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GDC 2: Compression of large 
collections of genomes
Sebastian Deorowicz1, Agnieszka Danek1 & Marcin Niemiec2

The fall of prices of the high-throughput genome sequencing changes the landscape of modern 
genomics. A number of large scale projects aimed at sequencing many human genomes are in 
progress. Genome sequencing also becomes an important aid in the personalized medicine. One 
of the significant side effects of this change is a necessity of storage and transfer of huge amounts 
of genomic data. In this paper we deal with the problem of compression of large collections of 
complete genomic sequences. We propose an algorithm that is able to compress the collection of 
1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is 
offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the 
data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows 
storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human 
genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of 
uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.
php?page=projects&project=gdc&subpage=about.

The genome sequencing technology has recently become so cheap that it started to be considered as a 
useful tool in medicine. Companies like Illumina offer whole human genome sequencing for medical 
purposes for five thousand U.S. dollars1. There are also large scale projects designed to find the common 
differences between individual genomes. One of the most famous is the 1000 Genome Project2 which 
aims at sequencing the genomes of several thousand humans and determining the genetic variants with 
at least 1% frequency. There are, however, even broader attempts for human genome sequencing, to 
mention the UK10K project3, the Personal Genomes Project4, and the Million Veteran Project (MVP)5. 
The planned number of sequenced genomes are 10 K, 100 K, and 1 M, respectively. Large collections of 
genomes are built also for other species. E.g., in the 1001 Genomes Project (1001 GP)6,7 about 1000 of 
genomes of Arabidopsis thaliana are to be sequenced.

The sequencing is of course challenging, but due to the large amounts of produced data, the pure 
storage and transfer of the results becomes a challenge too. The recent papers8,9 show that the IT costs are 
(or will be soon) comparable to the sequencing costs. Due to the slow progress in reducing the IT prices, 
the effective ways of representing genomic data in compact form are intensively investigated. Several 
subproblems can be identified here. The first is the compression of raw sequencing reads10–13 The second 
is the compression of reads after mapping onto reference genomes10,14,15. The third is the compression of 
results of variant calling16–18. The fourth is the compression of complete genomic sequences19–22. These 
subproblems are related, nevertheless require different approaches. The recent surveys discuss most of 
the existing algorithms9,23,24.

In this paper we deal with the last of the mentioned tasks, i.e., storage of collections of genomes. We 
propose Genome Differential Compressor 2 (GDC 2), a utility for compression of large sets of genomes 
of the same species. Since such genomes are highly similar, e.g., it was estimated that two humans have 
their genomes identical in 99.5 percent25, it is clear that when compressing a collection of genomes 
one can obtain better compression ratios than when compressing the sequences separately. Initially, the 
researchers tried to use the similarity between a sequence to be compressed and a reference sequence. 
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The first impressive result was by Christley et al.16. They showed that the description of differences 
between James Watson’s genome and the reference genome can be stored in as little as 4.1 MB. Taking 
into account that the complete haploid human genome is of size 3.1 Gbases, this translates to ~750-fold 
compression. This result was recently improved by Pavlichin et al.17 who reduced the space for the JW 
genome to about 2.5 MB (compression ratio ~1250).

Such large compression ratio was possible since the data were preprocessed, i.e., precise information 
of all variants were available. This is not always the case, as the genomes can be obtained in different 
experiments with different reference genomes or the genomes can be de novo assembled. In such situa-
tions the data to be compressed are collections of complete genomic sequences. This significantly com-
plicates the compression task, as the differences between sequences are not given explicitly; they have 
to be found, e.g., by multiple complete genome alignment, which is a very complex problem. Moreover, 
for technological reasons, the differences between de novo assembled genomes are usually larger than 
between the reassembled genomes.

Several papers for the problem of compression of collections of genomic sequences were  
published19,20,22,26,27. In majority of them, each single sequence is compressed separately, by identifying 
the differences between it and a single reference genome. This allowed to obtain compression ratios for 
human genomes up to 400, much poorer than ~1250 obtained by Pavlichin et al.17. This is the price for 
the lack of prior knowledge about the compressed data. The most successful attempts at obtaining higher 
compression ratios were possible by exploring the knowledge of similarities between more sequences in 
the collection. Since such approaches are the real competitors to the proposed algorithm, we will describe 
them a little more.

The first attempt in this direction was GDC-ultra19. It takes a single reference sequence and constructs 
a search structure (namely, hash table) for it. Then it compresses the first sequence of the collection by 
looking for similarities between this sequence and the reference. When the sequence is processed, it is 
used as an additional reference sequence for further sequences, so a separate search structure is con-
structed for it. The same is for the following sequences, so for example, the 25th input sequence of the 
collection is compressed by looking for the differences between it and: the main reference sequence, the 
formerly processed 24 sequences of the collection. The number of additional reference sequences is lim-
ited to 39 (for technical reasons only, mainly to keep the necessary amount of memory at a reasonable 
level). If the collection consists of more than 39 sequences, the 40th, 41st, etc. sequence is compressed 
with the 40 references only. The differences between the current sequence and the referential sequences 
is finally Huffman coded. Such approach proved to be promising, since the collection of 69 human 
genomes were compressed with ratio ~1000.

