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Abstract

Purpose

Fluorodeoxyglucose-Positron-emission tomography (FDG-PET), quantified by standard-

ized uptake values (SUV), is one of the most used functional imaging modality in clinical rou-

tine. It is widely acknowledged to be strongly associated with Glucose-transporter family

(GLUT)-expression in tumors, which mediates the glucose uptake into cells. The present

systematic review sought to elucidate the association between GLUT 1 and 3 expression

with SUV values in various tumors.

Methods

MEDLINE library was screened for associations between FDG-PET parameters and GLUT

correlation cancer up to October 2018.

Results

There were 53 studies comprising 2291 patients involving GLUT 1 expression and 11 stud-

ies comprising 405 patients of GLUT 3 expression. The pooled correlation coefficient for

GLUT 1 was r = 0.46 (95% CI 0.40–0.52), for GLUT 3 was r = 0.35 (95%CI 0.24–0.46).

Thereafter, subgroup analyses were performed. The highest correlation coefficient for

GLUT 1 was found in pancreatic cancer r = 0.60 (95%CI 0.46–0.75), the lowest was identi-

fied in colorectal cancer with r = 0.21 (95% CI -0.57–0.09).

Conclusion

An overall only moderate association was found between GLUT 1 expression and SUV val-

ues derived from FDG-PET. The correlation coefficient with GLUT 3 was weaker. Presum-

ably, the underlying mechanisms of glucose hypermetabolism in tumors are more complex

and not solely depended on the GLUT expression.
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Introduction

Fluorodeoxyglucose -Positron-emission tomography (FDG-PET) is one of the most used func-

tional imaging modality in clinical practice. The value of this imaging technique is based upon

the display of glucose metabolism in vivo [1, 2]. This benefit has been extensively researched,

especially in the field of oncologic imaging. The FDG uptake is routinely quantified by stan-

dardized uptake values (SUV), which is a robust and reliable imaging biomarker [1, 2].

Malignant tumors tend to show an altered, elevated glucose metabolism based upon aerobic

glycolysis compared to normal tissue, which is called Warburg effect [3, 4].

Because of this fact, FDG-PET can be used in clinical routine to aid in discrimination

between benign and malignant lesions [5–7], might predict treatment response [8–10] and

might also be able to reflect histopathology parameters of tumors [11, 12].

The accumulation of the tracer FDG is acknowledged to be mainly mediated by the Glu-

cose-transporter family (GLUT) [13, 14]. These proteins are located within the cell membranes

and regulate the uptake of glucose into cells. According to the literature, especially the subtypes

GLUT 1 and GLUT 3 are the most important proteins for the FDG-uptake and are overex-

pressed in tumors [14].

In brief, a tumor cell needs more glucose for proliferation and because of the ineffective aer-

obic glycolysis than a physiological cell. Thus, tumors might also express more GLUT proteins

than physiological tissues to accumulate more glucose.

Moreover, it was identified that an increased glucose uptake is associated with chemother-

apy resistance of gemcitabine in pancreatic cancer cells [15]. A key regulator is hypoxia-induc-

ible factor 1-alpha, which mediates the metabolic pathways, including GLUT expression [15].

In another study on pancreatic cancers it was identified that GLUT 1 expression was abun-

dantly higher in tumors and it was even the highest expressed protein of metabolic genes [16].

These findings suggest that metabolic protein expression is associated with tumor aggres-

siveness and treatment response.

This association between SUV and GLUT has been extensively investigated, both in experi-

mental animal studies [17, 18] and as well as in clinical studies using immunohistochemical

stainings of tumor specimens [14]. In most studies, GLUT 1 was investigated. Previously,

some studies identified a strong positive correlation between GLUT expression and SUV val-

ues derived from FDG-PET, as it is hypothetically expected [19, 20]. However, there are also

studies, which could not show any significant associations between SUV and GLUT [21]. The

exact reason for this discrepancy is not known. Presumably, in some tumors the FDG-PET

uptake may be predominantly influenced by GLUT expression. In other malignancies, how-

ever, other cellular pathways, such as the expression of hexokinase II, may be more important

for FDG uptake.

