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Simple Summary: Cancer cells accumulate genetic alterations that improve their proliferation,
survival, and migration capabilities. One of the most frequently altered signaling nodes in human
cancer is the PI3-kinase /PTEN pathway. Most therapeutic efforts thus far have focused on the
inhibition of PI3-kinase; however, a high proportion of tumors present an impaired activation of
PTEN. While in some cases this is due to PTEN loss or inactivating mutations, PTEN activity can also
be modulated by post-transcriptional modifications (PTMs). In this review, we discuss how these
different modifications affect PTEN activity, and propose strategies to modulate these PTMs as an
alternative approach for therapeutic treatment of PTEN-dependent tumors possessing at least one
wild-type allele.

Abstract: Phosphatidylinositol-3,4,5-triphosphate (PIP3) is a lipidic second messenger present at very
low concentrations in resting normal cells. PIP3 levels, though, increase quickly and transiently after
growth factor addition, upon activation of phosphatidylinositol 3-kinase (PI3-kinase). PIP3 is required
for the activation of intracellular signaling pathways that induce cell proliferation, cell migration,
and survival. Given the critical role of this second messenger for cellular responses, PIP3 levels must
be tightly regulated. The lipid phosphatase PTEN (phosphatase and tensin-homolog in chromosome
10) is the phosphatase responsible for PIP3 dephosphorylation to PIP2. PTEN tumor suppressor is
frequently inactivated in endometrium and prostate carcinomas, and also in glioblastoma, illustrating
the contribution of elevated PIP3 levels for cancer development. PTEN biological activity can be
modulated by heterozygous gene loss, gene mutation, and epigenetic or transcriptional alterations.
In addition, PTEN can also be regulated by post-translational modifications. Acetylation, oxidation,
phosphorylation, sumoylation, and ubiquitination can alter PTEN stability, cellular localization, or
activity, highlighting the complexity of PTEN regulation. While current strategies to treat tumors
exhibiting a deregulated PI3-kinase/PTEN axis have focused on PI3-kinase inhibition, a better
understanding of PTEN post-translational modifications could provide new therapeutic strategies to
restore PTEN action in PIP3-dependent tumors.
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1. Introduction

PTEN (whose gene is located on chromosome 10q23) was first identified in 1997 as
a phosphatase that is lost or mutated in several cancers [1,2]. PTEN is a 403-amino-acid
polypeptide containing an N-terminal phosphatase domain (185 residues) and a C2 domain
that mediates binding to the plasma membrane (see Figure 1). The N-terminal phosphatase
domain adopts an α-helix-enriched structure, whereas the C2 domain exhibits the typical
β-sheet structure of C2-domains [3]. At its very C-terminus, PTEN has a disordered
region named the C-terminal (CT)-tail, whose structure has not been resolved. Recently, a
173-amino-acid-longer PTEN-long form generated by alternative initiation of translation
has been reported; this 173aa N-terminal-tail permits PTEN-long to be secreted without
impairing its phosphatase activity [4,5].
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without impairing its phosphatase activity [4,5]. 

 
Figure 1. Phosphorylation at C2 domain residues can activate or inhibit PTEN; PTEN phosphoryla-
tion at the CT-tail is always inhibitory. The figure shows PTEN’s crystal structure (NCBI, 
https://www.ncbi.nlm.nih.gov/Structure/pdb/1D5R) [3], facing the plasma membrane (top), as well 
as a diagram showing PTEN’s domains (bottom). Two residues of the catalytic pocket are shown 
on the structure (in yellow). The different domains are indicated, as well as the Tyr (blue) or Ser/Thr 
(red) residues susceptible to phosphorylation (in the diagram and the structure). Phosphorylation 
might activate (residues indicated with an arrow) or inhibit (arrows ended with a line) PTEN activ-
ity. The kinases mediating PTEN phosphorylation are shown in the diagram. The N-terminal PIP2-
binding motif, as well as the CT-tail and the PDZ-binding domains, are only shown in the diagram 
(in grey), as these are not resolved in the structure. Likewise, CT-tail inhibitory phosphorylation 
sites are shown only in the diagram. 

The high number of loss-of-function mutations in PTEN in cancer already suggests 
its tumor suppressor nature [1,2]. Several pieces of evidence have indicated that the tumor 
suppressor function of PTEN is related to its capacity to downregulate PIP3 levels [6,7]. 
Moreover, the similar phenotype of mice expressing an active allele of PI3-kinase on T 
cells [8] compared with that of mice showing PTEN loss in T cells [9] confirms a PIP3-
related PTEN tumor suppressor function in vivo. Despite its lipid phosphatase activity 
being the main component of PTEN’s tumor suppressor function, PTEN also exhibits pro-
tein phosphatase activity towards a few substrates [10,11]. Whereas cytoplasmic PTEN is 
primarily involved in regulating PIP3 levels at the membrane, nuclear PTEN exhibits 
phosphatase-independent tumor suppressive functions, e.g., regulation of chromosome 
stability, DNA repair, and apoptosis [12,13]. 