A different approach was used by Wandelt et al.21 in their FRESCO algorithm. They investigated 
several variants, and below we will describe the one that gave the best results. The collection is divided 
into two sets: (i) additional references, (ii) remaining sequences. FRESCO constructs a search structure 
(suffix tree) for the main reference sequence. Then it looks for similarities between the additional refer-
ence sequences and the main reference performing classical Ziv–Lempel parsing28 of additional reference 
sequences. As a result it obtains for each additional reference a sequence of triples (position in the main 
reference, length of the identical part, next symbol). For the Ziv–Lempel-parsed additional reference 
sequences a search structure (hash table) is built. After that FRESCO is ready to perform the compression 
of the remaining sequences from the collection. Each sequence is Ziv–Lempel-parsed against the main 
reference sequence. Then, the sequence of triples is compressed using the additional Ziv–Lempel-parsed 
reference sequences serving as the second-level reference. The obtained compression ratios are impres-
sive as they are approximately 3000 for the collection of about 1000 haploid genomes of the 1000 GP, 
when 70 additional reference sequences were used.

The best compression ratios for the genomic collection was obtained by TGC algorithm18. It is, how-
ever, from a different category, since as an input it takes a Variant Call Format (VCF)29 file describing 
the differences between genomes and the reference sequence, so it processes essentially the same data as 
Pavlichin et al.17. In this work we deal with complete genomes stored in FASTA format. In theory it is 
possible to convert FASTA files into VCF files, but it would require making a close to optimal alignment 
of many complete genomes (i.e., finding the smallest set of differences between these genomes), which is 
far from being trivial, especially due to a presence of long structural variants. Nevertheless, comparing 
the obtained results with TGC will be interesting, as it will allow us to see how far we are from the top 
algorithm for the similar problem. The main idea of TGC is to split the VCF file into two files. The first 
(dictionary of variants) stores a description of each variant (i.e., its type, position, alternative alleles, etc.). 
The second file stores the binary representation of presence/absence of each single variant in each single 
sequence. The bit vectors (one for each sequence) are compressed using a specialized Ziv–Lempel-based 
algorithm. The dictionary file is also compressed using a specialized algorithm. The compression ratios 
of TGC for the collection of 1092 diploid human genomes (when taking only 1 reference sequence) is 
about 15,500.

Methods
Definitions. For precise description of the proposed algorithm let us define some terms. As an input 
we have a single reference sequence R and a collection of genome sequences S={S1, S2, ..., Sn}. Each 
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sequence is composed of symbols from some alphabet Σ , i.e, = …S s s sk k k
S
k

1 2 k  for each 1 ≤  k ≤  n, where 

∈ Σsi
k  for each valid i and Sk  denotes the length of Sk. Also = …R r r r R1 2 , where ri ∈  Σ  for each valid 

i and R  denotes the length of R. For any sequence X (a reference or from the collection) Xi,j =  xixi+1…xj.
For the DNA sequences the alphabet should ideally contain only 4 symbols (A, C, G, T), but in 

practice N (unknown) symbols are quite frequent. Moreover, sometimes also other IUPAC codes appear. 
Thus in the work we assume only that the symbols are letters from the ASCII code (we also distinguish 
between lower- and uppercase letters).

Compression algorithm. At the beginning, the compression algorithm reads the reference sequence 
R and constructs a search structure HTR (namely, hash table with linear probing30) for it. The hash value 
is computed for each h1m-symbol long substring of R (h1m =  15 by default, but a different value can be 
specified by a user), i.e., for all Ri,i+h1m−1, where ≤ ≤ − +i R h1 1m1 . After that, the main processing 
of the collection  starts. The compression algorithm is two-level.

At the first level, we perform the Ziv–Lempel factoring of all sequences from the collection . This 
means that for each sequence Sk from  we produce a sequence Lk composed of tuples (the first symbol 
of a tuple, denoted as fx (where x indicates the type of the tuple), is an identifier, as it will become clear 
later in the text). To this end, we start from i =  1 and look for the longest common substring ,Si j

k  present 
in R. Since the search structure HTR contains substrings of length h1m it is not possible to find shorter 
matches. There are two possibilities here:

•	 No match of length at least h1m is found. Then, we append a tuple describing single symbol si
k, i.e., 

,f si
k

literal
 to Lk and update the current sequence position: i ← i +  1.

•	 Otherwise we have a match =, , + −S Ri j
k

p p j i of length j −  i +  1. We encode it by appending the tuple 
, , − +_ _f p j i 1match 1st lev

 to Lk. Then, we update the current sequence position: i ← j +  1.

