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Abstract

Background: This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural
Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll-
a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to
mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square
Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC).
Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal
biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for
monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of
these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a
concentration for eutrophication management of tropical lakes.

Results: Same data set was used for models development and the data was divided into two sets; training and
testing to avoid biasness in results. FL and RANN models were developed using parameters selected through
sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate
nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR
model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH,
Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and
0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7,
and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this
study resulted from the methodology used in measuring the performance. RMSE is based on the level of error of
prediction whereas AUC is based on binary classification task.

Conclusions: Overall, HEA produced the best performance in terms of RMSE, r, and AUC values. This was followed
by FL, RANN, and MLR.

Background
Eutrophication of lakes is a common global concern in
lakes and reservoir. Malaysian lakes and reservoirs are
also facing the same problem, as the current status of
eutrophication is indicated to be more than 60% [1,2].

The adverse effects of eutrophication amongst are dete-
rioration of water quality for human utilization, limita-
tion of recreational usage and depletion of dissolved
oxygen below acceptable level which induces reductions
in specific fish and other animal populations [3]. Eutro-
phication promotes algae bloom hence algal biomass
can be used as a good indicator of eutrophication status
in lakes and reservoir around the world [4]. Chloro-
phyll-a have been used to estimate algal biomass in
aquatic ecosystem as it is common in most algae [5].
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Various models have been developed to estimate the
concentration of chlorophyll-a in temperate waters such
as Artificial Neural Networks (ANN), Fuzzy Logic (FL),
Hybrid Evolutionary Algorithm (HEA) and Multiple Lin-
ear Regression (MLR).
Artificial neural network (ANN) model are highly flex-

ible function approximators that can be used to model
non-linear relationship. ANN models have been success-
fully applied to predict chlorophyll-a concentration at
temperate water bodies [6-10]. Similarly, FL models can
be used to model non-linear relationships. Unlike ANN,
FL models can provide insight into their own operation
because the fuzzy rules provide an easily understood and
common sense description of the action of the FL system.
FL model has been used to model eutrophication, in lakes,
reservoirs, and coastal waters [11-14]. Hybrid Evolutionary
Algorithm (HEA) can be used to model non- linear rela-
tionship as well. HEA uses genetic programming (GP) to
generate the structure of the rule set and genetic algorithm
(GA) for parameter optimization. HEA has been success-
fully applied to discover complex rule sets predicting the
concentration of chlorophyll-a [15-17]. MLR had been
used to predict chlorophyll-a concentrations based on lim-
ited number of parameters such as phosphorus and nitro-
gen concentrations by [3,18,19].
Comparison of the above models had been already carried

out in eutrophication studies of temperate lakes [9-11,17].
The performance criteria used to assess these models were
root mean square error (RMSE) and correlation coefficient
(r-value). In this study, area under the ROC curve (AUC)
was used as an additional performance criterion. AUC was
calculated by plotting ROC curves, which were two-dimen-
sional graphs that visually depicted the performance and
performance trade-off of a classification model [20]. ROC
curves were originally designed as tools in communication
theory to visually determine optimal operating points for
signal discriminators [21]. ROC was used in this study as
chlorophyll-a concentrations can be dichotomized. For
examples, different levels of eutropihication in a lake might
represent either acceptable or unacceptable water quality, or
concentrations of algal in the ocean might be classified as
blooms if they exceed a certain threshold [22].
The aim of this study was to assess the performance

of four different models, namely RANN, FL, HEA and
MLR to predict concentration of chlorophyll-a in a tro-
pical lake. To date, there are no literatures reported that
assess the performance of the four models in a single
study. The advantage of using AUC as an additional
performance criterion is also discussed.

Methods
Study site and data
Putrajaya Lake (Figure 1) which is an oligotrophic to
mesotrophic man made lake covers a total surface area

of more than 400 ha. It is a warm polymictic, non strati-
fied shallow lake with an average depth of 6.6 m [23].
Algae that have been recorded from the lake are from
the divisions of Bacillariophyta (11%), Chlorophyta
(26%), Chrysophyta (17%), Cyanobacteria (28%) and Pyr-
rophyta (18%). Other characteristics of the water in
Putrajaya Lake are shown in Table 1.
The primary purpose of the lake is for aesthetic and

