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a b s t r a c t 

Atherosclerosis and its complications are major causes of death all over the world. One of the major risks of

atherosclerosis is hypercholesterolemia. During atherosclerosis, oxidized low density lipoprotein (oxLDL) 

regulates CD36-mediated activation of c-jun amino terminal kinase-1 (JNK1) and modulates matrix metal- 

loproteinase (MMP) induction which stimulates inflammation with an invasion of monocytes. Additionally, 

inhibition of proteasome leads to an accumulation of c-jun and phosphorylated c-jun and activation of activa- 

tor protein-1 (AP-1) related increase of MMP expression. We have previously reported a significant increase 

in cluster of differentiation 36 (CD36) mRNA levels in hypercholesterolemic rabbits and shown that vitamin 

E treatment prevented the cholesterol induced increase in CD36 mRNA expression. In the present study, our 

aim is to identify the signaling molecules / transcription factors involved in the progression of atherosclerosis 

following CD36 activation in an in vivo model of hypercholesterolemic (induced by 2% cholesterol containing 

diet) rabbits. In this direction, proteasomal activities by fluorometry and c-jun, phospo c-jun, JNK1, MMP-9 

expressions by quantitative RT-PCR and immunoblotting were tested in aortic tissues. The effects of vitamin 

E on these changes were also investigated in this model. As a result, c-jun was phosphorylated following 

decreased proteasomal degradation in hypercholesterolemic group. MMP-9 expression was also increased in 

cholesterol group rabbits contributing to the development of atherosclerosis. In addition, vitamin E showed 

its effect by decreasing MMP-9 levels and phosphorylation of c-jun. 
c © 2014 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 
ntroduction 

Atherosclerosis is a chronic inflammatory disease which is associ- 

ted with the presence of fatty plaques in the arterial wall [ 1 ]. Dur- 

ng atherosclerosis, smooth muscle cells become activated by oxLDL, 

tart to proliferate, and migrate into the intima of the arterial wall 

here they form foam cells [ 2 ]. Many studies have shown that in- 

rease of oxLDL have significant roles in the induction of oxidative 

tress related changes [ 3 ]. Hypercholesterolemia and increased oxida- 

ive stress have been involved in the development of atherosclerosis 

 4 , 5 ]. In addition, plasma levels of oxidized LDL and malondialdehyde 

MDA)-modified LDL are related to each other which are also known 

s parameters of oxidative stress in acute and stable coronary artery 
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ein; MAPK, mitogen-activated protein kinase; MDA, malondialdehyde; MMP, matrix 

etallo proteinase; oxLDL, oxidized low density lipoprotein; TNF α, tumor necrosis fac- 

or α; UPS, ubiquitin-proteasome system; HPLC, high-performance liquid chromatog- 

aphy; TBA, thiobarbituric acid. 

* Corresponding author. 

E-mail address: nkozer@marmara.edu.tr (N. Ozer). 

213-2317/ $ - see front matter c © 2014 The Authors. Published by Elsevier B.V. This is an

icenses / by-nc-nd / 3.0 / ). 

ttp://dx.doi.org/10.1016/j.redox.2014.02.007 
disease [ 6 ]. Meanwhile alpha tocopherol, the most active form of vi- 

tamin E, shows its protective effects by inhibiting smooth muscle cell 

proliferation [ 7 , 8 ] and reduction of scavenger receptor CD36 expres- 

sion in hypercholesteromic rabbits [ 9 ]. 

During atherosclerosis, the low density lipoprotein (LDL)-induced 

signaling pathway is stimulated following the uptake of cholesterol 

into the cell via oxLDL including mitogen-activated protein kinase 

(MAPK), JNK, c-jun and AP-1, known as a transcription factor which 

plays a key role on MMP expression [ 10 ]. In macrophages, supple- 

mentation with oxLDL give rise to recruitment of Lyn and activation of 

JNKs, known as stress-activated protein kinases, in a CD36-dependent 

manner. Studies using JNK inhibitors demonstrated a significant de- 

crease in the uptake of oxLDL and foam cell formation [ 11 ]. The tran- 

scription factor AP-1 is a dimer protein, composed of basic region- 

leucine zipper (bZIP) proteins that belong to the Jun and Fos families 

[ 12 ]. Oxidative activation of JNK1 promotes the phosphorylation of 

c-jun and leading to the transactivation of AP-1-regulated genes [ 13 ]. 