Figure 1. Phosphorylation at C2 domain residues can activate or inhibit PTEN; PTEN phosphorylation
at the CT-tail is always inhibitory. The figure shows PTEN’s crystal structure (NCBI, https://www.
ncbi.nlm.nih.gov/Structure/pdb/1D5R) [3], facing the plasma membrane (top), as well as a diagram
showing PTEN’s domains (bottom). Two residues of the catalytic pocket are shown on the structure
(in yellow). The different domains are indicated, as well as the Tyr (blue) or Ser/Thr (red) residues
susceptible to phosphorylation (in the diagram and the structure). Phosphorylation might activate
(residues indicated with an arrow) or inhibit (arrows ended with a line) PTEN activity. The kinases
mediating PTEN phosphorylation are shown in the diagram. The N-terminal PIP2-binding motif, as
well as the CT-tail and the PDZ-binding domains, are only shown in the diagram (in grey), as these
are not resolved in the structure. Likewise, CT-tail inhibitory phosphorylation sites are shown only in
the diagram.

The high number of loss-of-function mutations in PTEN in cancer already suggests its
tumor suppressor nature [1,2]. Several pieces of evidence have indicated that the tumor
suppressor function of PTEN is related to its capacity to downregulate PIP3 levels [6,7].
Moreover, the similar phenotype of mice expressing an active allele of PI3-kinase on T
cells [8] compared with that of mice showing PTEN loss in T cells [9] confirms a PIP3-
related PTEN tumor suppressor function in vivo. Despite its lipid phosphatase activity
being the main component of PTEN’s tumor suppressor function, PTEN also exhibits
protein phosphatase activity towards a few substrates [10,11]. Whereas cytoplasmic PTEN
is primarily involved in regulating PIP3 levels at the membrane, nuclear PTEN exhibits
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phosphatase-independent tumor suppressive functions, e.g., regulation of chromosome
stability, DNA repair, and apoptosis [12,13].

Focusing on PIP3 regulation, in mammalian genomes, up to eleven genes encode
for different isoforms of the catalytic and regulatory subunits of PI3-kinase [14], whereas
mainly one gene product, PTEN, reduces PIP3 levels. As a consequence, cells must have
different molecular mechanisms available to modulate the activity of PTEN.

PTEN is frequently altered at the genetic level, and either somatic alterations (e.g., in
tumor cells) or germline mutations have been described. The latter are responsible for a
spectrum of clinical syndromes collectively known as PTEN Hamartoma Tumor Syndrome
(PHTS). PHTS patients develop multiple benign tumors and have an increased lifetime
risk of developing cancer, especially breast, thyroid, kidney, and endometrial cancers [15].
PTEN somatic alterations include gene mutation and gene loss; loss of heterozygosity is
observed at high frequencies in cancer cells, while homozygous deletion is also detected but
at lower rates. PTEN-heterozygous mice develop tumors in various organs showing PTEN
haploinsufficiency; while the loss of the wild-type allele was frequently observed in mouse
lymphomas [16], this allele is retained in other tumor types such as thyroid or colon [17].
Furthermore, in a mouse model of prostate cancer, haploinsufficiency of the Pten gene leads
to increased rates of tumor progression, without evidence of mutations in the retained
Pten allele; this is similar to the situation in many human prostate cancers [18]. Retention
of a WT allele is essential for the success of novel cancer therapies directed to restore
PTEN activity in tumors, for example, targeting PTEN post-translational modifications as
discussed below.

Somatic PTEN mutations occur with a wide range of frequencies in sporadic tumors,
with the highest frequencies observed in endometrial carcinomas and multiform glioblas-
toma. PTEN genetic alterations have also been reported in lymphoid malignancies, mainly
in diffuse large B-cell lymphoma and T-cell acute lymphoblastic leukemia [19]. In pediatric
cancer, PTEN deficiency is a common defect in juvenile myelomonocytic leukemia (JMML),
with more than 65% of patients presenting a decrease in PTEN protein levels that corre-
lates with PTEN promoter hypermethylation [20]. JMML disease often involve GM-CSF
hypersensitivity and hyperactivation of the Ras pathway; while driver mutations in Ras
or Nfl1 are responsible of the initialization of this process, the timing of PTEN loss might
determine the disease severity [21].

In addition to genetic alterations, PTEN protein levels can be regulated by the epige-
netic silencing of PTEN, post-transcriptional regulation by non-coding RNAs, and post-
translational modifications. The use of PTEN hypomorphic mouse models has revealed that
subtle variations in PTEN expression can have a dramatic effect on cancer progression [22].