for recreation, besides providing habitat for aquatic
local flora and fauna. Threat from eutrophication is
anticipated as due to urbanization. Hence, it is impor-
tant to develop and use proper methods and techni-
ques to monitor changes in water quality of the lake.
The data used in this study was based on limnological
data of Putrajaya Lake collected bi-weekly and com-
piled from 2001 to 2004. Water sampling procedure
and sample preservation were done according to stan-
dard procedure as outlined by WHO [24] and APHA
[25]. The data was arbitrary divided into three sets
(sets A, B, and C). Set A was used to train and con-
struct the models. Set B is used to the test the perfor-
mance of the models. Set C is meant for cross
validation of RANN model to avoid over fitting and
generalization. Table 2 represents summary statistics of
all variables used in this study.

Selection of input variables
In raw datasets, some variables have large variation or
spread [26,27]. Normalization of the raw datasets was
therefore necessary to ensure that all values of the vari-
ables are within the same range. Input data was normal-
ized to the range 0 to 1. Less importance is given to
input selection methods in many of the ecological
model development [28]. Presenting large number of
input to ANN, increases the network size, which leads
to increase of amount of data to estimate the connec-
tion weight and possible reduction of processing speed.
Similar for FL models fewer variables lead to the reduc-
tion of the dimensions for the fuzzy association matrix,
and hence provide for a simpler formulation of infer-
ence rules. Preferred method of input selection should
be a combination of prior knowledge and analytical
approaches [29]. The analytical approach used was this
study is sensitivity analysis technique for RANN and FL
models. This technique measures how much a small
change in one of the independent variables affects the
functional value [30]. It effectively measures change in a
given input affects the output across the training data
set. Inputs that have large sensitivities have more impor-
tance in the mapping and therefore are the ones we
should keep. The inputs with small sensitivities can be
discarded. This helps the training as it reduces the size
of the network, decreases the cost of data collection,
and improves performance.
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Figure 1 Putrajaya Lake map. Map of Putrajaya Lake (Malaysia) and the sampling stations for the year 2001 - 2004

Table 1 Principal features of Putrajaya Lakes

Catchment
area

Water
level

Surface
area

Storage volume Average
depth

Average
catchment inflow

Average
retention time

Circulation type

50.9 square
kilometers

RL 21
meters

400
Hectares

26.5 million cubic
meters

6.6 meters 200 million liters per
day

132 days warm polymictic (non stratified
shallow lake)
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Sensitivity analysis has been implemented in this study
via RANN. All available variables were considered as
potential input variables. Once the sensitivity level of
each variable has been determined (Figure 2), backward
elimination method was used to eliminate less sensitive
variables and the network was retrained with reduced
number of variables. This procedure was repeated, until
the discarding of any extra variables did not improve
the model performance. This process resulted in the
inclusion of water temperature, pH, dissolved oxygen,
Secchi depth, ammonia nitrogen and nitrate nitrogen for
RANN and FL model development.
However for MLR model, stepwise selection was used

.This was because of high correlations among the input
variables were indentified. Stepwise regression is a modi-
fication of forward selection that drops variables from
the model if they lose their significance as other vari-
ables are added. This has resulted in selection of only
dissolve oxygen as input variable for MLR model.
HEA model optimized variable selection using general

genetic algorithm (GA) approach that leads to the inclu-
sion of nitrate nitrogen, Secchi depth, dissolved oxygen

and pH. Novel crossover operator based on the non
convex linear combination of multiple parents during
the recombination of the population is applied for para-
meters optimization [15].

Model performance comparison criteria
Three criteria for model assessment have been adopted
in this study: RMSE, r and AUC. RMSE is a measure of
the average level of prediction error. It indicates the
absolute fit of the model to the data or how close the
observed data points are to the model’s predicted values.
It is shown in the following formula where y is the
observed value, ỹ is the predicted value, n is the number
of readings used, and j is the individual reading of the
value:
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The r value is a measure of correlation between the
predicted and observed values of the independent vari-
able. The r value indicates agreement between predicted
and observed values but it does not indicate the perfor-
mance of the models. Models are considered reliable
when its predicted values correlate with observed values
at r value of 0.5 or above.
In this study, AUC was calculated from ROC curve

graphs. ROC curve is a graphical plot of sensitivity or
true positive rate versus false positive rate. In order to
plot the ROC curve the concentration of chlorophyll-a
was scaled according to different eutrophication scales
[31]: ultra-oligotrophic (<=1.00μg/L), oligotrophic (1.00–
2.50 μg/L); mesotrophic (2.5–8.0μg/L), eutrophic (8.0–
25.0 μg/L) and hypertrophic (>=25 μg/L). The AUC was
then calculated to determine model performance using
the trapezoidal rule. Trapezoids are formed using the