Proteasomes are very complex machines that are involved in the 

proteolytic degradation of proteins for the regulation of cell home- 

ostasis which includes “quality control” of newly synthesized proteins 

(ERAD), transcription factor regulation, neurodegenerative diseases, 

atherosclerosis and inflammatory processes [ 14 ]. Many studies show 
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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that, oxidative stress mediated protein aggregates have a key role in

the inhibition of proteasome [ 15 ]. Both components of AP-1, c-jun

and c-fos are known to be degraded by the proteasome. In a recent

study, UVA mediated induction of protein aggregate formation results

in the inhibition of proteasome which is accompanied by phospho-

rylation of c-jun and increased AP-1 activity leading to an enhanced

MMP mRNA expression [ 16 ]. OxLDL may also stimulate the invasion

of monocytes which results in inflammation by increasing the MMP

production [ 1 ]. MMPs increase matrix degrading activity and accel-

erate leukocyte leakage into the regions of atherosclerotic plaques.

Clinical studies improve the important role of MMPs in morphogene-

sis, and tissue remodeling, in the progress of arthritis, atherosclerosis,

asthma and tumor formation [ 17 ]. MMP-9 degrades type IV collagen,

the major constituent of basement membranes, and is released by

macrophages, smooth muscle cells, and endothelial cells [ 18 ]. En-

hanced MMP-9 levels in plasma have been shown in cardiovascular

diseases [ 19 ]. 

In the present study, we investigated proteasomal activity, mRNA

expressions of c-jun, JNK1, MMP-9 and the protein expressions of c-

jun, phospho c-jun, JNK1, MMP-9 protein expressions in rabbit aorta.

Since MMP-9 is a crucial enzyme for the progression of atheroscle-

rosis, the underlying pathway for its induction should be highlighted

in hypercholesterol induced atherosclerosis. In addition, the role of

vitamin E in this pathway was investigated. The results show that

increased MMP-9 activity resulted in an induction of atherosclerotic

development in cholesterol group rabbits. This increase was found to

be correlated with a decrease in proteasomal activity which is thought

to be the reason for c-jun phosphorylation following the decrease of

its degradation. In this direction, vitamin E showed its protective role

by decreasing MMP-9 expressions correlated with a decrease of c-jun

phosphorylation. But in vitamin E treated group proteasome was not

found to be directly related to this pathway. 

Material and methods 

Animal model 

All experimental procedures were approved by the Marmara

University Ethics Committee, Istanbul (protocol number 062008).

Twenty-one male albino rabbits (2–3 months old) were assigned ran-

domly to three groups which were fed with 100 g / day of vitamin E

poor diet. The first control group was only fed with vitamin E poor

diet. The second group was fed with vitamin E poor diet containing 2%

cholesterol and the third group was fed with vitamin E poor diet con-

taining 2% cholesterol with daily intramuscular injections of vitamin

E (50 mg / kg). After 4 weeks, following overnight fasting, rabbits were

anesthetized using 50 mg / kg ketamine hydrochloride and 5 mg / kg

xylazine hydrochloride. The blood was taken for cholesterol, vitamin

E and MDA measurements. The aortic tissues of each animal were

removed and fixed in formalin for microscopic examination, in RNA

stabilization reagent for quantitative RT-PCR and were rapid-frozen

in liquid nitrogen, stored at −80 ◦C for immunoblotting experiments. 

Measurement of cholesterol, vitamin E and MDA in Serum 

Serum cholesterol levels were determined using an automated

enzymatic technique by Hitachi Modular system P800 (Roche). The

levels of alpha-tocopherol were determined in serum samples by us-

ing reversed-phase high-performance liquid chromatography (HPLC)

according to Nierenberg and Nann [ 20 ]. Briefly, samples were dis-

solved in ethanol and applied to a Waters Symmetry C18 column

(5 μm, 4.6 × 250 mm). MeOH: dH2O (95:5, v / v) was used as mo-

bile phase and detections were performed by UV detector (Waters)

at 294 nm. 

