
molecules

Article

Analysis of Serum Metabolomics in Rats with Osteoarthritis by
Mass Spectrometry

Jingtong Zhao 1,†, Meng Liu 1,†, Tongfei Shi 2,3, Mohan Gao 1, Yuqian Lv 1, Yawei Zhao 1, Jing Li 1, Ming Zhang 1,
Hansi Zhang 1, Fengying Guan 1, Kan He 1,* and Li Chen 1,4,*

����������
�������

Citation: Zhao, J.; Liu, M.; Shi, T.;

Gao, M.; Lv, Y.; Zhao, Y.; Li, J.;

Zhang, M.; Zhang, H.; Guan, F.; et al.

Analysis of Serum Metabolomics in

Rats with Osteoarthritis by Mass

Spectrometry. Molecules 2021, 26, 7181.

https://doi.org/10.3390/

molecules26237181

Academic Editor: Susy Piovesana

Received: 29 October 2021

Accepted: 25 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130061, China;
Zhaojt19@mails.jlu.edu.cn (J.Z.); liumeng20@mails.jlu.edu.cn (M.L.); gaomh18@mails.jlu.edu.cn (M.G.);
Lvyq19@mails.jlu.edu.cn (Y.L.); zhaoyawei@jlu.edu.cn (Y.Z.); lijing@jlu.edu.cn (J.L.);
zhangming99@jlu.edu.cn (M.Z.); zhanghansi@jlu.edu.cn (H.Z.); guanfy@jlu.edu.cn (F.G.)

2 Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of
Technology, Guangzhou International Campus, Guangzhou 510006, China; shitf17@mails.jlu.edu.cn

3 National Engineering Research Center for Tissue Restoration and Reconstruction,
South China University of Technology, Guangzhou 510006, China

4 School of Nursing, Jilin University, Changchun 130020, China
* Correspondence: hek@jlu.edu.cn (K.H.); chenl@jlu.edu.cn (L.C.)
† These authors contributed equally to this work.

Abstract: Osteoarthritis is a common multifactorial chronic disease that occurs in articular cartilage,
subchondral bone, and periarticular tissue. The pathogenesis of OA is still unclear. To investigate the
differences in serum metabolites between OA and the control group, liquid chromatography/mass
spectrometry (LC/MS)-based metabolomics was used. To reveal the pathogenesis of OA, 12 SD male
rats were randomly divided into control and OA groups using collagenase to induce OA for modeling,
and serum was collected 7 days after modeling for testing. The OA group was distinguished from
the control group by principal component analysis and orthogonal partial least squares-discriminant
analysis, and six biomarkers were finally identified. These biomarkers were metabolized through
tryptophan metabolism, glutamate metabolism, nitrogen metabolism, spermidine metabolism, and
fatty acid metabolism pathways. The study identified metabolites that may be altered in OA,
suggesting a role in OA through relevant metabolic pathways. Metabolomics, as an important tool for
studying disease mechanisms, provides useful information for studying the metabolic mechanisms
of OA.

Keywords: osteoarthritis; metabolomics; LC/MS; metabolic pathway

1. Introduction

Osteoarthritis (OA) is an extremely common multifactorial chronic disease that leads
to degeneration of joint cartilage, synovial inflammation and osteophyte formation [1].
With the aging of the global population, the pain and disability caused by OA will cause
a huge burden on individuals and the social economy [2–4]. The most common site for
osteoarthritis to occur is the knee joint [5]. However, the mechanisms by which knee OA
occurs are still not fully clear [6]. Typically, OA has been considered a disease caused by
mechanical damage [7], but an increasing number of studies consider OA to be a low-grade
inflammatory disease [8]. The phenotypes associated with OA and low-grade inflammation
are emerging as new research hotspots in terms of treatment, diagnosis, and prognosis.