Apart from PTEN being regulated at the genetic and epigenetic levels, a number of
post-translational modifications are effective in inducing rapid and transient alterations
in PTEN architecture, localization, and activity. These modifications include acetylation,
oxidation, methylation, ribosylation, nitrosylation, phosphorylation, sumoylation, and
ubiquitination (Table 1). Here, we revisit the consequences for PTEN phosphatase activity of
exhibiting each of these modifications with a special focus on phosphorylation, sumoylation,
and ubiquitination.
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Table 1. Summary of PTEN post-translational modifications showing their impact on PTEN stability
or phosphatase activity and possible strategies to target these modifications.

Residue PTM Biological Outcome Possible Intervention

En
ha

nc
in

g
ac

ti
va

ti
ng

PT
EN

PT
M

s

K163 Acetylation Translocation to plasma membrane and
increased phosphatase activity HDAC6 inhibition

T232, T321, S229, T319 Phosphorylation Translocation to plasma membrane and
increased phosphatase activity ROCK activation

K266 Sumoylation Association to plasma membrane and
increased phosphatase activity

SUMO-specific
protease inhibition or

activation of specific E3
ligase

Y336 Phosphorylation Increased PTEN protein stability Rak or FAK activation

In
hi

bi
ti

ng
in

ac
ti

va
ti

ng
PT

EN
PT

M
s

S362, S366 Phosphorylation Increased stability and reduced PTEN
phosphatase activity GSK3 inhibition

S380, T382, T383, S385 Phosphorylation Increased stability and reduced PTEN
phosphatase activity

Casein Kinase 2
inhibition

C124 Oxidation Reduced PTEN phosphatase activity Use of antioxidants

K1, K289 Ubiquitination PTEN degradation NEDD4.1 or
proteasome inhibition

Undetermined residues
in phosphatase domain Ubiquitination PTEN degradation WWP2 or proteasome

inhibition

K221 Ubiquitination PTEN degradation FBXO22 or proteasome
inhibition

K342, K344 Ubiquitination Reduced PTEN phosphatase activity Indole 3 carbinol
Multiple lysines in C2

domain Ubiquitination Reduced PTEN phosphatase activity TRIM27 or USP7
inhibition

2. PTEN Ribosylation, Nitrosylation, and Methylation

Perhaps the least studied PTEN PTM is ADP-ribosylation (the addition of one or more
ADP-ribose moieties to a protein). PTEN is a substrate for tankyrases, members of the
poly(ADP-ribose) polymerase (PARP) family. Once ribosylated, PTEN is ubiquitinated by
RNF146, a PAR-binding E3 ubiquitin ligase, and degraded by the proteasome. Accordingly,
the depletion of tankyrases TNK1 and TNK2 in HCT116 cells results in PTEN stabilization
and a reduced tumor xenograft growth [23].

PTEN can also be regulated in response to oxidative stress, both S-nitrosylation—a
covalent modification of cysteine residues by nitric oxide (NO)—and oxidation—mediated
by reactive oxygen species (ROS)—affect PTEN enzymatic activity and stability. The high
abundance of ROS in cancer cells leads to PTEN oxidation: a covalent disulfide bond
is formed between the critical cysteine 124 in the catalytic pocket and the neighboring
C71 which results in PTEN inactivation [24,25]. As for S-nitrosylation, low NO levels
promote the selective S-nitrosylation of PTEN at C83, inhibiting PTEN activity and therefore
triggering Akt signaling [26]. Nitric oxide can also impact on PTEN stability as neuron
treatment with NO donors enhanced PTEN ubiquitination and proteasomal degradation; it
is not clear whether this destabilization is a direct consequence of PTEN nitrosylation or if
it is caused by other cellular signals triggered by NO [27].

PTEN methylation has only recently been reported; an in vitro methyl transferase
assay revealed that the lysine methyltransferase SYMD2 methylated PTEN K313. This
methylation reduces PTEN activity [28]. R159 is methylated by protein arginine methyl-
transferase 6 (PRMT6), this methylation is essential for the lipid phosphatase activity of
PTEN. Supporting the key role of this modification in PTEN tumor suppressor activity,
methylation-deficient R159K mutations have been found in several tumor types [29]. Fi-
nally, methylation also regulates PTEN nuclear functions after genotoxic stress; NSD2
(nuclear SET domain-containing protein)-mediated methylation of K349 is involved in
PTEN recruitment to DNA damage sites and is required for efficient repair of DNA double-
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strand breaks. This methylation therefore regulates cells’ sensitivity to DNA-damaging
agents, including chemotherapeutics and radiotherapeutics [30].

