present in all of these sequences.

Applying the JACOP protocol to this set of 53 sequences
with an average length of 463 residues, resulted in the
generation of 1473 probes to obtain three-time coverage.
Only 154 probes were left after pruning, owing to the rel-
atively high similarity among these sequences. The
sequences were hierarchically clustered and the resulting
tree is shown in Figure 2b. Two independent groups were

obtained. The two class I fumarate hydratases are sepa-
rated from all other sequences by a distance of one, i.e. the
two groups do not share any probe and this despite the
matches determined with the Pfam HMM and the
PROSITE pattern. It turned out that these class I fumarate
hydratases are biochemically different [38] (contain a
[4Fe-4S] cluster, form homodimers and work under aero-
bic conditions) from the class II fumarate hydratases
found among the remaining 51 sequences that form the
second independent group (work under anaerobic condi-
tions, do not contain an iron-sulfur cluster and form
homotetramers). This latter group is partitioned into four
sub-groups.

1. The argininosuccinate lyases form a dense cluster with
a distinctive enzymatic activity.

2. The adenylosuccinate lyases (PUR8_*) with the excep-
tion of PUR8_ECOLI/BUCAI/HAEIN, which appear to be
a separate sub-group, and the 3-carboxy-cis, cis-muconate
cycloisomerase (PCAB_*) are clustered together.

3. The adenylosuccinate lyases PUR8_ECOLI/BUCAI/
HAEIN.

4. The class II fumarate hydratases and aspartate ammo-
nia-lyases are clustered together.

Two sets of probes match to conserved regions of the sec-
ond independent group (Figure 3). The first region corre-
sponds to the active site according to Swiss-Prot
annotation. The second region is the one identified with
the Pfam HMM Lyase_1 (PF00206). In addition to these
probes that identify conserved regions, other probes that
are specific for the different subgroups were found.

The JACOP results were compared to the classification
obtained using other approaches. Thus the sequences
were aligned using ClustalW with default settings, and a
tree was derived from this alignment using the PROTDIST
and FITCH programs of the PHYLIP package [39] (Figure
2a). The trees are comparable, with differences
implicating the problematic PUR8_ECOLI/BUCAI/
HAEIN. However, the ClustalW/PHYLIP approach cannot
provide any indication that the class I fumarate hydratases
are unrelated to all other sequences. A bootstrap analysis
on the multiple sequence alignment was also performed
[40-42]. The results were rather confusing. Indeed a clas-
sical bootstrap strategy is designed to handle multiple
sequence alignments of related sequences and is therefore
unsuited to deal with such divergent sequences. As an
alternative, the sequences were aligned using T-Coffee
[43] with default parameters and the tree was established
as before. In contrast to ClustalW, this tree confirmed the
result found with JACOP (details not shown).
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Furthermore, the classification obtained with JACOP was
compared with other publicly available large-scale protein
clusters. The COG (release 3) classification [25] was fully
consistent with the enzymatic nomenclature and correctly
separated the fumarate hydratases into two families. More
surprisingly, it distinguished the 3-carboxy-cis, cis-muco-
nate cycloisomerases from all the adenylosuccinate lyases.
Unfortunately, details leading to this distinction were not
available at the time of writing.

In the case of SYSTERS (release 4) [24], ProtoNet (version
4.0) [27] as well as ClusTr [28], the same 5 clusters were
found.

Parameter selection for JACOP
The rationale for our choices was the following:

i. Rigorous and well-described methods (SW algorithm,
PAM algorithm) were preferred over faster but intricate
heuristics for the sake of reproducibility by others. Never-
theless we tested BLAST (version 2.2.5) to compute the
scores. However, this heuristic often failed to provide the
correct SW scores, possibly due to the short length of the
probes (details not shown).

ii. The main reason for choosing the PAM algorithm for
partitioning the proteins was that this method, which is