MDA was determined according to Wong et al. [ 21 ] with modi-

fications of Sommerburg et al. [ 22 ] as the thiobarbituric acid (TBA)
reactive substance. Phosphoric acid (440 mM), sample or MDA stan-

dard, and TBA solution (42 mM) were incubated at 100 ◦C for 60 min.

After the incubation, samples and standards were cooled on ice and

diluted 1:1 (v: v) with NaOH (0.1 M) in methanol. After then, all sam-

ples were centrifuged at 10,000 g for 2 min. Aliquots of the derivatized

samples were applied to the reversed phase HPLC and separated by

isocratic elution with phosphate buffer (50 mM, pH 6.8) containing

40% (v / v) methanol. TBA–MDA complex was detected by means of

fluorescence using an excitation wavelength of 525 nm and emission

of 550 nm. 

Microscopic examination 

The samples were fixed in 10% buffered formaldehyde for 4 h then

dehydrated and incubated in xylol for 1 h. This process was repeated

and the tissue slices were embedded in paraffin and sectioned in

5 μm thickness. Sections were stained with hemotoxylene eosin for

the microscopic examination. 

Proteasome activity analysis by fluorometry 

Aortic tissues were lysed in 1 mM dithiothreitol by vigorous shak-

ing for 1 h at 4 ◦C. The lysates were centrifuged at 14,000 g for

30 min and supernatants were incubated in 225 mM Tris buffer

(pH 7.8) containing 7.5 mM MgOAc, 7.5 mM MgCl 2 , 45 mM KCl, and

1 mM dithiothreitol. The fluorogenic peptide succinyl-LLVY-methyl

coumarin was used as a substrate at a concentration of 200 M to mea-

sure chymotrypsin-like activity of the proteasome. After 30 min of

incubation at 37 ◦C, methyl coumarin liberation was measured with a

fluorescence reader (360 nm excitation / 485 nm emission) and calcu-

lated using free methyl coumarin as standards. To exclude other pro-

tease activities, the selective proteasome inhibitor lactacystin with

the final concentration of 20 μM was used in the reaction, and pro-

teasome activity was calculated as the difference between the total

activity and the remaining activity in the presence of lactacystin. 

Measurement of mRNA expressions in aortic tissue with quantitative 

RT-PCR 

Total RNAs were isolated with RNA Midi Kit (QIAGEN) from 200 mg

of rabbit aorta. Smartspec spectrophotometry (BIO-RAD) was used

for the determination of purity and amount of isolated RNA. cDNA

was synthesized with Transcriptor High Fidelity cDNA Synthesis kit

(ROCHE) using 100 ng total RNA. Quantitative reverse transcriptase

PCR was applied to cDNA by using QuantiTect PCR Sybr Green kit

(QIAGEN) and Rotor Gene Q-RT PCR system (QIAGEN). The results

normalized to GAPDH mRNA expression results. The sequences of

primers used were 

rabbit JNK1 forward, 5 ′ -GTGCTTTTCCCAGCTGACTC-3 ′ ; 
rabbit JNK1 reverse, 5 ′ -ATCGTGTGTTCCCTTTCGTC-3 ′ ; 
rabbit c-jun forward, 5 ′ -ACAGAGCATGACCCTGAACC-3 ′ ; 
rabbit c-jun reverse, 5 ′ -TTGCTGGACTGGATGATGAG-3 ′ ; 
rabbit MMP-9 forward, 5 ′ -AACACACACGACGTCTTCCA-3 ′ ; 
rabbit MMP-9 reverse, 5 ′ -TGCAGGATGTCAAAGCTCAC-3 ′ ; 
rabbit GAPDH forward, 5 ′ -GCGCCTGGTCACCAGGGCTGCTT-3 ′ ; 
rabbit GAPDH reverse, 5 ′ -TGCCGAAGTGGTCGTGGATGACCT-3 ′ . 