The concept of metabolomics was first introduced in 1999 [9], and nowadays, meta-
bolomics refers to a technique for studying biological metabolic pathways by qualita-
tively and quantitatively analyzing the composition of all endogenous metabolites in an
organism [10]. Metabolomics is an emerging discipline developed after genomics [11],
transcriptomics, and proteomics. Metabolomics analyzes small molecules of endogenous
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metabolites in organisms to elucidate changes in organismal biology by analyzing differ-
ential metabolites. Metabolomics analytical techniques mainly include nuclear magnetic
resonance (NMR), liquid chromatography/mass spectrometry (LC/MS), and gas chro-
matography /mass spectrometry (GC/MS). LC/MS has the advantages of high sensitivity,
high selectivity, and a wide range of metabolite detection, which makes it suitable for
metabolite analysis, especially for non-targeted metabolomics studies. Metabolomic analy-
sis can be performed using osteoarthritic serum or synovial fluid. Synovial fluid is present
only locally, whereas serum is present in the whole body; therefore, the serum is the first
choice for studying metabolomics [12].

Several untargeted metabolomics studies on OA have been reported [13–16]. In our
study, we investigated the differences between the metabolites of OA group and normal
groups by untargeted metabolomics using LC/MS on their serum. This study aimed to find
helpful biomarkers of OA and explore the relationship between its metabolic pathways
and disease regulation, with the expectation of achieving a deeper understanding of the
mechanisms through which OA develops and finding potential therapeutic approaches.

2. Results
2.1. Histologic Examination and Biochemical Index

To verify that the rat OA model was successfully established, we stained rat artic-
ular cartilage with Safranin O and histologic examination (HE). As expected, in the OA
group, the cartilage content was significantly reduced, the chondrocyte arrangement was
disturbed, and the cartilage surface was irregular, which tentatively proved the success of
rat modeling (Figure 1).
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group and (D) OA group. Scale bar, 200 µm.

As shown in Table 1, blood tests and biochemical assays were performed on serum
from the OA and control groups. There were no significant changes in bodyweight, white
blood cell (WBC), alanine aminotransferase (ALT), and aspartate aminotransferase (AST)
between OA and control groups. Serum levels of nitric oxide (NO), prostaglandin estradiol2
(PGE2) and total cholesterol (TC) were obviously increased compared to the control group.
However, serum levels of estradiol2 (E2) were obviously decreased.
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Table 1. Comparison of blood index and biochemical index between control group and OA group.

Characteristic Controls (n = 6) OA (n = 6)

weight (g) 431.7 ± 14.50 421.9 ± 12.19
WBC (/109 × L−1) 10.16 ± 1.93 9.88 ± 2.67

ALT (U/L) 47.71 ± 4.26 48.94 ± 6.81
AST (U/L) 116.91 ± 14.05 117.12 ± 11.98

NO (µmol/L) 7.45 ± 1.21 8.69 ± 0.52 *
PGE2 (µmol/L) 7.69 ± 1.60 11.83 ± 2.87 *

E2 (ng/L) 20.07 ± 6.79 10.16 ± 4.42 *
TC (mmol/L) 1.18 ± 0.44 1.96 ± 0.58 *

All data are given as mean ± SD. * p < 0.05 OA group compared with the control group.

2.2. Multivariate Data Analysis

We used rapid resolution liquid chromatography/quadrupole-time of light/mass
spectrometry (RRLC/Q-TOF/MS) to analyze the serum of the OA and control groups to
find out the metabolic differences. The metabolites obtained after mass spectrometry-
data-independent acquisition (MS-DIAL) software was imported into Metaboanalyst
(http://www.Metaboanalyst.ca/, accessed on 30 March 2021) using a principal compo-
nents analysis (PCA) model and found that the control and OA groups were distinguishable
from each other. As seen in Figure 2, there was a notable variation in the metabolites in the
serum of the control rats and the OA rats. The PCA model analysis provided an overall
understanding of the metabolite distribution in the serum of each group. To further high-
light the distinctions between the groups and facilitate the subsequent hunt for different
metabolites, we used orthogonal partial least squares-discriminant analysis (OPLS-DA) to
analyze the data. As shown in Figure 3, the control group could be completely separated
from the OA group, showing a good model adaptation. In the supervised OPLS-DA model,
the control group metabolites in the serum were separated from the OA group metabolites.
On this basis, we used S-plots to select the distinguished metabolites between the OA and
control groups. S-plot represents the ideal biomarkers with high reliability and a low risk
of false positives. Each dot in the S-Plot represents a compound. Samples of two groups
distributed in two sides of y axis. The compounds which are located further away from the
middle origin and make the greater contribution in the classification will be identified as
the potential biomarker (Figure 4).
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2.3. Identification of Differential Metabolites

Based on the S-plot, there were some ions that indicated distinct variations between
the OA and control groups. We used accurate molecular ionic masses to identify six
potential biomarkers. In addition, we used databases such as KEGG, HMDB, Massbank,
and other databases for analysis of the potential elemental composition, fractional isotope
abundance, and unsaturation of the compounds. We have validated the metabolites by
using the available standards. The trends of biomarkers, as well as pathways, were listed
in Table 2.
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Table 2. Trends in identification results and biomarkers.