Moreover, it is postulated that the cellular energy demand and tumor microenvironment

show complex interactions, which go beyond a linear association between GLUT expression

and FDG uptake alone [13].

The aim of the present analysis was to investigate the associations between GLUT 1 and

GLUT 3 expression with SUV values derived from FDG-PET in a systemic review and to pro-

vide the first meta analysis of the published data.

Materials and methods

Data acquisition

MEDLINE and SCOPUS libraries were screened for associations between FDG-PET parame-

ters and GLUT correlation cancer up to October 2018. The following search words were used:

Associations between GLUT and FDG-PET

PLOS ONE | https://doi.org/10.1371/journal.pone.0217781 June 17, 2019 2 / 16

Abbreviations: FDG-PET, Fluorodeoxyglucose

-Positron-emission tomography; GLUT, Glucose-

transporter family; HNSCC, Head and neck

squamous cell carcinoma; NSCLC, non-small-cell

lung carcinoma; SUV, standardized uptake values.

https://doi.org/10.1371/journal.pone.0217781


PET or positron emission tomography and GLUT, SUV or standardized uptake value and

GLUT or glucose-transporter. Overall 292 articles were identified.

After thorough review and exclusion due to doublets, review articles, case reports,

non-English publications, and articles, which not contain correlation coefficients between

PET and GLUT, 53 articles were suitable for the meta analysis [19–69]. In these articles

56 patient samples were acquired. Fig 1 displays the PRISMA flow chart of the paper

acquisition.

The primary endpoint of the systematic review was the correlation between GLUT-1 and

GLUT-3 expression with SUV values derived from FDG-PET.

Studies (or subsets of studies) were included if they satisfied all of the following criteria:

(1) patients with tumor with histopathological confirmation and expression analysis of GLUT-

1 and/or GLUT-3; (2) FDG-PET quantified by SUV values; (3) correlation analysis between

SUV values and GLUT 1 and/or GLUT 3 expression.

Exclusion criteria were (1) systematic review (2) case reports (3) treatment prediction or

histopathology performed after treatment (4) non-English language (5) xenograft or mouse/

rabbit model studies.

The following data were extracted from the literature: authors, year of publication, study

design, tumor entity, GLUT subtype, number of patients, and correlation coefficients.

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement

(PRISMA) was used for the paper acquisition [70].

The methodological quality of the acquired studies was independently checked by two

observers (HJM and AS) using the Quality Assessment of Diagnostic Studies (QUADAS 2)

instrument according to previous descriptions (Fig 2) [71].

The assessment revealed that a small portion of studies shows an unclear risk of patient

selection due to non and or unclear inclusion criteria. Regarding flow and timing, some studies

did not indicate whether the histopathology analysis was in a short amount of time after the

PET to assure congruent results.

Associations between PET and GLUT expression were analyzed by Spearman’s correlation

coefficient. The Pearson’s correlation coefficients in some studies were converted into Spear-

man’s correlation coefficients, as reported previously [72].

Finally, the meta-analysis was undertaken by using RevMan 5.3 (Computer Program, ver-

sion 5.3, The Cochrane Collaboration, 2014, The Nordic Cochrane Centre, Copenhagen). Het-

erogeneity was calculated by means of the inconsistency index I2 [73, 74]. Additionally,

DerSimonian and Laird random-effects models with inverse-variance weights were used with-

out any further correction [75].

Results

Associations between SUV and GLUT 1

Overall 53 studies with 56 patient samples overall comprising 2291 patients were analyzed for

the meta analysis between SUVmax and GLUT 1 expression.

There were 13 (24.5%) prospective and 40 (75.5%) retrospective study designs.

Table 1 displays the included tumor entities of the GLUT 1 analysis.