There is, however, some exception to the general rule that no shorter than h1m symbols match can 
be found. Genomic sequences often differ by single nucleotide polymorphism (SNPs) or short indels (a 
few symbols long insertions or deletions). Thus, when some match is found, before looking for another 
match in R using the hash table HTR, we do 3 (or 5, depending on the user-specified option) simple 
verifications. We check whether the next symbol(s) after the current match is just a single nucleotide 
mutation or a single-symbol (or double-symbol) indel. We allow matches found after such variation to 
be of length h1e (equal to 4 by default). The rationale for such decision is two-fold. Firstly, it speeds up 
the searching as for the verification we do not need to query the hash table HTR. Secondly, such matches 
(even if they are short) can be quite efficiently encoded as the match position is easy to predict (encoding 
of Ziv–Lempel parsing results is described below). Thus, even if the sequence Lk will be longer when such 
short matches are allowed, the final compression ratio can be better.

At the second level, the algorithm performs a similar Ziv–Lempel factoring of the collection  
L = {L1, L2, ..., Ln} to obtain the collection D = {D1, D2, ..., Dn}. We will use here similar notations as for 
the sequences , i.e., li

k is the ith tuple of sequence Lk, ,Li j
k  is …+l l li

k
i
k

j
k

1 . Additionally we define the weight 
of a substring ,Li j

k  as the sum of weights of the tuples it is composed of, where the weight of a literal tuple 
is 1 and the weight of a match tuple is 7 (values chosen experimentally). A search structure HTL (namely, 
hash table with linear probing) is used here to look for matches in L. At the beginning HTL is empty, 
but we update it by adding the already processed sequences of L, i.e., when processing Lk the hash table 
HTL contains only all substrings of tuples of weights “close” to h2 =  11 of L1, L2,…, Lk−1. (For each posi-
tion i in the tuple sequence Lu we take the shortest substring (in terms of the number of tuples) ,Li j

u  of 
weight not smaller than h2.) The substrings of tuples of Lk are added to the hash table after Lk is pro-
cessed.

Now, when we process Lk starting from i =  1 to obtain Dk, we look for the match of the largest weight 
=, , + −L Li j

k
p p j i
u . There are two possible situations here:

•	 No match of weight at least h2 is found. In this case we append the tuple li
k (describing the first-level 

literal or the first-level match) to Dk and update the current sequence position: i ← i +  1.
•	 Match =, , + −L Li j

k
p p j i
u  is found. In this case we append the tuple , , , − +>_ >_f u i j i 1match 2nd lev

 
to Dk and update the current sequence position: i ← j +  1.

The sequence Dk is composed of tuples of three kinds: first-level literal (pair), first-level match (triple), 
second-level match (quadruple). Since when processing L1 the search structure HTL is empty, D1 =  L1.

The reason for using two-level Ziv–Lempel factoring is that the genome sequences are usually highly 
similar, so in the whole collection the same series of matches and literals between the current sequence 
and the reference sequence can be found. Thus, instead of storing the series of tuples many times, it is 
beneficial to encode them once and only reference to them for other sequences. Figure 1 shows how the 
two-level factoring is performed.
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The collection D is a succinct representation of the input collection S. Nevertheless, it has potential 
to be compressed even more if we use an arithmetic coder31. What is important, instead of encoding the 
tuples as they are, we predict some of their values (e.g., matching positions) and encode only the differ-
ences between our predictions and the real values. The successive fields of the tuples are arithmetically 
encoded as follows.

Flags. There are only 3 different flags distinguishing between the tuple types. We encode them con-
textually, where the context is composed of two recently encoded flags.

Codes of symbols in the first-level literals. Codes of symbols are encoded contextually, where the 
context is the recently encoded symbol.

Positions of the first-level matches. These positions can be from a broad range, i.e., between 1 and 
− +R h 1m1 . Since the genomic sequences are similar, the position of the current match is likely to be 

close to the position of the previous match increased by the number of symbols encoded in the mean-
time. Thus, before encoding the position pos we estimate its value expected_pos and encode only the 
difference relative_pos =  expected_pos− pos. The expected_pos is calculated by increasing the recently 
encoded pos by: (i) the length of the last match, (ii) the number of literals encoded since the last match, 
(iii) the number of symbols encoded as the second-level matches seen from the recent first-level match. 
Then, the estimation is classified as: perfect (relative_pos =  0), good, (( < _ < )relative pos0 26), poor 
(other values). Finally, the estimation type is encoded without a context and the necessary number of 
bytes (0, 1, or 4) of relative_pos are encoded with context being the estimation type and number of 
encoded byte. (Please note that various decisions on boundaries between, e.g., classes of estimations, 
length of matches, are based on preliminary experiments on parts of the input data and the exact influ-
ence of these decisions on the overall compression ratio is not presented.)