This figure shows the trees obtained either with ClustalW/PHYLIP (a) or with the JACOP protocol (b)Figure 2
This figure shows the trees obtained either with ClustalW/PHYLIP (a) or with the JACOP protocol (b). The families of 
enzymes with different activities are presented in different colours. The resulting independent groups and subgroups found by 
JACOP are indicated by frames. In the case of the tree obtained with the JACOP protocol, the resampling/bootstrap values 
above 95% are indicated. The separation (*) between the three subgroups of homologues received a relatively low value 
because of comparable distances that induce a competition of sub-tree topology at that node.
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Representative proteins of the prokaryotic lyases are shown together with matching probes at their respective positionsFigure 3
Representative proteins of the prokaryotic lyases are shown together with matching probes at their respective positions. The 
probes mapping to the representative of the first independent group (FUMA_ECOLI) are represented as closed dark grey bars. 
Probes that map to the active sites of proteins of the second independent group are shown as closed red bars, and those that 
map the region identified by the Pfam HMM Lyase_1 (PF00206) as closed green bars. Probes that map specifically to the differ-
ent subgroups are depicted as open bars using the following colours: blue, orange, magenta and yellow. Probes that are not 
specific for any particular subgroup are depicted as grey open bars. Features were obtained from the original Swiss-Prot 
annotation.

ID   FUMA_ECOLI   STANDARD;      PRT;   547 AA.

DE   Fumarate hydratase class I, aerobic (EC 4.2.1.2) (Fumarase).

IRON-SULFUR (4FE-4S) (BY SIMILARITY)

ACT_SITE POTENTIAL

BINDING CARBOXYL GROUP

1 61 121 181 241 301 361 421
 (POTENTIAL)

481 54

ID   PUR8_BUCAI   STANDARD;      PRT;   456 AA.

DE   Adenylosuccinate lyase (EC 4.3.2.2) (Adenylosuccinase) (ASL).

ACT_SITE ACID (BY SIMILARITY)

ACT_SITE BASE (BY SIMILARITY)

1 61 121 181 241 301 361 421

ID   PCAB_ACIAD   STANDARD;      PRT;   452 AA.

DE   3-carboxy-cis,cis-muconate cycloisomerase (EC 5.5.1.2)

DE   (3-carboxymuconate lactonizing enzyme) (CMLE).

1 61 121 181 241 301 361 421

ID   PUR8_THEMA   STANDARD;      PRT;   431 AA.

DE   Adenylosuccinate lyase (EC 4.3.2.2) (Adenylosuccinase) (ASL).

ACT_SITE ACID ACT_SITE BASE

1 61 121 181 241 301 361 421

ID   ARLY_CAMJE   STANDARD;      PRT;   460 AA.

DE   Argininosuccinate lyase (EC 4.3.2.1) (Arginosuccinase) (ASAL).

1 2 3 4 5 6

7 8

1 61 121 181 241 301 361 421

ID   FUMC_HAEIN   STANDARD;      PRT;   464 AA.

DE   Fumarate hydratase class II (EC 4.2.1.2) (Fumarase).

ACT_SITE POTENTIAL BINDING CARBOXYL GROUP (POTENTIAL)

1 61 121 181 241 301 361 421

ID   ASPA_ECOLI   STANDARD;      PRT;   478 AA.

DE   Aspartate ammonia-lyase (EC 4.3.1.1) (Aspartase).

9

1 61 121 181 241 301 361 421

Legends: 1, CONFLICTG -> D (IN REF.1); 2, CONFLICTE -> Q (IN REF.1); 3, CONFLICTL -> F (IN REF.1); 4, CONFLICTK -> E (IN REF.
1); 5, CONFLICTP -> L (IN REF.1); 6, CONFLICTP -> F (IN REF.1); 7, CONFLICTAI -> RT (IN REF.1); 8, CONFLICTAHFIV-> HIYS(IN
REF.1); 9, CONFLICTE -> V (IN REF.2);
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based on the minimization of the sum of dissimilarities,
is more robust than methods that minimize the error sum
of squares like k-means [36]. As an alternative to the PAM
algorithm we have tested the fast TRIBE-MCL [22] algo-
rithm but it failed to identify the relevant groups.