The overall pooled correlation coefficient of the association between SUVmax and GLUT 1

expression was r = 0.46 (95% CI 0.40–0.52) (Fig 3).

Thereafter, subgroup analyses with tumor entities comprising more than one paper were

performed (Fig 4). The highest correlation coefficient was found in pancreatic cancer (r = 0.60,

95%CI 0.46–0.75), and the lowest was identified in colorectal cancer (r = 0.21 (95% CI -0.57–

0.09).

Associations between GLUT and FDG-PET
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Associations between SUV and GLUT 3

Overall 11 studies comprising 405 patients analyzed associations between SUVmax and GLUT

3 were included into the meta analysis (Fig 5). Table 2 displays the included tumor entities.

Fig 1. PRISMA flow chart. An overview of the paper acquisition. Finally, 53 articles were suitable for the analysis. From: Moher D, Liberati A,

Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA

Statement. PLoS Med 6(7): e1000097. doi:10.1371/joumal.pmed1000097. For more information, visit www.prisma-statement.org.

https://doi.org/10.1371/journal.pone.0217781.g001

Associations between GLUT and FDG-PET
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The pooled correlation coefficient was r = 0.35 (95%CI 0.24–0.46). Only 2 subgroup analyses

could be performed: in non-small cell lung carcinoma (NSCLC), the correlation coefficient

was r = 0.35 (95%CI 0.18–0.53) and in head and neck squamous cell carcinoma (HNSCC), it

was r = 0.22 (95% CI -0.06–0.51) (Fig 6).

Fig 2. QUADAS-2 quality assessment of the included studies. There were no possible concerns of the references standard. A small amount of

studies showed unclear bias regarding flow and timing, patient selection and index test.

https://doi.org/10.1371/journal.pone.0217781.g002

Table 1. Overview of the included tumor entities of the GLUT 1 analysis.

Tumor entity N (%)

Lung cancer 591 (25.8)

Head and neck cancer 216 (9.4)

Esophageal Cancer 191 (8.3)

Cervical cancer 190 (8.3)

Breast cancer 175 (7.6)

Pancreatic cancer 127 (5.5)

Lymph node metastasis 99 (4.3)

Papillary thyroid carcinoma 94 (4.1)

Hepatocellular carcinoma 94 (4.1)

Endometrial cancer 72 (3.1)

Sarcoma 63 (2.8)

Neuroendocrine tumor 59 (2.6)

Colorectal cancer 57 (2.5)

Mesenchymal uterine tumor 47 (2.0)

Thymic cancer 44 (1.9)

Gastrointestinal stromal tumor 40 (1.8)

Glioma 33 (1.4)

Pheochromacytoma 27 (1.2)

Bile duct cancer 26 (1.1)

Malignant melanoma 19 (0.9)

Ovarian cancer 17 (0.8)

Merkel cell carcinoma 10 (0.5)

Total 2291 (100)

https://doi.org/10.1371/journal.pone.0217781.t001

Associations between GLUT and FDG-PET
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Discussion

The present systematic review represents a meta analysis elucidating the associations between

SUVmax derived from FDG-PET and GLUT expression in various tumors.

Fig 3. Correlation between SUVmax and GLUT 1 expression. Forrest plots of the correlations coefficients between

SUVmax and GLUT 1 in all involved studies (n = 53) comprising 2291 patients. The pooled correlation coefficient was

r = 0.46 (95% CI 0.40–0.52).

https://doi.org/10.1371/journal.pone.0217781.g003

Associations between GLUT and FDG-PET
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Fig 4. Subgroup analyses for the correlation between SUVmax and GLUT 1 expression. Forrest plots of the correlation coefficients

between SUVmax and GLUT 1 in different primary tumors.

https://doi.org/10.1371/journal.pone.0217781.g004

Associations between GLUT and FDG-PET
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As first reported by Otto Warburg over 90 years ago, a crucial characteristic of tumor cells

is an increased glucose uptake resulting in an enhanced glycolytic metabolism [3, 4]. There-

fore, various tumors show an overexpression of glucose transporters (GLUTs). There are 13

types of different GLUT proteins, among which, GLUT 1 is the dominant one, which is also

abundantly overexpressed in tumors [16, 76].