Figure 1. Example of first- and second-level factoring in GDC 2 algorithm, where: h1m = 3, h1e = 2, 
h2 = 3, weight of a literal tuple is 1 and weight of a match tuple is 2. Blue and green colors are used only 
to distinguish between adjacent first-level matches. The red underline is to point the second-level matches. 
The used abbreviations: L1L — fliteral, L1M — fmatch_1st_lev, L2M — fmatch_2nd_lev.
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Lengths of the first-level matches. Each length is classified as: short (not longer than 28 symbols), 
long (of length between 28 and 216 +  28 symbols), very long (longer than 216 +  28 symbols). Then, the 
length type is encoded (without a context). Finally, the necessary number of bytes (1, 2, or 4) of the 
length are encoded with context being the length type and the number of encoded byte.

Sequence ids of the second-level matches. The value id is split into two integers: /⌈ ⌉id 256  (prefix) 
and − × /⌈ ⌉id id256 256  (suffix). The prefix is encoded without a context. The context of the suffix is 
the prefix.

Positions of the second-level matches. Similarly like the positions of the first-level matches, these 
values can be from a broad range. Thus, instead of encoding them as they are, we estimate the position 
and encode only the difference. Let us assume the current sequence is Lk. We need some auxiliary array 
A[1..k] to make the estimations possible. Now we will discuss how A is maintained when processing Lk 
Then, we will show how it is used to estimate the positions of the second-level matches.

Let us assume that the we have a match in the sequence Lu. After encoding it we store in A[u] the 
pair ,p sA A , where pA is the match position in Lu and sA is the number of symbols of Sk processed before 
the current match.

Thus, the encoding of the match positions is made as follows. For a match in the sequence Lu we 
calculate the difference d between the current position in Sk and the position SA stored in A[u]. Then, 
we advance the position pA (stored in A[u]) of Lu as long as the number of the symbols covered by the 
first-level literals and matches is not larger than d. What we obtain is the expected position in Lu for the 
current match.

Then, we calculate the difference between the expectation and the value of the current tuple. The 
estimations are classified as: perfect (difference is 0), good (absolute value of the difference between 1 and 
16), moderate (absolute value of the difference between 16 and 256), and poor (other values). Finally, the 
estimation type is encoded without a context and the necessary number of bytes of the difference are 
encoded with context being the estimation type and the number of the encoded byte.

Lengths of the second-level matches. The lengths are classified according the their value to: short 
(not longer than 24 tuples), medium-sized (between 24 and 25 +  24 tuples), long (between 25 +  24 and 
27 +  25 +  24 tuples), very long (between 27 +  25 +  24 and 28 +  27 +  25 +  24 tuples), extremely long (the rest). 
Then, the length type is encoded (without a context). Finally, the necessary number of bytes is encoded, 
where the context is the length type and additionally (for extremely long lengths) also the number of 
encoded byte.

Decompression algorithm. Decompression is straightforward. At the beginning the D collection is 
obtained by arithmetically decoding the compressed file. Then, the collection L is decoded. Finally, the 
sequences of S are constructed from L and R.

Access to a single compressed sequence. A drawback of the proposed algorithm is that to decom-
press Sn we need to decompress (at least at the second level) all other sequences. More precisely, to obtain 
Sm we need to have L1, L2,…, Lm−1 as they must be known to obtain Lm. Then, we can obtain Sm from Lm 
and R. This can be important especially when m is large. To partially solve this problem we implemented 
a variant of the compression algorithm in which we allow to set by the user (during compression) the 
fraction of the sequences that can be used as the second-level references. Thus, when this parameter is, 
e.g., 30%, in the worst case only 30% of L must be decompressed. This deteriorates the compression 
ratio, so this is rather a compromise than a perfect solution.

Real implementation. To increase the speed of the compression and decompression we designed the 
compressor in a multithreaded fashion. There are several (user-defined) threads performing the first-level 
compression (and decompression) and a single thread performing the second-level compression (and 
decompression). For example, in the compression, each of the first-level threads reads a sequence Sk from 
a queue of sequences to compress and performs the Ziv–Lempel factoring of Sk according to R. The 
results Lk are stored in an in-memory queue Q. The second-level-compression thread reads sequences Lk 
from Q, performs the Ziv–Lempel factoring of it according to the already processed part of sequences 
from L obtaining Dk and finally performs also the entropy coding of Dk. (We use a popular and fast 
arithmetic coding variant by Schindler, also known as a range coder (http://www.compressconsult.com/
rangecoder/).) The queue Q has FIFO (first in first out) organization, so there is no guarantee in which 
order the sequences of L will be processed (it depends on the processing time of the sequences by the 
first-level threads). Thus, the compression ratios can slightly differ between the executions of the  
algorithm.