Immunoblotting to measure protein expressions in aortic tissue 

200 mg of thoracic aorta was homogenized at 20,000 rpm for

20 s with Ultraturrax homogenizator and centrifuged at 15,000 g for

20 min. The protein concentrations of the supernatants were de-

termined with the Bradford protein assay. 40 μg of samples were

separated with 10–12% SDS-PAGE gels, and transferred to a nitro-

cellulose membrane. The antibodies against JNK (AnaSpec), MMP-9
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Abcam), c-jun (Novus Biologicals), phospho c-jun (Cell Signaling) and 

APDH (Novus Biologicals) were used to probe membranes, immun- 

detection was performed with the use of HRP-conjugated secondary 

ntibodies and chemiluminescence kit (Cell Signaling). Blots were vi- 

ualized by X-ray films and quantified by densitometry using ImageJ 

oftware. 

tatistical analysis 

Statistical analysis was performed using Prism 4 (Graph-Pad) soft- 

are. For determination of statistical significances of differences, one- 

ay ANOVA was performed followed by multiple comparisons using 

he Student ’ s t test. P -value less than 0.05 has been accepted to be 

tatistically significant.ResultsSerum cholesterol vitamin E and MDA 

evels after four weeks 

Supplementation of 2% cholesterol for 4 weeks resulted in ap- 

roximately 30-fold increase of serum cholesterol in cholesterol and 

holesterol + vitamin E groups compared to control group ( Table 1 ). 

dditionally, vitamin E treatment enhanced serum vitamin E levels 

pproximately 8-fold in cholesterol + vitamin E group ( Table 1 ). In 

holesterol group, serum vitamin E levels seem to be increased since 

itamin E which is a fat-soluble vitamin, is carried by LDL cholesterol 

hrough the blood. In addition, feeding with cholesterol diet resulted 

 significant increases (approximately 6 fold) in serum lipid perox- 

de (MDA) levels of the rabbits as shown in Table 1 . There was no 

ignificant change when cholesterol + vitamin E group compared to 

holesterol group. 

ight microscopy examination of rabbit aortic tissue 

Thoracic aortae stained with hematoxylin eosin were examined 

y light microscopy ( Fig. 1 ). In control group, integrity of the aorta 

as not disrupted and all layers were intact. However, cholesterol 

ed rabbits exhibited atherosclerotic lesions, endothelial damage and, 

arked thickening of the intima layer compared to control group. In 

he cytoplasm of the intimal cells, cluster of foam cells with lipid accu- 

ulation, and lipid droplets were observed between smooth muscle 

ells. In contrast, foam cell formation was not mostly seen in the in- 

ima and media layers and the structure of elastic fibers of media 

ayer was normal in animals fed cholesterol and treated with vitamin 

 compared to cholesterol group. 

holesterol enriched diet inhibits the proteasome activity in rabbit aorta 

In order to test the role of hypercholesterolemia on proteasome 

ctivity, it was measured by fluorometric detection method in rab- 

it aortic tissues. Our results showed that cholesterol enriched diet 

ignificantly inhibited proteasome activity. While approximately 50% 

ecrease was determined in cholesterol group, there was no signifi- 

ant change in vitamin E group ( Fig. 2 ). 

holesterol enriched diet induces mRNA expression of c-jun and 

hosphorylation of c-jun 

mRNA expression of c-jun was increased following cholesterol 

reatment ( Fig. 3 A) while protein expression was not affected sig- 

ificantly ( Fig. 3B ). However, a significant increase (approximately 

-fold) of phospho c-jun protein expression was found in hyperc- 

olesterolemic rabbits compared to control group ( Fig. 3C ). Vitamin 

 treated group showed a significant decrease of c-jun mRNA expres- 

ion and phospho c-jun protein expression compared to cholesterol 

roup. Previous studies have shown that proteasomal inhibition leads 

o an accumulation of phosphorylated c-jun and activation of AP- 

 which is known to control MMP expression [ 16 ]. Consistent with 

hese data, we showed that cholesterol and vitamin E play a role in 
the modulation of proteasome activity and accumulation of phospho 

c-jun. 

Hypercholesterolemia induces JNK1 mRNA expression but not JNK1 

protein expression 

Supplementation of cholesterol enriched diet for four weeks re- 

sults in a high increase (approximately 10-fold) of JNK1 mRNA ex- 

pression in cholesterol group compared to control group ( Fig. 4 A). 

However the increase of JNK1 was not detected in protein expres- 

sion of JNK1 ( Fig. 4B ). Vitamin E showed its effect by decreasing JNK1 

mRNA levels. Regarding these results, it may be suggested that hyper- 

cholesterolemia induces the accumulation of phospho c-jun without 

affecting JNK1 protein levels. 

