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Abstract: During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in
viral replication factories called replication compartments (RCs), which are located at discrete sites in
the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to
amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the
BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes
are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent
on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly
advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation
of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral
DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the
interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits
continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to
efficient progeny viral production. Here, we review the state of knowledge of this important viral
structure and discuss its roles in EBV survival.

Keywords: Epstein–Barr virus; lytic replication; replication compartment; replication; transcription;
DNA damage response; viral pre-initiation complex (vPIC)

1. Introduction

Epstein–Barr virus (EBV) is a Gammaherpesvirinae family member and a human
lymphotropic herpesvirus. EBV is widely spread among humans and transmitted via
saliva, mainly during childhood. EBV is associated with various tumors, such as Hodgkin’s
lymphoma, diffuse large B-cell lymphoma, Burkitt lymphoma, and NK/T-cell
lymphoma [1–5]. Furthermore, it is closely linked to gastric cancer, nasopharyngeal carci-
noma, and breast cancer, as it can also infect epithelial cells [6–8]. Epidemiologically, human
tumors associated with EBV are now estimated at around 200,000 cases per year [1]. Upon
primary infection, EBV infects resting B lymphocytes to establish a lifelong continuous
latent infection without the production of progeny viruses, while expressing a limited set
of genes (latent genes) [9–11]. On the other hand, productive replication is initiated by
the expression of BZLF1, an EBV-coding lytic switch gene that induces reactivation [12,13].
Lytic reactivation occurs spontaneously and requires the EBV origin of lytic replication
(oriLyt) that lies on the viral genome [14,15]. During lytic replication, large numbers of lytic
genes are sequentially expressed. Depending on the stage of lytic replication, these genes
are classified into immediate early (IE), early (E), and late (L) genes. The EBV genome is
amplified 100- to 1000-fold by rolling circle replication using the EBV replication machinery.
This machinery consists of EBV-coding replication proteins, which are E gene products [16].
The synthesized viral DNA is produced as DNA concatemers consisting of multiple head-
to-tail repeats of single EBV genome units [17]. This concatemeric DNA is cleaved, and a
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single unit of viral DNA is packed into assembled capsids using capsid packaging proteins,
thus producing viral particles [18].

The major feature of EBV lytic replication is the formation of a replication compartment
(RC) [19–21]. RCs are viral replication factories composed of viral replication proteins that
appear at discrete sites in the nuclei during lytic replication [22]. Since viral genomes are
synthesized in RCs, RCs enlarge and appear as large globular nuclear subdomains at the
late stage of the lytic phase [19]. In addition to DNA synthesis, RCs are sites of viral gene
transcription, capsid assembly, and other regulations required to carry out lytic replication.
In the RC, a sub-domain called the BMRF1-core assembles and stores the viral DNA [23].
Inhibition of RC formation by drugs such as phosphonoacetic acid (PAA) prevents the
production of progeny viruses [19]. In this review, we focus on RCs and their sub-domain
the BMRF1-core during the lytic phase and discuss this highly regulated system and the
strong advantages of RC formation as a strategy for EBV production, including efficient
genome replication, maintenance of genome stability by modification of host factors, and
regulation of viral gene transcription.

2. RC Characterization

Various microscopic analyses have revealed that most viruses, including DNA and
RNA viruses, amplify their own genomes at the site of replication [24–27]. In particular,
double-stranded (ds) DNA viruses, such as Herpesviridae, Adenoviridae, Polyomaviridae, and
Papillomviridae, replicate within RCs at discrete sites in the nuclei (also known as “replication
centers” or “replication foci”), which are not covered by the cellular membrane. RCs may
form through liquid–liquid phase separation (LLPS), like other membraneless nuclear
bodies [28–30]. Once viral productive replication is induced, the size of RCs increases
over time because viral and host replication proteins are recruited, and newly synthesized
viral genomes are stored. Some inhibitors of viral replication, such as PAA, prevent RC
formation [19,31]. In most cases, RCs are also the sites of viral capsid or virion assembly.
This allows immediate packaging of the synthesized and stored genomes into capsids or
virions [32]. Such efficient production of virions leads to the infection of more cells, thereby
elevating tumorigenic potential [33]. Hence, RCs are thought to be the center of dsDNA
viral productive replication and have been well-studied as therapeutic targets of infectious
diseases and tumors caused by these dsDNA viruses [28,33].