The parallel design of the decompression algorithm is similar.
The compression output is composed of three files. The one with extension gdc2_desc stores file 

names, sequence sizes, and ids of the multi-FASTA sequences. It is small, but to provide the best possible 
compression ratio of the whole algorithm, it is compressed using popular zlib library. The file with 

http://www.compressconsult.com/rangecoder/
http://www.compressconsult.com/rangecoder/
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extension gdc2_rc contains the compressed representation of the collection S. Finally, the file with 
extension gdc2_ref stores the compressed reference sequence R. As it is not a part of the collection to be 
compressed, its size is not counted in the experimental results. Nevertheless, we decided to compress it 
for the situations in which the user is interested in storing both the reference R and the collection S in 
a single place in a compact form. This file is compressed by gathering symbols in triples and encoding 
them arithmetically.

Relation of the proposed compressor to the existing works. The proposed compressor bares 
some similarities to the existing works. The main concept of two-level Ziv–Lempel factoring is an exten-
sion of what was done in FRESCO21. There are, however, significant differences between these two 
approaches. FRESCO uses LZ77 factoring28, in which the sequences are divided into triples match posi-
tion, match length, next symbol after the match , while GDC 2 uses LZSS factoring32 (which encodes the 
sequence as a list of matches and literals as described in the previous section). Moreover, FRESCO looks 
for longer matches, while GDC 2 allows very short matches if they are close to the previous matches. 
These different approaches have impact on the next stage of the compression, as in FRESCO there are 
less factors to be entropy encoded, but each needs more bits. The concept of looking for short matches 
after some longer ones is an extension of what was made in our previous work19. In GDC 2 we, however, 
permit not only single-letter mismatches, but also short indels. We also do not limit the number of short 
matches in a series.

In FRESCO, the collection of sequences is split into two sets: additional references and the remaining 
sequences. The additional references are compressed only according to the main reference sequence. 
The remaining sequences are compressed only according to the main and the additional references. 
Such design decision of FRESCO means that the maximal number of additional reference sequences is, 
in some way, limited. The reason is that if there are too many additional references, they could occupy 
a significant amount of space and the gain in better compression of the remaining sequences could not 
compensate that. In GDC 2, we do not split the collection into two sets. We just use all of the already 
processed sequences as the additional references for the current sequence, with significant boost in the 
compression ratio.

The most important difference between FRESCO and GDC 2 is, however, in the compression of 
tuple fields. FRESCO estimates the position of the first-level matches in a similar way as GDC 2, but the 
positions and lengths of the second-level matches are processed as they are, without estimations. All the 
integers are stored using specific byte code. The whole resulting byte sequence is then Huffman coded 
(with no contextual statistics). In GDC 2, the positions of the second-level matches are estimated in a 
complex way, which allows to store only small values (differences between estimations and real posi-
tions). Moreover, the second-level matches are also taken into account for the estimation of the first-level 
matches. Finally, GDC 2 uses a better entropy coder and the fields are compressed contextually, to reduce 
the redundancy even more. The way the tuples are encoded using an arithmetic coder, especially the 
calculation of the expected positions for the first- and second-level matches, is novel in this context.

GDC 2 and FRESCO differs also in the design of the internal data structures used for indexing 
sequences, which influences the processing speed.

The multithreaded design of GDC 2 was not used by existing multi-reference genome compressors.

Results
Our compressor, GDC 2, was implemented in C+ + 11 language using C+ +  built-in concurrency mech-
anisms. The test machine was equipped with Intel i7 4930 K CPU (6 cores, clocked at 3.4 GHz), 64 GB of 
RAM, and two 3 TB HDDs in RAID 0 (measured average read speed about 350 MB/s).

For the experiments we used two large datasets. A.thaliana dataset of total size 94 GB was obtained 
from the 1001 GP7 and contains 775 sequences. H.sapiens dataset of total size 6670 GB was obtained 
from the 1000 GP2 and contains 2184 sequences (from 1092 diploid human genomes). We also used one 
smaller dataset, H.sapiens alternate assemblies, which contains 11 alternatively assembled sequenced (hap-
loid) human genomes. A more detailed description of all datasets (e.g., the chosen reference sequences) 
is given in the supplementary material.

The comparison of all of the existing genomic data compressors would be very hard due to many 
reasons. For example, some compressors do not support symbols other than ACGT, some cannot work 
with so huge data, some are very slow and performing complete experiments would take months. Thus 
we selected the compressors that proved to be the best (in terms of compression ratio) in the previous 
studies: 7z (general purpose compressor from the Ziv–Lempel family), RLZ26, GReEn27, ABRC20, GDC 
normal19, GDC ultra19, iDoComp22, FRESCO21. In the preliminary experiments (Table 1), we evaluated 
them on subsets of our datasets to select the candidates for more complete evaluation. As the results 
show, the single-reference compressors (RLZ, GReEn, ABRC, GDC-normal, iDoComp) give ratios much 
smaller than 1000 for H.sapiens chromosomes and smaller than 160 for A.thaliana chromosomes.