3. C-Terminal Phosphorylation Closes PTEN

Phosphorylation is an important mechanism to regulate PTEN phosphatase activity.
PTEN has a cluster of phosphorylation acceptor sites in the CT-tail that are substrates for
different kinases, e.g., RhoA-associated kinase (ROCK) [31], glycogen synthase 3β (GSK3β),
and casein kinase 2 [32,33]. These phosphorylations affect PTEN in different ways.

During directed cell migration, both Rho family GTPases and PIP3 play crucial roles.
Whereas Rho GTPases regulate F-actin polymerization and actin–myosin contractility,
PIP3 localization at the leading edge is crucial to concentrate F-actin-rich lamellipodia
and filopodia in this area [34]. In addition to controlling cell rear retraction during cell
migration, RhoA regulates PTEN physical localization at the cell rear, thus restricting PIP3
accumulation to the leading edge. This mechanism involves the association of ROCK with
PTEN, and ROCK-induced PTEN phosphorylation in four sites located in the C2 domain
(S229, T232, T319, and T321; see Figure 1); these phosphorylations induce PTEN activation
and translocation to the plasma membrane [31].

Apart from the C2 domain residues, the CT-tail of PTEN is phosphorylated at Ser370
and in a serine/threonine cluster (S380, T382, T383, and S385) (Figure 1). Both GSK3β and
casein kinase 2 have been shown to modify these residues [32,33]. The phosphorylation
of the serine/threonine cluster is required to maintain PTEN stability, as the mutation of
these residues to alanine reduced PTEN half-life [35]. The phosphorylation of the CT-tail
also contributes to the modulation of PTEN function, as it reduces PTEN phosphatase
activity [36]. When the CT-tail is phosphorylated, PTEN adopts a closed conformation
involving intra-molecular interactions that prevent association with other proteins and
the plasma membrane [36,37]. On the contrary, when dephosphorylated, PTEN adopts an
open/active conformation [36,37]. Although here discussed as a globally phosphorylated
or dephosphorylated CT-tail, partial reductions in the phosphorylation of individual Ser or
Thr residues in the CT-tail may also impair PTEN enzymatic activity [38].

The very C-terminus (residues 400 to 403) of PTEN mediates association with several
proteins containing PDZ domains, such as MAGI-2 and MAGI-3 that enhance PTEN activity
and localization to plasma membrane [39]. The CT-tail phosphorylation-less T382A/T383A
mutant was unstable but exhibited enhanced PTEN binding with MAGI-2 and with the cell
membrane [39]. Taken together, these data suggest that C-terminal phosphorylation regu-
lates PTEN’s open/closed conformations, its binding to MAGI proteins, and its capacity to
be activated at the cell membrane.

Other Ser/Thr PTEN phosphorylations do not affect its phosphatase activity, e.g., ATM-
induced PTEN phosphorylation at Ser113 (in response to DNA damage) that promotes
PTEN translocation to the nucleus and induces cell autophagy [40], or ATM phosphoryla-
tion at S398 which reduces the nuclear localization of PTEN (when previously sumoylated
on K254, see below) [41]. ATM PTMs are not included in Figure 1.

PTEN can also be phosphorylated at Tyr residues, e.g., phosphorylation of Tyr240
and Tyr315 by Src reduces PTEN interaction with the plasma membrane and its activ-
ity, resulting in increased PI3-kinase/AKT activation [42,43] (Figure 1). FGFR2 can also
phosphorylate PTEN at Y240, this phosphorylation is frequent in glioma patients with
high PTEN and FGFR2 expressions. The irradiation of glioma cells increases pY240-PTEN
nuclear localization and promotes chromatin decondensation. Enhanced chromatin accessi-
bility facilitates homologous recombination DNA repair. This mechanism is independent
of PTEN phosphatase activity and could be responsible for the therapeutic resistance to
radiotherapy observed in a high proportion of glioma patients [44,45].

Src-mediated PTEN phosphorylation at Tyr155 also affects PTEN susceptibility to
ubiquitination by WWP2 [46]. Finally, the Src kinase Rak phosphorylates PTEN at Y336;
this phosphorylation increases PTEN stability [47]. The stability of PTEN is regulated
by E3 ligase NEDD4.1-induced polyubiquitination, followed by proteasomal degrada-
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tion [48]. Without Rak, the complex NEDD4.1–PTEN increases, which in turn increases
PTEN polyubiquitination/degradation. Rak-phosphorylation of Y336-PTEN reduces the
NEDD4.1–PTEN complex, promoting PTEN stability. Phosphorylation of Tyr336 can also
be mediated by PTK2/FAK [49] (Figure 1).