Effect of cholesterol enriched diet on MMP-9 protein and mRNA 

expressions 

MMP-9 degrades type IV collagen, the major constituent of base- 

ment membranes, and is released by macrophages, smooth muscle 

cells, and endothelial cells [ 18 ]. Elevated MMP-9 levels in plasma 

have been shown in cardiovascular diseases [ 19 ]. Therefore, we tested 

whether the mRNA and protein expressions of MMP-9 were affected 

in hypercholesterolemia induced atherosclerosis. As shown in Fig. 5 A 

and B both mRNA and protein levels of MMP-9 significantly increased 

in cholesterol group and a significant decrease of mRNA and protein 

levels of MMP-9 in vitamin E treated group was determined compared 

to cholesterol group. 

Discussion 

Atherosclerosis, a chronic inflammatory disease of arteries which 

is characterized by the accumulation of plasma lipoproteins that carry 

cholesterol and triglycerides in the arteries, is one of the major causes 

of morbidity and mortality worldwide [ 23 ]. Studies have shown that 

2% cholesterol supplementation for 4 weeks is efficient to investi- 

gate the relationship between hypercholesterolemia and atherogen- 

esis in vivo , in terms of atherosclerotic lesions development which 

is identical to the changes in humans [ 8 , 24 ]. Vitamin E is an im- 

portant micronutrient transported in plasma lipoproteins due to its 

hydrophobic nature. Crucial functions of vitamin E apart from its an- 

tioxidant role has been identified including the modulation of cellular 

signaling pathways and gene expressions [ 25 ]. Additionally, it is ob- 

served that vitamin E prevents cholesterol-induced atherosclerotic 

lesions and the induction of CD36 mRNA expression [ 7 , 26 ]. Also in 

our previous studies, vitamin E treatment has shown its protective 

effect by decreasing CD36 scavenger receptor expression and me- 

diated reduction of foam cell formation against atherosclerosis [ 9 ]. 

Regarding these data, we aimed to identify the signaling molecules / 
transcription factors involved during the progression of atherosclero- 

sis mainly via matrix metalloproteinase related pathway and the role 

of vitamin E in related signaling mechanisms. 

To confirm our in vivo model of hypercholesterolemia induced 

atherosclerosis we analyzed serum cholesterol levels and atheroscle- 

rotic lesions. Serum blood analysis showed that addition of 2% choles- 

terol for 4 weeks resulted in approximately 30-fold increase of serum 

cholesterol ( Table 1 ) and hypercholesterolemia mediated atheroscle- 

rosis development (endothelial layer disruption, lipid accumulation 

and marked foam cell formation in intimal cells) was confirmed by 

light microscopy experiments in cholesterol group ( Fig. 1 ). In the 

cholesterol + vitamin E group, serum levels of vitamin E increased 

(approximately 8-fold) and the fact that atherosclerotic lesions were 

reduced significantly supported that vitamin E treatment has pro- 

tective effects against foam cell development in the biochemical and 

histological points. Increased level of lipid peroxidation, measured as 
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Table 1 

Effect of 2% cholesterol diet and vitamin E treatment for four weeks, serum cholesterol, vitamin E and MDA levels. Data are expressed as mean ± S.D. 

Group Cholesterol (mg / ml) Vitamin E ( μg / ml) MDA ( μmol / L) 

Control 79.0 ± 43.7 6.6 ± 1.9 1.69 ± 0.3 

Cholesterol 2869.2 ± 586.6 † 36.61 ± 11.5 † 6.90 ± 1.7 † 

Cholesterol + Vit E 2337.8 ± 926.8 † 52.9 ± 8.27 † 6.33 ± 1.5 † # 

† p < 0.001, vs . control group. 
# p > 0.05, vs . cholesterol group ( n = 7). 

Fig 1. Representative light microscopic images of rabbit aorta from each group ( × 20). Control group (A), cholesterol group (B), and cholesterol + vitamin E group (C). Cholesterol 

fed rabbits exhibited atherosclerotic lesions and notably vitamin E inhibited foam cell formation and endothelial damage. Fixed aortic tissues in 10% buffered formaldehyde for 4 h 

dehydrated and incubated in xylol for 1 h twice, embedded in paraffin. 5- μm-thick sections were stained with hemotoxylene eosin before microscopic screening. 