Table 2 Summary statistics of limnological parameters
from 2001 - 2004

Variables Min Avg Max

Water temperature (°C) 28.42 30.29 32.33

pH 6.16 7.40 8.44

Dissolved oxygen (DO) (mg/l) 5.72 7.41 9.08

Secchi depth (m) 0.30 1.03 1.75

Turbidity (NTU) 3.50 13.68 53.10

Conductivity (Us/cm) 60.00 92.52 189.00

Ammonia nitrogen (NH3-N)(mg/l) 0.00 0.05 0.53

Nitrate nitrogen (NO3-N)(mg/l) 0.00 1.18 4.82

Chemical oxygen demand (COD)(mg/l) 2.00 18.61 79.00

Total suspended solids (TSS)(mg/l) 0.00 4.88 46.00

Chlorophyll-a (mg/l) 0.00 7.28 31.70

Figure 2 Sensitivity Analysis Graph Sensitivity of each input variables against chlorophyll-a concentration. Higher value on graph indicates
highly sensitive variable to chlorophyll-a concentration.
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observed points as corners and computing the areas of
these trapezoids and adding them up. Thresh-hold
values of AUC is adopted from [32]. AUC ranges from
0 to 1, where a score > 0.9 indicates outstanding discri-
mination, a score between 0.8–0.9 is excellent, and a
score > 0.7 is acceptable.

RANN model development
In the study, RANN [33] was used for model develop-
ment. It followed deterministic modelling approach
where the system state at time (t) was measured by sys-
tem state at time (t-1) and the copied weights of time (
t-1 ) was used as feedback input to determine weights at
time t. RANN was a modification to feed-forward neural
network structure. RANN network geometry was deter-
mined via trial and error. One hidden layer RANN with
back-propagation through time learning was employed.
It has been reported that only one hidden layer is
needed to approximate any continuous function [34].
The geometry of the RANN model (using water tem-
perature, pH, dissolved oxygen, Secchi depth, ammonia
nitrogen and nitrate nitrogen data as inputs) was 6-4-l
(number of inputs-number of hidden nodes-number of
outputs).
Back – propagation through time (BPTT) [35] a learn-

ing algorithm for RANN network was used in this
study. The Back-propagation through time (BPTT) algo-
rithm is based on changing the network from a feedback
system to feed-forward system by folding the network
over time. The network uses momentum learning algo-
rithm to determine the weights in the network. This
algorithm is an improvement to the gradient-descent
search, where previous increment to the weight is used
to speed up and stabilize convergence. In momentum
learning the equation to update the weights are as
follows:
wij(n +1) = wij (n) + h∂i(n)xj(n) + a(wij (n) – wij(n-1)
Where a is the momentum constant. Weights adapta-

tion using momentum learning is changed proportion-
ally to how much they were updated in the last
iteration. Momentum learning is a robust method to
speed up learning, and it suitable as the default search
rule for networks with nonlinearities [36].
The size of the steps taken in weight space during the

learning phase is a function of a number of internal net-
work parameters including the learning rate, momentum
value, error function, epoch size and gain of the transfer
function. Appropriate step sizes, and hence, appropriate
combinations of network parameters in this study, are
determined by trial and error. Change in algal biomass
is known to be nonlinear process [37]. To introduce
nonlinearity to system hyperbolic tangent function is
used at as an activation function at the hidden layer and
at the output layer.

f(x) = tanh(ax)
a is a slope parameter and is set to 0.7, learning rate

of 0.01 was used . An epoch size used is 100.
Generalization ability of a network, as measured by

the RMSE between the predicted and historical values of
an independent test set, changes as training progresses
is a function of the size of the steps taken in weight
space . In order to optimize model performance, three
data sets: are used for the RANN model development in
this study a training set (dataset A), a test set (dataset
B), and a validation set (dataset C). The test set was
used to evaluate the generalization ability of the net-
work. The validation set was used to assess the perfor-
mance of the model once the training phase has been
completed. The process of cross-validation removes the
risk of the neural network memorizing the data [38].