Previous studies analyzed possible association between SUVmax and GLUT 1 and GLUT 3.

Other GLUT subtypes were only sporadically investigated and could therefore not be included

into the present analysis.

Early on, it was identified that FDG uptake might be associated with GLUT expression in

studies investigating lung cancer and pancreatic carcinoma [36, 37, 77]. Thus, nowadays, it is

an acknowledged fact that GLUT expression is one of the main mediators of FDG uptake in

tumors.

However, in the present meta analysis only a moderate association was identified between

SUVmax and GLUT 1 and a weak correlation between SUVmax and GLUT 3. This fact indi-

cates that the interactions between glucose hypermetabolism displayed by FDG-PET and glu-

cose uptake into the cells are more complex than the sole amount of GLUT expression within

the cell membranes [13]. Thus, other important proteins of the glucose metabolism, such as

the hexokinase II protein might have a crucial influence on the SUV value, which has been

Fig 5. Correlation between SUVmax and GLUT 3 expression. Forrest plots of the correlations coefficients between SUVmax and GLUT 3 in

11 studies comprising 405 patients. The pooled correlation coefficient was r = 0.35 (95%CI 0.24–0.46).

https://doi.org/10.1371/journal.pone.0217781.g005

Table 2. Overview of the included tumor entities of the GLUT 3 analysis.

Tumor entity N (%)

Non-small cell lung cancer 188 (46.4)

Papillary thyroid carcinoma 54 (13.3)

Esophageal Cancer 51 (12.6)

Head and neck cancer 46 (11.4)

Pheochromacytoma 27 (6.7)

Glioma 20 (4.9)

Malignant melanoma 19 (4.7)

Total 405 (100)

https://doi.org/10.1371/journal.pone.0217781.t002

Associations between GLUT and FDG-PET
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shown in several tumor entities [78, 79]. Moreover, the FDG uptake visualized via PET might

be influenced by very complex interactions of the tumor microenvironment, including inflam-

matory cells, extracellular matrix, microvessel density and other factors. This might be some

reasons of the identified results in the present analysis.

Interestingly, the correlations between GLUT 1 and SUVmax varied significantly in differ-

ent tumors. As seen, it was strong in cervical and pancreatic cancers, moderate in hepatocellu-

lar carcinoma, esophageal cancer and NSCLC, and weak in HNSCC, colorectal cancer,

endometrial carcinoma and papillary thyroid cancer.

The exact cause of this phenomenon is unclear. Presumably, the above discussed complex

interactions of tumor microenvironment differ between tumor types and might also influence

the investigated linear association between GLUT expression and SUVmax.

For other tumor entities, such as gastric cancer, renal cell carcinoma, or urothel carcino-

mas, to date, there are no reports regarding associations between SUVmax and GLUT 1 or 3.

According to the literature, GLUT expression is not only specific for tumor cells. So GLUT

1 is also expressed on erythrocytes and immune cells, which induces FDG uptake also in

benign diseases, for example such as lung fibrosis [14] and lung inflammatory diseases [80].

However, the inflammatory tissues might express more less GLUT 1 and consecutively display

a lower SUV value than malignant tissues [81].

Moreover, a small amount of tumors might express less GLUT proteins and are, therefore,

negative on PET studies, which is a very important reason for false negativity of FDG-PET.

For example, this was shown in lymph node staging in lung cancer patients [82, 83]. Other rea-

sons for PET negativity are small tumor sizes and some good differentiated tumor types [84].