4. Acetylation Might Activate or Inactivate PTEN

Another well-established post-translational modification is lysine acetylation. Acety-
lation was first described for histones, but in recent years more than 100 non-histone
proteins have been shown to be acetylated [50]. Protein acetylation is regulated by lysine
acetyltransferases and deacetylases. PTEN associates with the acetyltransferase PCAF
(p300/CBP-associated factor) in a growth-factor-dependent manner [51]. This association
results in the acetylation of Lys125 and 128 in the PTEN catalytic domain. The acetylation
of Lys125 and 128 in the catalytic pocket vicinity inactivates PTEN [51] (Figure 2). In
contrast, the acetylation of Lys163 in the final region of the phosphatase domain enhances
PTEN translocation to the plasma membrane and its phosphatase activity, as it impairs the
intramolecular interactions that keep PTEN in a closed conformation [52]. Accordingly, the
inhibition of HDAC6 histone deacetylase increased K163 acetylation, PTEN translocation to
the membrane, and PTEN activity. K163 increased acetylation by treatment with HDAC in-
hibitors, reduced active pAKT levels, and impaired tumor growth in WT-PTEN-expressing
cells compared to (acetylation-resistant) PTEN-K163R-expressing cells [52].
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are as in Figure 1. Post-translational modifications (PTMs) are indicated in different colors (codes
along the bottom). PTMs activate (indicated with an arrow) or inhibit (arrows ended with a line)
PTEN activity. The effect of some PTMs on PTEN is unknown (arrows without end). The enzymes
regulating PTEN PTMs are indicated in the diagram. Most PTMs shown are inhibitory, as only Lys163
acetylation and Lys266 sumoylation increase PTEN action. The N-terminal PIP2-binding motif, as
well as the C-terminal (CT)-tail and PDZ binding domains, are shown only in the diagram (in grey),
as they are not resolved in the structure, i.e., neither K13 nor K402 PTMs are shown in the structure;
R14 is indicated on the structure to offer an idea of where K13 localizes. The region including K289
is also unresolved and not shown on the structure. The residues modified by WWP2 or cCBL are
presently unknown, these E3 ligases and the multiple residues modified by TRIM27 are shown in the
bottom part of the diagram.

PTEN is also acetylated at Lys402 by CBP; Lys402 is localized in the PDZ domain-
binding motif at the very C-terminal end of the protein [53] (Figure 2). This motif is
involved in the interaction of PTEN with MAGI-2, MAGI-3, and hDLG [54,55], which
as mentioned above modulates PTEN binding to the membrane. Mutation analysis has
demonstrated that the acetylation of PTEN Lys402 increased the interaction with the PDZ
domains of hDLG and MAGI-2, without significantly affecting PTEN phosphatase activity
or subcellular localization [53]. Taken together, of the four residues modified, the enhanced
acetylation of Lys163 by the inhibition of deacetylase HDAC6 seems to be a good approach
to increase PTEN activity.

5. Sumoylation Brings PTEN to the Membrane

SUMO (small ubiquitin-related modifier) is a 10 kDa polypeptide that is reversibly
attached to lysine residues, modifying protein characteristics such as activity, stability, and
localization. Sumoylation requires an E1-activating enzyme, an E2-conjugating enzyme,
and an E3 SUMO ligase (although sumoylation can be achieved without an E3) [56–58].
In humans, there are four different SUMO proteins; the SUMO2 and 3 proteins are highly
related and, in some cases, are conjugated to different protein targets than SUMO1. The role
of SUMO4 has not yet been clearly established [57]. Whereas SUMO1 only binds to its sub-
strates once, SUMO2 and 3 form large sumoylated branches in their target molecules [57].
A single E1-activating enzyme (SAE1/SAE2 heterodimer), a single E2-conjugating enzyme
(Ubc9), and several E3 ligases mediate SUMO conjugation to Lys residues [57]. Apart from
the covalent binding of a SUMO polypeptide to a protein substrate, protein sumoylation is
regulated by desumoylases—cysteine proteases that are also referred as SUMO-specific
proteases—of which the mammalian genome has six different variants [59].

In the case of PTEN, sumoylation assays in vitro show that this protein can be mod-
ified by SUMO1 and SUMO2/3 polypeptides at several (predicted) lysine residues. The
mutation of K254, K266, or K289 (located in the C2 domain of PTEN) (Figure 2) to alanine
resulted in a reduction in PTEN sumoylation, suggesting that these residues are indeed
SUMO acceptors [60,61]. Sumoylation might facilitate PTEN association with the plasma
membrane, as demonstrated in the case of SUMO1 modification of K266 [61]. Since this
lysine is located within the C2 domain, it is possible that SUMO binding blocks the in-
tramolecular interactions of the C2 domain with the C-terminal region of PTEN, favoring
the PTEN open conformation and its association with the plasma membrane [60,61]. Addi-
tionally, molecular dynamics simulations indicate that the SUMO1 modification of PTEN
presents an electropositive surface that could facilitate its interaction with the negatively
charged membrane phospholipids [61]. Although, K254, K266, and K289 can be linked to
SUMO1, only the modification of K266 is crucial for PTEN association with the plasma
membrane and correlates with increased PTEN activity [61]. It has been shown that PTEN
binding to PIP2 in the membrane triggers an allosteric activation of the phosphatase [62];
PTEN allosteric activation could account for the increase in the activity of K266-sumoylated
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PTEN. In contrast, sumoylation of PTEN K254 is critical for PTEN’s action in maintaining
genomic stability in the nucleus [41].