iii. Silhouette widths allow a good characterisation of all
clusters that are not too elongated and make it possible to
identify outliers in most situations. Another advantage of
silhouette widths is their independence of the used parti-
tioning algorithm. Silhouette widths s(i) [37] are calcu-
lated for each object i and range from -1 to +1. Values of
s(i) close to one, indicate that the average dissimilarity of
i to the other objects of the same cluster is much smaller
than the smallest average dissimilarity to other clusters. If
the value s(i) is about zero, then the two dissimilarities are
approximately equal and hence it is not clear to which
cluster the object i should be assigned. The worst situation
takes place, when s(i) is negative indicating that object i
has been misclassified. Furthermore, the overall average
silhouette width over all objects can be used to objectively
identify the most consistent partitioning for which it is the
largest. The result of the partitioning is a list of protein
sequences with the number of the subgroup to which they
belong. Additionally, for each protein sequence, the
number of the closest alternative subgroup and the corre-
sponding silhouette width s(i) is given.

iv. Due to the random generation of the probes, one has
to sample a sufficient number of them to "cover" the com-
plete sequence. Sampling was stopped once the cumu-
lated length of the probes exceeded three times the
cumulated length of the input sequences (coverage 3x)
because, in average, higher numbers do not further
change the final number of probes after pruning.

v. The main reason for choosing the Jaccard distance
measure was that it did not take into account non-signifi-
cant matches shared by two proteins. As a consequence,
proteins with no similarity other than noise are not
grouped together.

The choice of the following parameters was based on two
different validation procedures. The first one consists of
re-sampling, i.e. the whole protocol is repeated 100 times
from probe sampling to the partitioning of the independ-
ent groups, each time with a different seed for the random
number generator. The second test is a classical bootstrap
on the pruned probes, i.e. the first 3 steps of the protocol
are run once and the resulting bitscore matrix is boot-
strapped 100 times followed by the partitioning of the
independent groups. The reproducibility of the 100
obtained partitions was evaluated based on the adjusted
rand index [44]. It is a statistic designed to assess the
degree of agreement between two partitions. An adjusted

Rand index of 1 indicates identical partitions, whereas an
adjusted rand index close to zero indicates random parti-
tioning. After the simulations, each of the 100 partitions
was compared to the other 99 partitions and the average
was taken. The average adjusted rand indexes are given in
Table 1 for the different parameter sets tested.

vi. Sampling with three times coverage results in a lot of
redundancy. Eliminating probes that are too similar sig-
nificantly reduces this redundancy, while keeping the
information. Several threshold scores (raw scores of 40,
80, 120, 160 and 200) for the elimination of similar
probes were tested for the pruning step. At a threshold of
40, most probes were eliminated and consequently most
of the information. The resulting set of probes did not
allow the robust and reproducible identification of sub-
groups. On the other hand, starting from threshold 160,
the partitions were reproducible. In all cases the gain in
resolution and information was marginal when the
threshold was increased to 200. In addition, pruning has
the desirable side effect that it preferentially removes
probes with low complexity regions [45,46] – which are
known to be a nuisance in sequence comparison.

vii. Because of the use of a local alignment algorithm, the
average length of a match was shorter than the length of
the probes (average length of about 19 for the above set of
sequences). This implies that relatively long probes could
document short conserved motifs. The use of probes of
length 25 or 100 resulted in a substantially decreased
reproducibility.

viii. The similarity matrices and gap penalties for the SW
algorithm parameters were selected to ensure that the
scoring system produces true local alignments (logarith-
mic phase [47]; this allowed the use of well established
statistics [47-53].In addition to the scoring system
Blosum62/-12/-1, the Blosum45/-13/-3 and the
Blosum80/-10/-1 scoring systems were also evaluated
with the appropriate values for λ and K. Surprisingly this
only had a marginal effect on the outcome.