Fig 2. Effect of cholesterol enriched diet and vitamin E treatment on proteasome 

activity. Data denote mean ± S.D. ** p < 0.01 vs . control group ( n = 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MDA, was detected as a parameter of oxidative stress in patients dur-

ing coronary heart surgery [ 27 ]. In this study, detection of high MDA

levels in serum reflects the effect of high cholesterol diet on the ox-

idative status in vivo . All together, serum cholesterol, vitamin E, MDA

results and microscopic examinations are consistent with our previ-

ous results for hypercholesterolemic rabbit model of atherosclerosis

[ 8 , 9 , 28 ] and also in agreement with literature [ 6 , 27 ]. 

The ubiquitin-proteasome system (UPS) is a machinery, involved

in the degradation, regulation or life-span determination of intracel-

lular proteins [ 14 ]. Oxidative damage to proteins may cause modifi-

cation in protein structure, which leads to formation of cross-linked

protein aggregates [ 29 ]. It has been shown in many studies that pro-

teasomal degradation has multiple and complex effects in many cel-

lular functions such as regulation of cell growth and gene expression

by the degradation of transcriptional regulators, such as p53, c-jun,

and β-catenin [ 30 ] and inhibition of signal transduction cascades

by degradation of activated protein kinases [ 31 ]. Active, phospho-

rylated forms of JNK activate transcription factors belonging to the

AP-1 superfamily (e.g., c-jun), and other proteins through phospho-

rylation [ 32 ]. It has been shown that protein aggregates result in the

inhibition of proteasome which is accompanied by phosphorylation

of c-jun and increased AP-1 activity leading to an enhanced MMP

mRNA expression [ 16 ]. In the present study, we interestingly found
a significant decrease of proteasome activity in both cholesterol and

cholesterol + vitamin E treated group ( Fig. 2 ). AP-1 comprises a dimer

of the subunits jun and fos which are degraded by UPS [ 33 ]. Several

in vitro and in vivo studies determined the proteasomal degradation

of both proteins [ 34 ]. A decrease of proteasomal activity may result

in accumulation of proteins and therefore phosphorylation of c-jun

protein. In this context, we examined c-jun and phospho c-jun ex-

pressions with RT-PCR and immunoblotting techniques. Cholesterol

group demonstrated an increase of c-jun mRNA expression ( Fig. 3A )

but it was not reflected to c-jun protein expression in rabbit aorta

( Fig. 3B ). Additionally, we found a significant increase in phospho c-

jun protein expressions ( Fig. 3C ) and vitamin E showed its effect by

decreasing c-jun and phospho c-jun levels approximately to control

group. In this direction we can explain the nonsignificant change in

c-jun protein levels compared to the dramatic increase in mRNA lev-

els. Since c-jun is activated via phosphorylation, protein levels seem

to be unchanged and phosphorylation is increased. 

To understand the mechanism of c-jun activation, we investigated

JNK1 levels in all groups. In this direction, we found a significant in-

crease (approximately 10-fold) of JNK1 mRNA expression in choles-

terol group compared to control group which was decreased in vi-

tamin E treated group ( Fig. 4A ). However, these changes were not

significant for protein expression of JNK1 ( Fig. 4B ) which brings the

conclusion of posttranslational modification of JNK1. Phosphoryla-

tion of JNKs lead to activation of transcription factors belonging to

the AP-1 superfamily (e.g., c-jun) and other proteins such as Elk-1

and p-53 [ 35 ]. JNKs are expressed in vascular smooth muscle cells

and endothelial cells and activated by a wide range of stimuli such

as oxidative stress, mechanical stretch, hypertension [ 36 –38 ] and re-

ported in atherogenesis for foam cell development in the atheroscle-

rotic plaque by activated scavenger receptor A [ 39 ]. It has been shown

that JNK-1 and JNK-2 were phosphorylated and activated by exposure

of macrophages to oxLDL in a CD36 dependent signaling pathway.