Although it is clear that sumoylation is key for the regulation of PTEN localization and
activity, more work is needed to determine the enzymes involved in this modification, and
whether the conjugation of SUMO1 or SUMO2/3 have different impacts on PTEN function.
Nonetheless, the enhanced sumoylation of K266 by the inhibition of desumoylases or
interference with particular E3 ligases which increase K266 sumoylation could help to
rescue PTEN phosphatase activity.

6. PTEN Ubiquitination

Ubiquitination is a key post-translational modification regulating PTEN action. Ubiq-
uitination might regulate its catalytic activity, degradation, and subcellular localization.
Covalent binding of ubiquitin (8.6 kDa) to a Lys residue on a protein substrate requires the
contribution of an E1-activating enzyme, an E2-conjugating enzyme, and an E3 ubiquitin
ligase. Ubiquitination involves the formation of an isopeptide bond between the carboxyl
terminus of the ubiquitin and the amino group of the Lys side chain in a substrate [63]. Lin-
ear polyubiquitins might also be formed by amide bonds formed between the C-terminal
residue of ubiquitin and the N-terminal methionine of the next ubiquitin [64]. Finally,
ubiquitin itself has seven lysine residues, which can act as acceptors for additional ubiq-
uitin ligations, generating polyubiquitin branched chains [65]. Whereas Lys 48-linked
polyubiquitin directs substrate proteins for proteasomal degradation (this ubiquitin linkage
exhibits a higher affinity for the proteasome) [66], the majority of non-proteolytic functions
of ubiquitination are associated with Lys 63-linked ubiquitin polymers [64,65,67,68].

Many E3 ubiquitin ligases have been identified in the human genome (377 different
genes, thus far). E3 ubiquitin ligases can be classified into three major groups, HECT,
RING, and U-box E3; each of these possesses a distinct domain composition and protein
interaction region to bind to the E2 ligase [69,70]. Within RING E3 ligases, there are also
two types: simple RING-finger E3s and the SKP1–Cullin–F-box (SCF) complex E3 ligases
(also named Cullins) [69]. Similar to the case of protein sumoylation, ubiquitination is
antagonized by deubiquitinating enzymes (DUBs, approximately 100 found in the human
genome) [71].

In the case of HECT E3 ligases, three have been shown to ubiquitinate PTEN in vitro
(WWP1, WWP2, and NEDD4.1), although with different consequences. NEDD4.1 mediates
ubiquitination of PTEN Lys298 and Lys13, promoting PTEN translocation to the nucleus,
which correlates with PTEN inactivation [72]. WWP2-mediated ubiquitination induces
PTEN degradation [46,73]. Studies on WWP1′s mechanism of action on PTEN suggest that
WWP1-mediated non-canonical K27-linked ubiquitination at Lys342 and Lys344 interferes
with PTEN dimerization and localization to plasma membrane [74]. PTEN dimerization
is important for the regulation of its enzymatic activity [75]. WWP1 expression levels are
driven by MYC, and WWP1 regulation of PTEN is therefore particularly important in
tumors harboring MYC amplification [74]. In the case of WWP1-mediated PTEN inactiva-
tion, the inhibition of WWP1 action by indole-3-carbinol, or by any other means, has been
proposed as a mechanism for PTEN reactivation for MYC-driven tumors [74].