Furthermore, there are some tumor entities, which are inherently known to have a low FDG

uptake despite their malignant nature, such as bronchioalveolar cell carcinoma and lung carci-

noids, which is believed to be causes by none or low GLUT 1 expression [85]. Consecutively,

no tumors entities with such a behavior could be included into the present study.

Fig 6. Subgroup analyses for the correlation between SUVmax and GLUT 3 expression. Forrest plots of the correlation coefficients between

SUVmax and GLUT 3 in HNSCC and NSCCL subgroups.

https://doi.org/10.1371/journal.pone.0217781.g006

Associations between GLUT and FDG-PET
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In various studies, the important prognostic benefit of SUV values derived from PET was

elucidated in several tumor entities. For example, in lung cancer patients, a higher SUVmax

indicates poorer overall survival and local control as well as higher chance for distant metasta-

ses [86]. Similar results were reported for head and neck cancer [87], soft tissue sarcomas

[88], and breast cancer [89]. As another aspect, SUV values can guide to evaluate treatment

response, for example shown in breast cancer patients after neoadjuvant radio-chemotherapy

[90].

These findings are corroborated by recent meta analyses investigating the prognostic rele-

vance of GLUT 1 and GLUT 3 expression in tumors [91–95]. So, an overexpression of these

GLUT subtypes was overall associated with a poorer prognosis in various tumors, indicated by

a hazard radio of 1.63 for GLUT 1 and 1.83 for GLUT 3 [91]. This association can at last be

applied to pancreatic carcinoma, gastric cancers, colorectal carcinomas, esophageal cancer,

lung cancer, ovarian and uterine cancer, and oral squamous cell carcinoma [91–94]. For other

tumor entities data are still lacking. Presumably, the prognostic performance of FDG-PET and

GLUT expression might be linked by the associations between these parameters.

Furthermore, FDG-PET is associated with other histopathology parameters in tumors. For

example, SUVmax moderately correlated with proliferation index Ki67, and might therefore

be a surrogate parameter of the amount of proliferating tumor cells [96]. As another aspect,

SUVmax seems to be related to vessel density in tissues, as it was exemplarily shown for lung

cancer [97, 98].

Albeit the identified correlation between GLUT 1 and SUV were moderate, FDG-PET

might aid in treatment response evaluation of chemotherapy targeting hypoxia-inducible fac-

tor 1 alpha, which is one of the most important mediator of metabolic gene expression includ-

ing GLUT 1 [15, 16, 99–101]. Preclinical studies also elucidated the possibility of direct GLUT

1 targeting for tumor treatment, which might also be evaluated by FDG-PET. However, clini-

cal studies are needed to proof, whether FDG-PET is capable in reflecting these treatment

changes.

Moreover, FDG-PET might assess metastatic potential of tumors due to its capability to

reflect the mentioned metabolic alteration, as was stated in a preclinical study [102].

There are several limitations of the present analysis to address. Firstly, most involved stud-

ies were of retrospective nature with inherent known shortcomings of this study design. More-

over, only papers published in English were included. There might be suitable papers in other

languages, which were therefore not included. Secondly, different PET scanners, imaging pro-

tocols and ROI-analyses were used, which might have an influence on the correlation analysis.

Thirdly, GLUT expression was estimated upon histopathology specimens, which might not be

representative of the whole tumor, whereas SUVmax derived from PET represents a small area

of the tumor with the highest glucose metabolism. Therefore, there might be incongruences

between imaging and histopathology. Fourthly, only GLUT 1 and GLUT 3 could be included

into the present analysis due to the fact that other GLUT-subtypes have not previously been

investigated.

Conclusions

In summary, the present systematic review identified only a moderate association between

GLUT 1 expression and SUV values derived from FDG-PET. Moreover, the correlation

between SUV and GLUT 1 varied significantly in different tumors. SUV correlated

weakly with expression of GLUT 3. Presumably, the underlying mechanisms of glucose

hypermetabolism in tumors are more complex and not solely depended on the GLUT

expression.

Associations between GLUT and FDG-PET
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