FL model development
The FL model used to model chlorophyll-a concentra-
tion was adopted from [14]. The model development
constitutes three basic steps.
Data reduction
Variables used to develop the FL model were selected
through sensitivity analysis generated from RANN.
Fewer variables lead to the reduction of the dimensions
for the fuzzy association matrix, and hence provide a
simpler formulation of inference rules [13,39]. Water
temperature, pH, dissolved oxygen, Secchi depth,
ammonia nitrogen and nitrate nitrogen was used as
input variables.
Clustering of input and output data
Self-organizing maps (SOM) [40], an unsupervised
learning method, was used to cluster input and output
data. SOM is common technique used to analyse multi-
dimensional data [27,41] by providing for a reduced
dimensional illustration. In this study, SOM was used to
construct a two dimensional graph that described the
clustering of input and output variables, whereby the
clusters for input parameters can be mapped directly to
the cluster of chlorophyll-a. In addition, the SOM is
used to obtain mean values as well as 97.5% confidence
interval bands of each cluster of model variables. If
there was no statistically significant overlap between the
clusters, the classification result is considered acceptable.
The procedure of SOFM can be found in [42,43]. Clus-
ters obtained from SOM were used to extract informa-
tion for defining the fuzzy membership functions and
constructing the fuzzy inference rules.
Defining membership functions
The mean value (μ) of each cluster membership was
assigned to 1.0. Function type and membership function
was defined for each variable. These are shown in Figure 3.
Strategies for inference rules induction, extended case

reasoning has been adopted in this study as explained in
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[14]. A total of 64 inference rules were generated for the
chlorophyll-a FL model from the training dataset A. 16
rules were extracted to determine high algae biomass,
18 rules were determined for medium algae biomass
and 30 rules extracted to determine low algae biomass.
In order to conduct quantitative comparison, the devel-
oped models were tested with dataset B. This was to
avoid biasness in results. The outputs for FL model
were defuzzified by centre of gravity method and plotted
together with observations.

HEA model development
Hybrid Evolutionary Algorithm (HEA) evolved from
Evolutionary Algorithm (EA) with additional features of
parameter optimization. The main characteristic of HEA
is ability for solving problems involving complexity,

noisy environment, imprecision, uncertainty and vague-
ness. Due to this characteristic of HEA structure (Figure
4) has been adopted in this study as explained in [15].
HEA uses GP to create and optimize the formation of
rule sets and a GA to optimize the parameters of a rule
set . GP is an expansion of GA where the genetic popu-
lations are represented as computer programs of varying
sizes and shapes. In a typical GP, computer programs
can be depicted as parse trees, and a branch node
depicts an element from a function set (arithmetic
operators, logic operators, elementary functions of at
least one argument), and a leaf node depicts an element
from a terminal set (variables, constants, and functions
of no arguments). These symbolic programs are later
assessed using ‘fitness cases’. Fitter programs are chosen
for recombination to form the next generation by means

Figure 3 Fuzzy membership for selected input variables. Fuzzy membership diagram (a) water temperature, (b) Secchi depth, (c) dissolved
oxygen, (d) Ammonia Nitrogen and (f) Nitrite Nitrogen

Malek et al. BMC Bioinformatics 2011, 12(Suppl 13):S12
http://www.biomedcentral.com/1471-2105/12/S13/S12

Page 6 of 11



of genetic operators, for example crossover and muta-
tion. This process is iterated for successive generations
until the termination criterion is fulfilled. A general GA
was applied for parameter optimization of the random
parameters in the rule set. 100 runs were conducted
independently for each data set. For simplicity, we set
the maximal rule size to be 1 (single rule). All the
experiments were performed on a University of Malaya
High Performance supercomputer (Altix SGI 1300)
using the programming language C. Data from dataset
A was used to generate rules. The rule generated by
HEA was latter tested using dataset B which was not
used for training to avoid biasness in result.

MLR model development
In this study, MLR model was developed from dataset A
using multiple regression procedure of the SPSS 17.0
software. The MLR model was developed using stepwise
selection method as there exists high correlation
between independent variables. Chlorophyll-a concen-
tration was assigned as the dependent or criterion vari-
able. The stepwise variable selection method identified
dissolved oxygen as the independent variables. The
developed models were tested with dataset B. This was
to avoid biasness in results.