ix. Hierarchical clustering was also applied to the data sets
generated during the validation procedure. The resulting
100 trees were compared to determine the stability of the
nodes. In the case of prokaryotic lyases, counts larger than
95 are reported on the tree of Figure 2b. The outcomes of
the two validation procedures agree to a large extent.
Interestingly, the separation between the three major sub-
groups of homologues received a relatively low value
because comparable distances separated them. This
results in a competition of sub-tree topology at that node.
This incidentally indicates the superiority of the PAM
algorithm over hierarchical clustering for our purpose.
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Case 2: SH2 containing proteins
Here a set of protein sequences that cannot be arranged as
a meaningful multiple sequence alignment is considered.
This set contains all proteins from Swiss-Prot (release 40)
with at least one Src homology 2 (SH2) domain as pre-
dicted by the Pfam HMM PF00017. The 203 proteins of
this set belong to the super-family of intracellular signal-
transducing proteins and represent a case study of modu-
lar architecture [17]. Indeed, together with one or two
SH2 domains, many other domains were found. Amongst
them are RhoGAP, RhoGEF, protein-tyrosine kinases
(PTK), protein-tyrosine phosphatase or phosphatidyli-
nositol specific phospholipase C X or Y domains, as well
as the promiscuous SH3 domain [22]. In addition, 5% of
all residues were found to be part of low complexity
regions by the SEG program [45].

The JACOP reference protocol was applied to this set of
203 sequences of an average length of 628 residues. 7647
probes were extracted to obtain three-time coverage and
1799 probes remained after pruning. JACOP identified
one single independent group containing 75 subgroups,
which correlate very well with the Swiss-Prot IDs. Also the
domain architectures – as identified by the Pfam HMM –
correlate well with the subgroups identified in that every
subgroup is reflected by one single domain architecture.
However, different subgroups may share the same archi-
tecture. At this stage the result of the hierarchical cluster-

ing becomes helpful to delineate relationships among
subgroups. That way one can distinguish three larger
superfamilies (together with two singletons, three pairs
and one quadruplet) (not shown).

• 24 signal transduction and activators of transcription
(STAT) proteins are present in the first superfamily. They
are subdivided into 7 subgroups. However, all 24 proteins
share the same function and domain architecture together
with a single SH2 domain (details not shown).

• 98 proteins containing a protein-tyrosine kinase (PTK)
motif (PF00069) make up the second superfamily and are
subdivided into 36 subgroups. The number of different
architectures was limited, the two most frequent being
SH3-SH2-PTK and SH2-PTK-PTK (details not shown).

• The third superfamily, containing 69 proteins, is the
most complex one as the domain architectures found are
extremely diverse. 15 subgroups are identified and repre-
sent 14 different architectures (Figure 4). The domain
architectures – as identified by the Pfam HMM – correlate
well with the subgroups identified. This superfamily is
functionally diverse and contains enzymes, adaptor pro-
teins, docking proteins and regulatory proteins [17]. Two
sets of proteins deserve further discussion:

Table 1: This table summarizes the outcome of 100 resampling or bootstrapping tests done using the two data sets (prokaryotic lyases 
and SH2 containing proteins) with different parameter combinations. For each simulation the average adjusted rand index [44] has 
been calculated. The row marked in italic bold corresponds to the parameters used in the reference protocol. The values marked in 
bold indicate the changes made compared to the reference protocol.

Prokaryotic lyases SH2 containing proteins

Probe length Pruning threshold Coverage Scoring system Resampling Bootstrap Resampling Bootstrap

25 160 3 Blosum62/-12/-1 0.959 0.991 0.844 0.854
50 160 3 Blosum62/-12/-1 1 1 0.932 0.937

100 160 3 Blosum62/-12/-1 0.969 0.887 0.689 0.735

50 40 3 Blosum62/-12/-1 0.971 0.810 0.777 0.732
50 80 3 Blosum62/-12/-1 1 0.982 0.753 0.803
50 120 3 Blosum62/-12/-1 1 1 0.895 0.897
50 160 3 Blosum62/-12/-1 1 1 0.932 0.937
50 200 3 Blosum62/-12/-1 1 1 0.948 0.935