There are other PTEN ubiquitin E3 ligases such as TRIM27 (RFP), a member of the
tripartite motif (TRIM) E3 family, containing a conserved motif collectively called RBCC,
which includes a RING finger (R), a B-box zinc finger (B), and a coiled-coil (CC) domain.
TRIM27 induces a non-canonical K27-linked ubiquitination of PTEN at multiple residues
(Figure 2). These PTMs do not affect PTEN stability or cellular localization but reduce its
activity, promoting an increase in AKT phosphorylation and a reduction in apoptosis [76].
F-box-only protein 22 (FBXO22), which is part of the SCF (SKP1–Cullin1–F-box) family
of RING-E3 ligases, catalyzes the ubiquitination of nuclear PTEN at Lys221, inducing
nuclear PTEN degradation. The role of FBXO22 as a tumor driver is supported by the
frequent overexpression of this protein in cancer, and by xenograft models, where FBXO22
expression promotes tumorigenesis by degradation of nuclear PTEN [77].
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cCBL is a RING E3 ligase that modifies EGFR (epidermal growth factor receptor) and
promotes its internalization; cCBL binds to PI3-kinase regulatory subunits [78–80]. The
incubation of normal cells with growth factors (e.g., serum or EGF) shows that a fraction of
PTEN is constitutively associated to EGFR, but EGF addition induces a transient PI3-kinase
and cCBL translocation to EGFR [78]. In parallel, the activation of normal cells induces
complementary oscillations of PI3-kinase/AKT and PTEN activities shortly after cell ac-
tivation [78]. An analysis of whether PTEN activity oscillations could be linked to PTMs
indicated that PTEN inactivation coincides with an increase in its ubiquitination, while
PTEN reactivation concurs with an increase in sumoylation [78]. Both processes were abro-
gated by cCBL depletion, which flattened both PTEN and AKT activity fluctuations [78].

Other observations support that PTEN ubiquitination and sumoylation could be
linked; PTEN Lys266 and Lys289 can be both ubiquitinated and sumoylated, suggesting that
ubiquitin and SUMO can compete for the same acceptor lysine [60]; a similar competition
of ubiquitination and sumoylation was also observed in IκB [81]. This crosstalk between
sumoylation/ubiquitination in PTEN was reinforced by the observation that PIASxα is
a SUMO E3 ligase for PTEN. PIASxα-dependent sumoylation results in reduced PTEN
ubiquitination, therefore increasing PTEN stability [82].

The variety of ubiquitin ligases that have been described to be involved in PTEN
ubiquitination suggests that different mechanisms regulate this process (Figure 2). To
characterize these mechanisms, it is useful to know which PTEN Lys residues are modified
by each E3 ligase; this is not the case for cCBL or WWP2 (Figure 2). Several limitations
make this characterization by mass spectrometry (ME) difficult. A low proportion of all the
cellular PTEN is ubiquitinated, yielding a low amount of ubiquitinated peptides among
all PTEN peptides. Additionally, ubiquitinated residues might deubiquitinate during
sample processing, but the inclusion of deubiquitinase inhibitors affects the transient
nature of AKT and PTEN oscillations [78]. Another limitation is the high number of Lys
and Arg residues unevenly distributed in PTEN, generating many small tryptic peptides
(i.e., the one encompassing K13) or some very long tryptic peptides (i.e., the one containing
K298), that are undetectable by ME. Some authors have included mutations in PTEN
to make long peptides shorter (i.e., in the K298-containing peptide [72]), while others
define the modified Lys by mutating each candidate Lys and examining whether there is a
reduction in the PTEN-ubiquitination level [77]. The latter could be a reasonable approach
to identify WWP2 or cCBL target lysines in PTEN. Thus, from this section, it is concluded
that a selective reduction in PTEN ubiquitination with particular E3-ligase inhibitors or by
selective activation of DUBs might help to recover PTEN activity.

7. Enhancing PTEN Activating Modifications

Both cancer patients and PHTS patients exhibit frequent mutations in the PTEN
gene [1,2,83]. A number of strategies aimed to reduce PI3-kinase pathway activity in
PTEN-mutation-containing tumors have been conducted [84]. As PIP3 increases at the
plasma membrane and activates the AKT/mTOR pathway, compounds inhibiting PI3-
kinase, AKT, and mTOR have been tested in the clinic. Sirolimus, an mTOR inhibitor, has
shown promising results for PHTS patients, with improvement in skin and gastrointestinal
lesions [85]. For solid tumors, in addition to these treatments, everolimus and temsirolimus
have been approved by the FDA for some tumor types, and other similarly acting com-
pounds are in clinical trials [86]. Nonetheless, as mTORC1 inhibition impairs downstream
S6K activation, it blocks the S6K-mediated PI3-kinase inactivation pathway, resulting in the
reactivation of the PI3-kinase/AKT signaling pathway and limiting its clinical use. Here,
we consider an alternative approach for patients in which at least one of the PTEN alleles is
wild type (PHTS and cancer patients), and propose PTEN reactivation by the modulation
of post-translational modifications as a mechanism to reduce cellular PIP3 levels.

The major challenge of this approach is to prove that interference with PTEN modifi-
cations does not affect the function of other cellular proteins; a thorough preliminary study
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is needed for each novel approach to show whether or not it is possible to selectively affect
PTEN, without altering other essential cellular proteins/responses.