Results
Graph for predicted over observed data for each model
is plotted (Figure 5) using testing dataset B to avoid
biasness in result. Graphical representation of the graph
indicated high concentrations of chlorophyll-a (above 30
ug/L) are not predicted well by all the models. This
might be related to low incidence of high concentration
of chlorophyll-a in the lake. Putrajaya Lake is categor-
ized as an oligotrophic lake with low productivity.
Besides RMSE and r value (Table 3) calculated for each
model for testing dataset B, AUC value was calculated
as well by using ROC curves (Figure 6).
HEA model was used to generate rules to discover

relationship between cholorophyll-a concentrations and
water quality parameters at Putrajaya Lake. The best
rule set in terms of minimal testing error in 100 runs is
given below.
IF ((((NO3N*126.117)>=5.273)OR(Secchi>154.513))

AND(((NO3N*444.685)*(NO3N*13.361))<444.685))
THEN chlorophyll-a=(96.579/DO)
ELSE
Chlorophyll-a=(DO-ln(|((61.273/pH)-DO)|))
The MLR model equation using stepwise variable

selection for Putrajaya Lake is as follows: Chlorophyll-a =
-11.685 + 2.732.DO.

Discussion
Same data set was used to assess the performances of
the four models: RANN, FL, HEA and MLR. The RMSE
value indicates that both HEA (4.27 ug/l) and RANN
(4.28 ug/l) performed better than FL (4.49 ug/l) and
MLR (4.60 ug/l). RMSE values obtained in this study
were comparable with similar models developed for
chlorophyll-a estimation at temperate lakes. FL model
developed for temperate lakes recorded RMSE value of
(7.0 ug/l) [13] and HEA model reported RMSE value of
(39 – 87 ug/l) [15]. All the models are generally reliable
as their predicted values correlate with observed values
with r value of 0.5 or above. HEA and RANN produced
similar performance when used for predicting phyto-
plankton biomass at temperate lakes [17]. Previous stu-
dies have also shown that RANN and FL performed
better than MLR model [9-11]. This is consistent with
findings of the present study.
Based on AUC rating in [32], FL (AUC value 0.84)

and HEA (AUC value 0.82) can be categorized as excel-
lent prediction models of chlorophyll-a concentration.
RANN (AUC value 0.79) and MLR (AUC value 0.76)
are categorized as acceptable models of chlorophyll-a
concentration.
Performance inconsistencies between four models in

terms of performance criteria in this study resulted from
the methodology used in measuring the performance.
RMSE is based on the level of error of prediction

Figure 4 HEA structure diagram. The HEA structure adopted from
Cao et al.[15].
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whereas AUC is based on binary classification task. Bet-
ter performance of FL model over RANN and HEA
might be due to collapsing continuous response (chloro-
phyll-a concentration) into two values. Theoretically and
empirically that AUC is a better measure for model eva-
luation than accuracy. RMSE meanwhile measures
model accuracy. Many ecological responses are difficult
to measure accurately and definitely. Therefore AUC is
suitable for characterizing responses that are dichoto-
mous such as lake eutrophication [44].
Dissolved oxygen was used to predict chlorophyll-a

concentrations for the MLR model. Other variables were
not used because they are highly correlated. Highly cor-
related variables were excluded stepwise during the pro-
cess of constructing the MLR model. The use of MLR
model to predict chlorophyll-a has serious drawbacks as
the model is oversimplified. Eutrophication is a complex

process with non linear relations between environmental
variables and therefore cannot be explained with sim-
plistic approach. Sensitivity analysis to select variables as
used in RANN and FL determine the contributions of
the independent variables and the way they act on the
dependent variable. Sensitivity analysis adds strength to
ANNs in their explanatory capacity. More importance is
placed on variables that have large sensitivities. Variables
with small sensitivities are discarded. This is important
as the effect of presenting large number of input to
ANN, increases the network size, which leads to
increase of amount of data to estimate the connection
weight and possible reduction of processing speed. Simi-
larly for FL model large number of input causes diffi-
culty in defining fuzzy members. Both RANN and FL
models were developed using the final selected variables
such as water temperature, Secchi depth, pH, ammonia
nitrogen, dissolved oxygen and nitrate nitrogen. Chloro-
phyll-a concentration are related to algal biomass and
concentration of chlorophyll-a in this study represent
the five major division of algae that is Bacillariophyta,
Chlorophyta, Cynanobacteria , Chrysophyta and Pyrro-
pytha. It is well known that temperature can enhance
phytoplankton growth rate [45,46]. Cyanobacteria and
Chlorophyta which comprises 28% and 26% of algae
population are identified as major contributor of chloro-
phyll-a concentration in Putrajaya Lake. Cyanobacteria
and Chlorophyta are known to prefer high water