The general purpose 7z can be seen as a multi-reference compressor since it looks for matches between 
the present sequence and the sequences seen in the past 1 GB. For H.sapiens Chromosome 21 it means 
about 20 recently processed sequences. Nevertheless, for H.sapiens Chromosome 1 these would be only 
4 sequences. The true multi-reference compressors GDC-ultra and FRESCO give much better ratios for 
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human chromosomes. For FRESCO we set the number of additional reference sequences to 100 as in a 
preliminary experiment (results not shown) this leaded to better compression ratios than the value 70 
used in the original paper21.

In a consequence, for further experiments we selected two best single-reference compressors, i.e., 
GDC-normal and iDoComp, and two best multi-reference compressors, i.e., GDC-ultra and FRESCO. 
The results of evaluation of the chosen compressors and the proposed GDC 2 are presented in Tables 2 
and 3. For the H.sapiens dataset (Table  2) the compression ratio of GDC 2 is about 9500, which is 
approximately 4 times better than the best of the existing competitors. As it was mentioned earlier, GDC 
2 bears some similarity to FRESCO, so it would be interesting to ask which of the changes between these 
algorithms have the highest influence on the GDC 2 advantage in the compression ratio. It is hard to 
answer precisely, as the algorithms differ in many details, and the improvements implemented in GDC 2 
are not independent. Nevertheless, from the presented results and other preliminary tests, it seems that 
the two most important things are: careful estimation of the positions of the second-level matches and 
allowing more reference sequences (especially, using all the already processed sequences as the references 
for the current one). Most of the rest of the advantage is probably due to: allowing short matches if they 
are close to the previous ones and contextual encoding of integers.

In the compression, the fastest is GDC 2, which works with a speed about 200 MB/s. Measuring of 
the speed of decompression is problematic as some of the compressors work faster than the disk speed 
(~350 MB/s), which in practice is more than sufficient. Nevertheless, we were interested in what is the 
true decompression speed of the GDC 2 algorithm, so we measured it with the output redirected to /dev/
null (i.e., the sequences were decompressed but not stored) obtaining about 1000 MB/s.

The experiment for the A.thaliana dataset (Table  3) shows that the compression ratios are much 
worse. The best ratio, almost 600 was obtained by GDC 2. This result is approximately 2.4 times better 
than the second best, GDC-ultra. Also the compression speeds are worse here.

We also experimented with H.sapiens alternate assemblies dataset (Table  4). In contrast to previous 
datasets, here the sequences are much more diversified. Also the collection is much smaller as it con-
tains only 11 individuals. Now the best compression ratios were obtained by GDC ultra algorithm. The 
advantage over GDC 2 is, however, rather small. Moreover, GDC ultra is more than 30 times slower. It is 
also important to stress that GDC ultra scales poorly, as the maximal number of reference sequences is 
40, so for larger collections GDC 2 should win in the compression ratio. The fastest algorithm here was 
iDoComp. When running FRESCO, we selected here one-level compression because the collection was 
so small (or too divergent; it is hard to find the correct answer due to the small number of individuals) 
that two-level approach gave worse results.

It is also interesting to compare the compression ratios with what is possible, when much more 
knowledge of the data is given (cf. TGC columns in Tables  2 and 3). Namely, when the input data 
are given as differences between the sequences and the reference (in VCF format), the best available 
compressor, TGC, obtained even better ratios. For human dataset they were about 15,500, on average. 
When we compare this with about 9,500 of GDC 2 we see that we are quite close to what is theoretically 
possible. Similar results are for A.thaliana dataset: ~590 ratio for GDC 2 and ~860 ratio for TGC. What 
is, however, worth to stress, GDC 2 is able to compress collections of sequences of the same species 
gathered from various sources (e.g., de novo assembled), when no alignment of them is given, while TGC 
input must be provided as aligned sequences described as variants between them. Therefore, TGC ratios 
should be seen only as a hint what in theory is possible for the examined collections of genomes, even 
if it would be extremely hard to obtain such results, and should not be directly compared to the ratios 
of the rest of examined compressors.

In the next experiment, we measured the influence of the number of sequences in the input collection 
on the compression ratio, compression and decompression speeds, and memory usage. The results for 
two chromosomes are shown in Fig. 2. As one can see for the human chromosome the compression ratio 
is about 8000 for 300 input sequences and increases moderately for growing number of input sequences. 
The same phenomenon can be observed for A.thaliana dataset, but the ratio is about an order of mag-
nitude lower.

Dataset 7z RLZ GReEn ABRC GDC-normal iDoComp GDC-ultra FRESCO

H.sapiens

Chr. 14 1,068 270 218 472 674 625 2,455 1,946

Chr. 21 1,561 269 211 460 685 642 2,397 2,545

A.thaliana

Chr. 1 242 86 64 67 154 156 254 186

Chr. 4 234 80 59 61 141 145 230 170

Table 1.  Compression ratios for subsets of the datasets for various compressors.
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The memory usage of GDC 2 depends mainly on the number of sequences serving as the second-level 
references as they must be stored (and indexed) in memory during compression. In this experiment all 
sequences were used as additional references, so the memory consumption grew constantly up to about 
6 GB. (The most memory consuming was compression of H.sapiens Chromosome 2 for which about 
24 GB of RAM was necessary.) The visible stepwise increment of the memory usage is a consequence of 
the assumed possible hash table size (being always a power of 2).