In particular, the RCs of human herpesviruses have been extensively studied. Her-
pesviruses are widespread, adapted to human life, and are associated with various diseases
and tumors. RCs are closely linked to the unique life cycles and pathogenesis of these
viruses [34,35]. The life cycle of herpesviruses has two types of phases: a latent phase
and a lytic phase. EBV is a Gammaherpesvirinae family member strongly associated with
various human cancers [36,37]. EBV establishes lifelong latency after primary infection
and immortalizes infected cells. During the latent phase, EBV genomes form episomal
structures expressing a limited set of viral genes, called latent genes, in the absence of
productive replication or RC formation. The switch from latency to lytic replication (termed
“reactivation”) occurs spontaneously, starting with the expression of BZLF1, an EBV IE gene.
During the lytic phase, herpesviruses compose their own replication machinery, the RCs,
which mainly consist of herpesvirus replication proteins [22]. In the case of EBV, BMRF1
(DNA polymerase processivity factor and dsDNA binding protein), BALF2 (single-stranded
(ss) DNA binding protein), BALF5 (DNA polymerase), and BBLF4/BSLF1/BBLF2/3 (the
helicase–primase complex) have been identified as replication proteins and are known
as the main components of RCs. These proteins are well-conserved among human her-
pesviruses [22]. Although BZLF1 acts as a lytic switch mediator at the early stage of the
lytic phase and is distributed diffusely throughout the nuclei, BZLF1 moves to the RCs
to associate with viral DNA and BBLF4 [21,34]. In addition to replication proteins and
lytic regulators, viral factors, such as BKRF3 (uracil DNA glycosylase), BGLF4 (protein
kinase), and BPLF1 (deubiquitinase), also accumulate in RCs [38–40] (listed in Table 1).
BKRF3 is required for viral DNA synthesis, along with BALF5 and BMRF1 interaction [38].
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The advantages of BGLF4 and BPLF1 accumulation to RCs are meticulously described
in Sections 3 and 5. EBV infects both B lymphocytes and epithelial cells, and RCs can be
observed in both types of cell lines upon artificial lytic induction. Similar to what happens
with other dsDNA viruses, host factors are also recruited to RCs to participate in viral
replication, transcription, or capsid assembly; their details will be described later.

Table 1. Viral proteins accumulate to RCs. “Microscopic analysis” means that the localization
to RCs of the viral protein was improved by IFA. “N/A” indicates that the localization to RCs
of the viral protein was not improved by IFA but that it was estimated to accumulate in RCs by
co-immunoprecipitation analysis with viral proteins recruited to RCs or other functional assays.

Viral Protein Functions Roles in RCs Microscopic Analysis Refs.

EBNA1 Bridge between chromosome and
viral episome

Scaffold for newly synthesized
DNA Yes [19]

BZLF1 Lytic cycle switch Activates and modulates DDR
L gene transcription Yes [19]

Rta Transcriptional activator L gene transcription Yes [19]

BALF2 ssDNA binding protein Consists of viral replication forks
and synthesizes viral DNA Yes [19]

BALF5 DNA polymerase Consists of viral replication forks
and synthesizes viral DNA Yes [19]

BMRF1 dsDNA binding protein
polymerase processsivity factor

Consists of viral replication forks
and synthesizes viral DNA

Binds to dsDNA and composes the
BMRF1-core

Mediates DNA repair
L gene transcription

Yes [19]

BBLF2/3 Helicase–primase complex Consists of viral replication forks
and synthesizes viral DNA Yes [19]