Figure 5 Graph for observed verses predicted data for the prediction models. Graph illustrates observed against predicted data using
testing dataset B for the RANN model (Figure 5, top left), FL model (Figure 5, top right), HEA model (Figure 5, bottom left) and MLR model
(Figure 5, bottom right).

Table 3 Result summary for chlorophyll-a prediction
models

Models RMSE r AUC

MLR 4.60 0.5 0.76

FL 4.49 0.6 0.84

RANN 4.28 0.7 0.79

HEA 4.27 0.7 0.82

Chlorophyll-a prediction result for RANN, FL, HEA and MLR model based on
three performance criteria RMSE, r and AUC.
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temperature [47-49]. Inability to grow at high pH is a
characteristic of oligotrophic species mainly desmids
which comprises of major population of algae at Putra-
jaya Lake [50]. It can be inferred that algae abundance
at Putrajaya Lake are controlled by pH concentration.
The nutrients, both ammonia nitrogen (NH3-N) and
nitrate nitrogen (NO3-N) are among parameters
selected by sensitivity analysis. Nutrients inputs into oli-
gotrophic lakes often increase phytoplankton biomass
and productivity [51]. Secchi depth is correlated with
chlorophyll-a measurements. In many standing waters,
determination of Secchi depth has been found to be a
simple and reliable approach to monitoring changes in
seasonal phytoplankton biomass. Meanwhile it is typical
to find higher levels of oxygen in depths where larger
concentrations of phytoplankton are found [52].
Even though ANN models are able to make perfect

predictions and are recognised as powerful, they are
considered to be ‘black-box ’ in nature. Therefore
explanatory methods such as FL and HEA have been
adopted in this study with the idea to clarify the
‘black-box’ approach of ANNs. An FL approach proves
to be a practical and successful technique when deal-
ing with semi-qualitative knowledge and semiqualita-
tive data [53] which is, for example, the case when
trying to model algal biomass or algal blooms. How-
ever, the definition of appropriate membership func-
tions and the induction of inference rules, common to
any FL modelling approach, remain difficult, since
these very much depend on specific knowledge and
expertise of any particular ecologist [54]. HEA
approach can overcome the limitation of FL and ANN
approach. HEA allows discovery of predictive rule set
in complex ecological data. The genetic algorithm used

in HEA provides parameter optimization which
resulted in the inclusion of nitrate nitrogen, Secchi
depth, dissolved oxygen and pH for chlorophyll-a con-
centration estimation at Putrajaya Lake. The HEA rule
sets discovered for chlorophyll-a concentrations at
Putrajaya Lake is rather complex. The IF branch of the
discovered rule set explains chlorophyll-a concentra-
tion can be determine by using dissolved oxygen when
concentration of nitrate and Secchi depth are reported
to be high. If this condition is not meet chlorophyll-a
concentration is determine using the ELSE branch,
where pH and dissolved oxygen is used. This can be
justified by findings postulated in literature. Nutrients
such as nitrates increase algae biomass. Concentrations
of chlorophyll-a can be determined using dissolved
oxygen as algal photosynthesis is usually the major
supplier of oxygen to slow flowing water body. Dis-
solved oxygen and pH value in natural waters is pri-
marily associated with photosynthesis [55].

Conclusions
This paper presents an assessment of RANN, FL , HEA
and MLR approaches in modelling chlorophyll-a of a
tropical lake in Malaysia. In this study FL and HEA
models produced promising results. FL and HEA
approach prove to be practical and successful techniques
when dealing with limited datasets of complex relation-
ship without clear distinction of memberships. RANN
model are data-driven models which is difficult to cali-
brate and requires a large number of datasets to per-
form accurate prediction. In this study FL, RANN and
HEA give similar results and are potential algorithms to
be deployed as water management tools as compared to
MLR.

Figure 6 ROC curve graph. ROC curve plotted for sensitivity (true positive) against specificity (true negative) for varied concentration of
chloroplyll-a
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