The compression and decompression speeds for the human dataset initially grow with the increasing 
number of sequences and are the highest for the collection of size about 300–500. This is correlated 
with the growing compression ratio. Roughly speaking, the more second-level references, the better the 
second-level factoring (i.e., longer matches can be found) and so, there are significantly less data to 
process by the arithmetic coder. However, for larger collections, much more data must be analyzed dur-
ing the second-level factoring, so the speed of compression falls down. A similar thing happens in the 
decompression. The better second-level factoring means less data to be arithmetically decoded, which 

Data

Raw size
GDC 

normal iDoComp
GDC 
ultra FRESCO GDC 2 TGC

[GB] ratio ratio ratio ratio ratio ratio

Chr. 1 551.7 680 659 2,508 2,279 10,556 17,090

Chr. 2 538.5 628 608 2,318 2,113 9,828 15,744

Chr. 3 438.4 602 552 2,263 2,044 9,564 15,513

Chr. 4 422.8 547 503 2,202 1,911 8,979 14,800

Chr. 5 400.6 624 576 2,260 1,997 9,578 15,449

Chr. 6 378.7 566 522 2,184 1,950 8,832 14,628

Chr. 7 352.3 592 545 2,138 1,918 8,752 14,344

Chr. 8 323.9 584 543 2,137 1,916 8,817 14,558

Chr. 9 312.5 718 666 2,450 2,359 10,400 17,000

Chr. 10 300.1 578 564 2,123 1,973 9,335 14,736

Chr. 11 298.8 560 521 2,171 1,967 9,043 14,825

Chr. 12 296.2 595 547 2,167 1,958 9,127 14,897

Chr. 13 255.0 611 564 2,452 1,842 10,669 17,336

Chr. 14 237.6 674 625 2,458 1,946 10,654 17,371

Chr. 15 227.0 716 664 2,458 2,020 10,815 17,556

Chr. 16 200.1 647 604 2,068 2,076 8,980 14,374

Chr. 17 179.7 646 594 2,059 2,090 8,651 14,137

Chr. 18 172.9 568 525 2,051 2,066 9,033 14,368

Chr. 19 130.8 569 519 1,773 1,828 7,137 11,931

Chr. 20 139.5 633 619 2,014 2,240 9,150 14,419

Chr. 21 106.5 686 642 2,405 2,545 10,414 16,975

Chr. 22 113.5 823 772 2,455 2,718 10,547 17,537

Chr. X-fem 178.5 911 826 2,551 2,628 11,060 17,364

Chr. X-mal 81.0 945 896 2,740 2,469 11,546 15,255

Chr. Y-mal 30.0 38,233 59,062 42,870 39,228 132,123 188,704

Chr. X-mal1 2.8 312 310 587 713 2,423 3,967

Chr. X-mal2 0.35 280 456 741 943 5,914 9,199

Complete 6,669.8 627 586 2,262 2,065 9,557 15,490

Compression speed [MB/s] 73 51 12 111 202 —

Compression time [h:m] 25:23 36:32 154:24 16:38 9:11 —

Table 2.  Compression ratios for H.sapiens dataset. The ratios are calculated as raw size divided by 
compressed size rounded to the integer. Compression speeds (in MB/s) and times (in hours:minutes) are 
given in the bottom part of the table. Raw sizes are in GBs. The rightmost column contains the ratios for 
TGC program18. The values are in italic to stress that they cannot be directly compared with ratios for the 
remaining algorithms, since TGC assumes that the input data are in VCF format, which explicitly stores 
information of all differences between aligned genomes from the collection. Nevertheless, the TGC ratios 
show what is possible, when much more knowledge of the data is given.
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Data

Raw 
size

GDC 
normal iDoComp

GDC 
ultra FRESCO GDC 2 TGC

[GB] ratio ratio ratio ratio ratio ratio

Chr. 1 23.9 154 156 254 186 621 916

Chr. 2 15.5 143 148 239 175 559 807

Chr. 3 18.4 147 152 238 169 551 804

Chr. 4 14.6 141 145 230 170 553 803

Chr. 5 21.2 148 151 254 187 624 916

Chr. C 0.12 652 1,830 652 1,750 25,061 8,983

Chr. M 0.29 558 807 600 374 1,401 1,592

Complete 94.0 148 151 245 179 587 857

Compression speed [MB/s] 120 47 13 7 94 —

Compression time [h:m] 0:13 0:33 1:57 3:31 0:17 —

Table 3.  Compression ratios for A.thaliana dataset. The ratios are calculated as raw size divided by 
compressed size rounded to the integer. Compression speeds (in MB/s) and times (in hours:minutes) are 
given in the bottom part of the table. Raw sizes are in GBs. Please confer Table 2 caption for the discussion 
on TGC ratios.