Metabolites
Theory
(m/z)

(HMDB)

Observed
(m/z)

Mass Error
Theory vs
Observed

(ppm)

Observed
Retention

Time (min)

Commercial
Standard

(m/z)

Mass Error
Observed vs
Commercial

Standard
(ppm)

Commercial
Standard
Retention

Time (min)

OA vs
Control
Group

Pathway

Positive Ion Mode

L-Tryptophan 205.0977 205.0981 2.0 8.4 205.0984 1.5 8.4 Increase Tryptophan
metabolism

γ-Aminobutyric
acid 104.0711 104.0709 1.9 7.3 104.0706 2.9 7.3 Increase Glutamate

metabolism

Carbamic acid 62.0242 62.0241 1.6 10.2 62.0242 1.6 10.2 Increase Nitrogen
metabolism

L-Arginine 175.1195 175.1193 1.1 11.3 175.1196 1.7 11.3 Decrease Arginine
metabolism

L-Carnitine 162.113 162.1128 1.2 5.8 162.1131 1.2 5.8 Increase Fatty acid
metabolism

Negative Ion Mode

Stearic acid 283.2637 283.2639 0.7 2.1 283.2638 0.7 2.1 Increase Fatty acid
biosynthesis

3. Discussion

Osteoarthritis is a degenerative disease that happens in the articular cartilage, sub-
chondral bone, and periarticular tissue. Factors influencing the occurrence of osteoarthritis
are age, obesity, and inflammation. Obesity is one of the most common predisposing factors
for OA because of its ability to cause joint overload, leading to cartilage cell death and
thus triggering OA. In addition, cytokines secreted by inflammatory mediators can lead to
increased cartilage degeneration. However, the pathogenesis of knee OA (KOA) is not clear.
Early diagnosis is important because the number of people who develop KOA is increasing
due to the aging population as well as to the increase in the number of obese people.

By measuring the bodyweight of rats in the control and OA groups, the two groups
were found to be well matched. The successful establishment of the OA model was verified
by histologic examinations. According to the biochemical indexes, TC in the OA group
was obviously higher than that in the control group, suggesting that the OA group was at
risk of obesity. In addition, we found that serum levels of NO and PGE2 were significantly
increased in the OA group, while levels of E2, which is associated with the promotion of
bone formation, were significantly decreased.

We used a metabolomics approach using LC/MS to collect metabolites and detect
metabolic changes between the OA and the control groups. A significant separation
between the OA and the control groups was achieved by performing multivariate statistical
analysis under the positive and negative ion model, separately. Further analysis by OPLS-
DA revealed six metabolites that were tentatively related to metabolic pathways such as
nitrogen metabolism, carnitine metabolism, and tryptophan metabolism. We found that
these potential biomarkers can demonstrate the occurrence of OA concerning multiple
mechanisms, and next, we further investigated the changes in related metabolites.

Tryptophan is a nutritionally essential amino acid that cannot be synthesized in vivo
and must be provided through dietary sources. Tryptophan plays a rate-limiting role in
protein synthesis, and its main role in the body is as a component of protein synthesis [17].
Tryptophan metabolism is expressed at different levels in rheumatoid arthritis (RA) and
OA and can be used to differentiate between RA and OA [18]. L-tryptophan plays an
essential role in various chronic inflammatory diseases in humans and is associated with
the microenvironment of chronic inflammation in OA joints. In this study, it was shown that
L-tryptophan levels were statistically clearly increased in the OA group in comparison to
the control group. Therefore, an increase in serum tryptophan concentration may indicate
risk of having OA.
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The evolution and progression in OA are associated not only with inflammation but
also with alterations in amino acid metabolism, such as those of the arginine family of
amino acids and related metabolites, such as γ-aminobutyric acid [19]. γ-aminobutyric
acid can affect OA progression by inhibiting NF-κB activation [20]. γ-aminobutyric acid
was found to be abnormally increased in the serum of OA rats by metabolomics, suggesting
that it could serve as a potential metabolic marker for chronic joint pain produced by OA.