50 160 1 Blosum62/-12/-1 1 0.991 0.919 0.812
50 160 2 Blosum62/-12/-1 1 0.996 0.878 0.937
50 160 3 Blosum62/-12/-1 1 1 0.932 0.937

50 160 3 Blosum45/-13/-3 1 0.985 0.939 0.839
50 160 3 Blosum62/-12/-1 1 1 0.932 0.937
50 160 3 Blosum80/-10/-1 0.999 0.991 0.909 0.859
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Classification of 69 SH2-containing protein sequences that represent various domain architecturesFigure 4
Classification of 69 SH2-containing protein sequences that represent various domain architectures. a: domain architecture as 
predicted by the Pfam HMMs; b: partitioning obtained by JACOP; c: Swiss-Prot IDs; d: the bitscore matrix with a colour code 
based on heat colours ranging from white for high values to red for low values, plus black for all bitscores that are below 27; e: 
the tree obtained by hierarchical clustering of the proteins based on Jaccard distances.

Src homology 2 (Sh2) domain [PF00017]

Src homology 3 (SH3) domain [PF00018]

C2 domain [PF00168]

Calponin homology domain [PF00307]

Phorbol esters/diacylglycerol binding domain (C1 domain) [PF00130]

Pleckstrin homology domain [PF00169]

Phosphotyrosine interaction domain [PF00640]

Phosphatidylinositol specific phospholipase C, X domain [PF00388]

Ras association domain [PF00788]

GTPase-activator domain for Ras-like GTPase [PF00616]

RhoGAP domain [PF00620]

RhoGEF domain [PF00621]

Protein-tyrosine phosphatase domain [PF00102]

Phosphatidylinositol specific phospholipase C, Y domain [PF00387]

a b c d e
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1. The phosphatidylinositol 3-kinase regulatory alpha
(P85A_*), beta P85B_*) or gamma (P55G_*) subunits
share two SH2 domains at the C-terminus [54]. In addi-
tion, the P85 subunits contain an SH3 and a RhoGAP
domain at the N-terminus. Despite the different architec-
ture, these sequences were clustered together due to the
presence of highly conserved tandem SH2 domains
(sequence identity greater than 70%), which were found
to be quite distinct from tandem SH2 domains found in
other subgroups.

2. The SH2/SH3 containing adaptors (NCK*_*,
DRK_DROME, GRAP_HUMAN, GRB2_*, SEM5_CAEEL,
GRP2_*, GAGC_AVIS and CRK*_*) are subdivided into 4
subgroups corresponding to different arrangements of the
SH2 and SH3 domains. Their SH2 or SH3 domain
sequences are more similar to each other than to the SH2/
SH3 domain sequences found in other subgroups (details
not shown). This strongly suggests, that these proteins
were subject to a recent reshuffling event. Interestingly,
the common denominator of these proteins is their role in
regulating tyrosine kinase signalling. They serve to recruit
proline-rich effector molecules to tyrosine-phosphor-
ylated kinases or their substrates [55] and references
therein).

As for the prokaryotic lyases, the probes were analysed.
The grouping of the probes can be seen in Figure 4d. Sev-
eral groups of probes that are specific for particular sub-
groups can easily be distinguished from probes that are of
more general nature and map to regions that are con-
served amongst all proteins of this superfamily. However,
probes that are specific for one subgroup and that appear
as a block in Figure 4d do not necessarily map to adjacent
regions but can be distant from one another. The only
common denominator of such probes is the fact that they
match the same proteins.

The results for the third superfamily were compared to
SYSTERS, ProtoMap, ProtoNet as well as ClusTr. The clas-
sifications of those approaches were found to be very sim-
ilar to the partitioning obtained by JACOP.

Conclusion
The key point of the JACOP protocol is the random sam-
pling of relatively short sub-sequences (probes) out of the
sequences to be analysed. After a normalisation step, the
probes are compared with the initial set of proteins and
the resulting scores are used to classify the proteins based
on a p-value of 0.01. The method produces meaningful
and robust partitions of proteins with related functions
out of a set of input sequences, even when the sequences
cannot be arranged in a multiple sequence alignment due
to their modular architecture and despite the method's
stochastic nature. It also allows the identification of

regions conserved amongst all sequences of an independ-
ent group or, alternatively, regions that are specific (diag-
nostic) to certain subgroups.