Data

Raw size GDC normal iDoComp GDC ultra FRESCO GDC 2

[MB] ratio ratio ratio ratio ratio

Chr. 1 2,647 146 134 170 118 159

Chr. 2 2,700 198 180 224 150 213

Chr. 3 2,098 174 159 192 137 179

Chr. 4 2,125 145 129 158 113 147

Chr. 5 2,018 170 153 196 135 184

Chr. 6 1,907 204 184 252 149 238

Chr. 7 1,755 214 191 282 155 267

Chr. 8 1,622 217 194 248 156 236

Chr. 9 1,478 280 255 363 202 344

Chr. 10 1,496 249 225 319 182 313

Chr. 11 1,499 185 168 214 145 205

Chr. 12 1,486 166 150 186 130 175

Chr. 13 1,206 185 168 219 146 208

Chr. 14 1,115 269 243 313 202 305

Chr. 15 1,045 180 164 218 150 200

Chr. 16 954 69 72 86 68 81

Chr. 17 892 128 113 153 107 139

Chr. 18 859 157 146 174 141 173

Chr. 19 681 175 155 202 133 188

Chr. 20 695 222 200 263 181 264

Chr. 21 475 219 197 258 179 248

Chr. 22 497 153 137 168 132 163

Chr. X 1,690 90 83 97 83 91

Chr. Y 404 269 241 302 225 275

Complete 33,346 169 153 194 134 183

Compression speed [MB/s] 1.5 27.5 0.3 4.2 11.0

Compression time [h:m] 6:02 0:20 26:36 2:11 0:50

Table 4.  Compression ratios for H.sapiens alternate assemblies dataset. The ratios are calculated as 
raw size divided by compressed size rounded to the integer. Compression speeds (in MB/s) and times (in 
hours:minutes) are given in the bottom part of the table. Raw sizes are in MBs.
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increases the speed. Unfortunately, more second-level references means much more computations for 
the estimation of the positions of matches, which significantly influences the decompression time for 
large collections.

In the next experiment, we measured the influence of the number of reference sequences in the sec-
ond level of GDC 2 on the compression ratio, (de)compression speeds and the extraction time of a single 
sequence of a collection. The most important results are presented in Fig. 3 (the complete results are in 
Supplementary Figure S1). Decreasing the number of second-level references by half results in a reduced 
RAM usage (about half less RAM is used) and a noticeable speed up of compression (24% for H.sapiens 
dataset and 17% for A.thaliana dataset) at a cost of some decrease of compression ratio (26% and 14%, 
respectively). Using even less sequences in the second level of GDC 2 leads also to significant gains in 
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Figure 2. Influence of the number of sequences in the input collection on GDC 2: compression ratio 
(left top), memory usage (right top), compression speed (left bottom), decompression speed (right 
bottom). The decompression speed was measured when the output was redirected to /dev/null, i.e., the 
sequences were decompressed but not stored.
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Figure 3. Influence of the percent of 2nd level references on GDC 2 compression ratio (left), 
decompression (access) time of a single sequence (right). In both cases the input dataset contained all 
available sequences.
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speed of decompression of complete collection or a single sequence, obviously at a cost of decreased com-
pression ratio. For 10% of the sequences used, average single sequence access times decreased from 53 
to 31 seconds for H.sapiens dataset (at a cost of 2.85 worse compression ratio) and from 63 to 21 seconds 
for A.thaliana dataset (at a cost of 1.79 worse compression ratio).

GDC 2 is implemented in a multithreaded fashion, so it is natural to ask how its speed scales when 
the number of threads is increased. By default, GDC 2 uses 4 threads: 3 for the first level Ziv–Lempel 
factoring and 1 for the second-level factoring and arithmetic coding. The results presented in Fig. 4 show 
that the value 3 or 4 seems to be the best choice for the used datasets and the test machine. The speed is 
limited by disk speed or (for fast disks) by the single second-level compressing thread. This suggest that 
splitting this thread into two, e.g., one performing Ziv–Lempel factoring and other performing arithme-
tic compression would increase the total performance of GDC 2. Nevertheless, since the absolute values 
of compression speeds are high, we resigned from that in the present version of the software.

Discussion
We proposed a new algorithm for compression of collections of complete genome sequences. The eval-
uation shows that its compression ratios are roughly 4 times better than the best existing competitors. 
Moreover, it is very fast, as the compression speed for the H.sapiens dataset is about 200 MB/s. The 
decompression speed is limited by the speed of the disk used in the experiments. When we measured this 
speed without storing the files onto disks, it was about 1000 MB/s. The algorithm is designed primarily to 
compress and decompress efficiently a large collection of genomes all at once. However, it also performs 
well for relatively small, divergent genome sets. Moreover, extraction of a single sequence is also possible. 
The access time, although not impressive (counted in tens of seconds), can be significantly improved at 
a cost of some decrease in the overall compression ratio.
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