And the inhibition of JNK activation results in reduction of foam cell

formation [ 11 ]. In a carotid artery model of MMP-9 knockout mouse

showed that the defect of MMP-9 can be the result of decrease in

intimal hyperplasia and lumen loss, and an accumulation of intersti-

tial collagen [ 40 ]. It has been shown that MAPK mediated activation

of transcription factor AP-1 increased MMP-9 expression in response
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Fig 3. Effect of cholesterol enriched diet and vitamin E treatment on c-jun and phospho c-jun levels in rabbit aorta. mRNA expression in aortic tissue of each animal was measured 

by quantitative RT-PCR, normalized to GAPDH. Relative mRNA expression in rabbit aorta for c-jun (A). Protein expression analyzed by Western blotting with densitometric analysis 

of protein bands and relative ratios were quantified and normalized relative to GAPDH against c-jun (B) and phospho c-jun (C) antibodies. Data denote mean ± S.D. * p < 0.05 vs . 

cholesterol group, ( n = 5). *** p < 0.001 vs . cholesterol group, ( n = 5). 

Fig 4. JNK1 mRNA and JNK1 protein expressions in 2% cholesterol diet and vitamin E treatment of rabbit aortic tissues. mRNA expression in aortic tissue of each animal was 

measured by quantitative RT-PCR, normalized to GAPDH. Relative mRNA expression in rabbit aorta for JNK1 (A). Protein expression analyzed by Western blotting with densitometric 

analysis of protein bands and relative ratios were quantified and normalized relative to GAPDH against JNK1 (B) antibodies. Data denote mean ± S.D. * p < 0.05 vs . cholesterol 

group, ( n = 5). 

t

c

t

J

o

u

s

t

f

a

o tumor necrosis factor α (TNF- α) in human vascular smooth mus- 

le cells [ 41 ]. Another study using a vasodilator cilostazol has shown 

he significant inhibition of lipopolysaccharide mediated activation of 

NK which lead to the reduction of MMP-9 levels and downregulation 

f MMP-9 by JNK inhibition resulted in the inhibition of macrophage 

ptake [ 42 ]. Our data showed that both mRNA and protein expres- 

ions of MMP-9 were significantly increased in cholesterol group and 

reatment of vitamin E reduced these expressions to control levels. 

This optimized rabbit model in our study is a well accepted model 

or hypercholesterolemia induced atherosclerosis studies. But it has 

lso some limitations regarding the protein sequences for produced 
antibodies. Also, genetically modified rabbits are very limited. There- 

fore, regarding the obtained results, our future direction is to confirm 

the studied pathway in in vitro cell culture experiments by using in- 

hibitors and silencing experiments. 

Conclusion 

In summary, our results indicate the role of decreased proteasomal 

activity by high cholesterol diet, that might be related c-jun signaling 

pathways in the atherosclerotic process. We also showed the signif- 

icant effect of vitamin E on c-jun, JNK1, MMP-9 mRNA and phospho 
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Fig 5. Effect of cholesterol enriched diet and vitamin E treatment on MMP-9 protein and mRNA expressions in rabbit aorta. mRNA expression in aortic tissue of each animal 

was measured by quantitative RT-PCR, normalized to GAPDH. Relative mRNA expression in rabbit aorta for MMP-9 (A). Protein expression analyzed by Western blotting with 

densitometric analysis of protein bands and relative ratios were quantified and normalized relative to GAPDH against MMP-9 (B) antibody. Data denote mean ± S.D. * p < 0.05 vs . 

cholesterol group, ( n = 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c-jun, MMP-9 protein expressions compared to cholesterol group. Re-

garding our data, high cholesterol diet affects c-jun degradation and

phosphorylation which leads to an enhanced MMP expression and the

proteasome activity as complementary part in hypercholesterolemia

induced atherosclerotic process. Additionally, vitamin E significantly

decreases c-jun phosphorylation which may be correlated with the

reduction of MMP-9 expressions. At this point, vitamin E treatment

also inhibited the proteasomal activity compared to control group.

However, vitamin E treatment was not effective to decrease the MDA

formation caused by cholesterol. These results lead us to conclude

that vitamin E induced several signaling pathways other than antiox-

idant signaling in our model. Therefore c-jun response was not found

to be directly related to the proteasomal inhibition. 
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