Very few modifications activate PTEN, these could be enhanced in different cancer
models (with at least one WT PTEN allele) to examine whether active-AKT levels and
tumor growth (in 2D or 3D) are reduced. Activating modifications include Rak and FAK-
mediated Y336 phosphorylation and ROCK-induced phosphorylation of the C2 domain
residues S229, T232, T319, and T321 (Figure 3). Increases in Rak, FAK, or ROCK activity,
or a reduction in the phosphatases affecting these modifications, would render a global
increase in these residues’ modification, in principle increasing PTEN activity. The other
two modifications shown to enhance PTEN activity are Lys163 acetylation and Lys266
sumoylation. In the case of Lys163, HDAC6 inhibitors have been shown to increase Lys163
acetylation, and could be tested in different models (Figure 3).
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Figure 3. Strategies to modulate PTEN phosphatase activity. PTEN enzymatic activity in tumoral
cells could be modulated by interfering with post-translation modifications. This could be achieved
using strategies that either enhance PTEN-activating PTMs (upper PTMs on the left side of the figure)
or inhibiting those PTMs that result in reduced PTEN phosphatase activity (lower PTMs in the
PTEN scheme). Both interventions will increase PTEN’s capacity to dephosphorylate PIP3, therefore
promoting reduced Akt activation and impaired tumor survival.

In the case of Lys266, more studies are needed to dissect the specificity of the sumoyla-
tion machinery in order to explain why Lys266, 254, or 289 are modified in different settings,
each with different consequences. Previous studies have shown that the expression of
a SUMO1–PTEN fusion protein and the depletion of SENP1 (SUMO-specific protease)
increases PTEN localization at the plasma membrane and reduces both the active-AKT
levels and the growth of PC3 cells [61]. The enhancement of Lys266 sumoylation might be
attained by the addition of a selective SUMO-specific protease inhibitor, or by the activation
of the appropriate E3 ligase, if this were to be defined.

8. Reduction in Inhibitory PTEN Post-Translational Modifications

Most of the PTMs examined here are inhibitory, including casein kinase 2-mediated
phosphorylation of the Ser/Thr cluster (S380, T382, T383, and S385) at the PTEN CT-tail,
and the GSK3β-induced phosphorylation of S362 and S366. Both modifications are required
to maintain PTEN stability and the PTEN closed conformation. In this case, the recovery
of PTEN activity could be achieved using selective inhibitors for these modifications. A
potential strategy could be an in silico structure-based virtual screening of chemical libraries
trying to find molecules that dock at these particular residues. PTEN oxidation also reduces
PTEN phosphatase activity; the use of antioxidants could lead to the recovery of PTEN
enzymatic activity (Figure 3).
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With the exception of cCBL-mediated ubiquitination, which blocks both PTEN activa-
tion and deactivation, all the ubiquitination events revisited here act to inactivate PTEN
either by promoting its degradation (WWP2, NEDD4.1, FBXO22) or by altering PTEN
activity (TRIM27, WWP1). For the first group, blocking the proteasome or the different
E3 ligases might be an appropriate strategy to stabilize/reactivate PTEN. In the case of
TRIM27 and WWP1, they both inactivate PTEN by inducing a non-canonical K27-linked
ubiquitination; if it was possible to selectively block K27-linked ubiquitination, this could
help to protect PTEN activity. Alternatively, TRIM27 or WWP1 inhibitors could also be
used to recover PTEN activity. The inhibition of WWP1 by indole-3-carbinol does trigger
PTEN reactivation and is proposed as a therapeutic strategy for MYC-driven tumors [74].

TRIM27 is overexpressed in several common human tumors [87]. This ubiquitin ligase
forms a complex with MAGE-L2 and ubiquitin-specific protease 7 (USP7). USP7 counteracts
TRIM27 autoubiquitination, preventing its proteasomal degradation [88]. Nonetheless,
USP7 targets other cellular proteins including p53, MDM2, and MDMX (negative regulators
of p53) [89]. USP7 inhibitors are currently being developed by pharma companies and some
have shown promising results in preclinical models in a p53-dependent manner [90–92].
USP7 inhibitors also mediate p53-independent effects, and these might rely on PTEN [93].
Since USP7 inhibitors destabilize TRIM27 [94], they should be effective in reducing TRIM27-
induced PTEN ubiquitination and inactivation [76]. Therefore, TRIM27 destabilization
by USP7 inhibitors should help in maintaining active PTEN. The potential effect of USP7
inhibitors on PTEN-dependent tumors needs to be studied.

9. Conclusions

Considering that PTEN loss-of-function causes PHTS and promotes cancer progression
in tumors such as glioblastoma, with insufficient therapeutic armamentarium, it is necessary
to delve into testing the potential of PTEN modifications as targets for PTEN reactivation.
The challenge is not easy but might be worth trying given the global impact of the diseases
caused by PTEN loss-of-function.
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