In our opinion one of the reasons for the robustness of
JACOP is the use of the complete information present in
the pool of pruned probes. In contrast to other methods
that are based on direct pairwise comparisons, JACOP
also uses information on protein sequence similarities
outside the protein's own group. Hence a distance
between two proteins is based on how similar the two
proteins are with respect to some features present in the
pool represented by the pruned probes and how dissimi-
lar they are to other features.

It would seem appealing to define probes using the natu-
ral boundaries of the protein domains, in an attempt to
describe the protein sequences by a systematic tiling with
probes, in the same spirit as ProDom [9]. Unfortunately,
there is no reliable algorithm for detecting domain
boundaries. Also, whether they can be defined
unambiguously is still an open question. However, it is
obvious that a false definition of the boundaries of a
domain has direct consequences on the definition of the
boundaries of the adjacent domains if probes do not over-
lap. In this perspective, random sampling of potentially
overlapping probes – in contrast to a systematic tiling of
probes – appears to be a simple way to produce a set of
sub-sequences with unbiased positions and boundaries.
In addition, bootstrapping and/or re-sampling may be
performed to estimate the stabilities of the resulting
partitions.

Residue substitutions are certainly, and by far, more fre-
quent in the course of evolution than insertions or dele-
tions, which themselves are far more frequent than
domain architecture re-organization. However, these dif-
ferent types of events co-occur and some domain re-
organizations may be expected to have occurred more
recently than many residue substitutions. This usually
causes major problems in most methods that use direct
pairwise alignments of two sequences to measure their
similarity. The introduction of a collection of unordered
probes as an intermediary layer in the comparison of two
sequences elegantly solves the problem. Hence, when
comparing a pair of sequences that exemplify a case of
domain swapping, the sequences are locally co-linear
through the probes, everywhere but in the swap region
itself. This strategy results in a partial uncoupling of the
domain architecture present in the proteins.

A Jaccard distance of 0.5 between two sequences (eq. 2)
can actually correspond to different cases. The sequences
can be globally homologous but sufficiently divergent to
share only one half of the probes. Alternatively, one of the
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sequences can be a perfectly conserved fragment of about
half the length of the other sequence. Hence, the JACOP
method includes an implicit weighing scheme that relates
the similarity measure at the sequence level to the archi-
tecture similarity. A better understanding and control of
the implicit weighing scheme is the subject of future work.

When comparing the results of JACOP with other publicly
available automated classifications, our results closely
resembled the ones proposed by reference classifications
such as Systers and ProtoMap. However – though simple
– JACOP is a robust, efficient and reproducible approach
for the classification of protein sequences. Also, JACOP
can easily be applied since it only requires software (Perl
[56], ssearch [57] and R) and algorithms (SW, PAM) avail-
able to every one.

Materials and methods
Implementation
The first 3 steps of the JACOP protocol, presented below,
were performed using scripts written in Perl 5 [56]. Calcu-
lation of the raw Smith-Waterman (SW) scores [58] was
either done using the program ssearch [57] or hardware
accelerated using a GENEMATCHER (Paracel, Pasadena,
CA). All statistical calculations were done using the statis-
tics software R [59]. A package for R was specifically writ-
ten for JACOP and the source code is available upon
request.

Statistical parameters
Statistics for the scores of local alignments, unlike those of
global alignments, are well understood [33,34,47-52,60-
62]. The parameters for the underlying extreme value dis-
tribution (EVD) for the three scoring systems (Blosum62/
-12/-1, Blosum45/-13/-3 and Blosum80/-10/-1) were esti-
mated using random protein sequences of appropriate
lengths. The SW scores obtained were subsequently used
to estimate the EVD parameters by maximum likelihood
[63].

Availability and requirements
Project name: JACOP; Project home page: http://
myhits.isb-sib.ch/cgi-bin/jacop Operating system(s):Plat-
form independent.
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