In the current study, elevated levels of carbamate were found in OA rat serum. It has
been shown that the level of carbamic acid is much higher in patients with osteoarthritis
than in normal subjects. Carbamic acid is involved in nitrogen metabolism [21], and
inflammatory reactive nitrogen allows for elevated concentrations of basal formic acid
and increased oxidative stress [22]. OA as a chronic inflammatory condition is mostly
accompanied by acidosis [23], which leads to an increase in acidic metabolites such as
butyric acid and stearic acid [24]. Intracellular accumulation of stearic acid can activate
inflammatory signaling pathways, release cytokines, and lead to endoplasmic reticulum
stress-mediated apoptosis [25]. By metabolomics, a considerable amount of stearic acid
levels was found to be increased in the OA group in comparison to the control group.

Arginine has anti-inflammatory and antioxidant properties and is a prerequisite for
the syncretization of many molecules [26]. Arginine can contribute to inflammation-related
diseases including osteoarthritis [27]. It has been shown that patients with osteoarthritis
have reduced arginine concentrations, which may promote the progression of osteoarthri-
tis [28,29]. The competing metabolic pathways of arginase (ARG) and NO synthase (NOS)
utilize arginine as a substrate. Arginase produces L-ornithine, which is further metabolized
to form proline. Proline is capable of enriching collagenase which leads to fibrosis [30].
L-arginine is used to produce NO through the action of NOS [31]. NO is destructive in
mediating inflammatory responses and apoptosis, inhibiting collagen and proteoglycan
synthesis and activating matrix metalloproteinases [32,33]. In the present study, the level
of L-arginine in OA serum was significantly reduced. Therefore, low concentrations of
L-arginine may serve as an indicator of having OA.

L-carnitine is a molecule capable of participating in fatty acid metabolism in mito-
chondria [34]. Carnitine can cross the mitochondrial membrane to form long-chain acetyl
carnitine esters, and carnitine palmitoyltransferase I and carnitine palmitoyltransferase II
can transport it [35,36]. L-carnitine is also a β-oxidation cofactor that stabilizes acetyl CoA
and coenzyme A in the mitochondrial inner membrane [37,38]. Studies have now demon-
strated that L-carnitine influences the metabolism of osteoblasts in vitro and in vivo [39].
In this study showed a significant increase in L-carnitine levels in the OA group versus the
control group. Therefore, increased serum L-carnitine concentrations may play an essential
role in OA.

Mickiewicz et al. used 1H-NMR to detect metabolites in synovial fluid in sheep [40].
They observed that the concentrations of isobutyrate and glucose were higher than in
the healthy group. Surowiec et al. found that, when compared to control group, the
arginine in the plasma had decreased [11]. Zhang et al. classified OA phenotypes via
metabolomic analyses and found that different expressions of acylcarnitines can define a
specific phenotype [15]. In our study, we found similar results.

4. Materials and Methods
4.1. Animal Model Induction and Specimen Collection

The collagenase-induced osteoarthritis (CIOA) model was established according to the
protocol in the literature [19]. Healthy six- to eight-week-old male SD rats were purchased
through Changchun Yisi Experimental Animal Technology. All of the rats were maintained
in the animal facility of the College of Basic Medical Sciences, Jilin University. All rats
were acclimatized to the laboratory environment one week before the experiments. All rats
were randomly divided into the OA group (n = 6) and the control group (n = 6). Rats were
given anesthesia with 2.5% isoflurane. Briefly, collagenase was dissolved in 0.9% sterile
saline, and osteoarthritis was induced by 50 µL (50 unit) injection into the right knee joint.
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The injections were given on the first and fourth days of the experiment. On day 7, rats
were killed for the collection of serum. Serum was separated after collection and stored at
−80 ◦C until processing.

4.2. Histological Analysis

Collection from the left knee joint of rats was carried out, and then fixed in 10%
buffered formalin. The joints were decalcified and then paraffin-embedded. Then, the
joints were stained with safranin O and hematoxylin-eosin (HE).

4.3. Blood Test and Biochemical Assay

Bodyweight measurements were performed on all rats. Blood tests and biochemical
assays were measured for serum levels of WBC, ALT, AST, NO, PGE2, E2, and TC.

4.4. Metabolomics Analysis

We adopted the following protocol for the LC/MS untargeted metabolomics study of
all serum samples: Before sample detection, the serum samples were melted at room temper-
ature; 400 µL of methanol was added to 50 µL of the serum samples, shaken vigorously for
30 s, and then left for 10 min at room temperature; the samples were centrifuged at 3000× g
for 10 min at 4 ◦C, and the supernatant was taken for mass spectrometry measurement.

LC/MS-based metabolomics analysis has been described previously [37]. Briefly, 5 µL
of the samples were injected into an Agilent 1200 series RRLC equipped with the column
(AccucoreC18, 2.6 µ, 100 × 2.1 mm; Thermo, Waltham, MA, USA). The chromatography
was set at 35 ◦C during the analysis. The solvent A in the mobile phase was 0.1% formic
acid aqueous solution, and B was 0.1% formic acid in acetonitrile. A gradient elution
program was performed as follows: 0 min, 90% solvent A; 5 min, 70% solvent A; 10 min,
20% solvent A; 12 min, 15% solvent A; 15 min, 5% solvent A; 18 min, 5% solvent A; 20 min,
90% solvent A; 25 min, 90% solvent A. The flow rate was set at 0.4 mL/min. The total run
time was 25 min.

An Agilent 6520 Q-TOF mass spectrometer (Agilent, Santa Clara, CA, USA) with an
electrospray ionzation (ESI) source was used to perform the MS analysis. The mass scan
was performed in the range of 80 m/z to 1000 m/z. Positive and negative modes were used
to obtain data by optimizing the parameters: gas temperature, 350 ◦C; nebulizer, 40 psi;
dry gas flow, 12 L/min; intrathecal gas temperature, 350 ◦C; intrathecal gas flow, 12 L/min.

4.5. Univariate and Multivariate Statistical Analysis

Peak identification and peak area normalization were performed on all data using MS-
DIAL and Mass Profiler Professional (MPP, Agilent Technologies, Santa Ckara, CA, USA)
software. The data were chromatographed for peak identification and matching as well as
peak area normalization. The data were stored in files and imported into the SIMCA-P11.0
software package (Umetrics, Umea, Sweden) and multidimensional statistical analysis was
performed using unsupervised PCA. In order to strengthen the differences between the OA
group and the control group, a supervised pattern recognition method was further used
for multidimensional statistical analysis, and OPLS-DA was established for the analysis.

4.6. Biomarker and Pathway Analysis

PCA and OPLS-DA analyses were used to compare the metabolite differences between
the OA group and the control group. The metabolic pathways that were involved in the
discrepant metabolites were analyzed using the KEGG, HMDB, and Massbank databases.

KEGG: http://www.kegg.com (accessed on 12 March 2021)
HMDB: http://www.hmdb.ca/ (accessed on 20 March 2021)
Massbank: http://www.massbank.jp (accessed on 30 March2021)

http://www.kegg.com
http://www.hmdb.ca/
http://www.massbank.jp
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5. Conclusions

We investigated the metabolic differences between OA and controls by using a
metabolomics approach with LC/MS. We identified potential biomarkers and showed
metabolic disturbances in OA concerning amino acid metabolism, nitrogen metabolism,
and carnitine metabolism. Based on the results of our study, we believe that the LC/MS
metabolomics approach is an effective instrument for studying the mechanisms for OA
and provides helpful information for learning about the diagnosis and treatment of OA.
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ARG arginase
AST aspartate aminotransferase
CIOA collagenase-induced osteoarthritis
E2 estradiol2
GC/MS gas chromatography /mass spectrometry
HE histologic examination
KOA knee osteoarthritis
LC/MS liquid chromatography/mass spectrometry
MS-DIAL mass spectrometry-data-independent acquisition
NMR nuclear magnetic resonance
NO nitric oxide
NOS nitric oxide synthase
OA osteoarthritis
OPLS-DA orthogonal partial least squares-discriminant analysis
PCA principal components analysis
PGE2 prostaglandin estradiol2
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RRLC/Q-TOF/MS liquid chromatography/quadrupole-time of light/mass spectrometry
TC total cholesterol
WBC white blood cell
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