BBLF4 Helicase–primase complex Consists of viral replication forks
and synthesizes viral DNA Yes [19]

BSLF1 Helicase–primase complex Consists of viral replication forks
and synthesizes viral DNA Yes [19]

BKRF3 Uracil DNA glycosylase Assists in the synthesis of viral
DNA Yes [38]

BGLF4 Protein kinase Conducts chromosomal
condensationActivates DDR Yes [39]

BPLF1 Deubiquitinase Mediates DNA repair Yes [40]

BGLF5 Alkaline nuclease Viral mRNA export Yes [41]

BMLF1 Transcriptional activator Viral mRNA export Yes [41]

BFRF3 Small capsid protein Consists of viral capsids Yes [42]

BVRF1 Minor capsid protein/Capsid
packaging protein Packages viral DNA into capsids Yes [42]

BGLF1 Minor capsid protein/Capsid
packaging protein Packages viral DNA into capsids Yes [42]

BFLF1 Capsid packaging protein Packages viral DNA into capsids Yes [42]

BDRF1 Minor capsid protein/Capsid
packaging protein Packages viral DNA into capsids N/A [43]

BVRF2 Capsid protease Consists of viral capsids Yes [42]
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Table 1. Cont.

Viral Protein Functions Roles in RCs Microscopic Analysis Refs.

BDLF1 Capsid Triplex 2 Consists of viral capsids Yes [42]

BORF1 Capsid Triplex 1 Consists of viral capsids Yes [42]

BBRF1 Capsid portal protein Consists of viral capsids Yes [42]

BdRF1 Capsid scaffold protein Consists of viral capsids and is
cleaved N/A [44]

BcLF1 Major capsid protein Consists of viral capsids N/A [44]

BDLF3.5 vPIC component L gene transcription N/A [45]

BDLF4 vPIC component L gene transcription N/A [45]

BVLF1 vPIC component L gene transcription N/A [45]

BGLF3 vPIC component L gene transcription N/A [45]

BFRF2 vPIC component L gene transcription N/A [45]

BcRF1 vPIC component L gene transcription Yes [46,47]

3. RC Growth and Maintenance

Fluorescence in situ hybridization (FISH) analysis using EBV latently infected cell lines
has visualized the EBV genome, which appears as an enormous number of small dots. Until
EBV establishes latency from primary infection, EBV amplifies its genome, and each single
genome forms a circular episome that binds to AT-rich and gene-poor regions of human
chromosomes via EBV nuclear antigen (EBNA1), a latent EBV gene [48,49]. EBNA1 bridges
the EBV episome and cellular chromosomes, binding EBV to the latent origin of replication
(ori-P). On the other hand, in the early phase of lytic replication, several medium-sized dots,
so to say primary RCs, can be observed by FISH analysis or immunofluorescence analysis
(IFA) using specific antibodies for viral replication proteins (Figure 1a, 12 h post induction
(hpi)). These small RCs grow bigger and seem to fuse with each other as lytic replication
proceeds (Figure 1a, 24 hpi). Finally, at the late stage of lytic replication, RCs appear as one
or two large globular nuclear subdomains and occupy 30–35% of the nucleus (Figure 1a,
36 hpi) [50]. As mentioned before, RCs are generally characterised by FISH analysis using
probes specific to EBV genomes or by IFA using specific antibodies for BMRF1, BALF5, or
BALF2 with fixed cells [19,23]. These methods cannot monitor RC growth in a single cell
over time. The question is, however, how individual episomes grow into such an enormous
nuclear subdomain. Sugden’s group had developed the visible replicon system, which
encodes the EBV ori-P, oriLyt, and LacI-LacO targeting system fused tdTomato fluorescence
protein containing a nuclear localization signal to monitor viral DNA synthesis by time-
lapse imaging [51,52]. Nagaraju et al. explored the question by using this EBV replicon
system to visualize the development of RCs in live cells. Surprisingly, each developing
RC contains similar levels of viral DNA during the same stage of lytic replication. This
suggests that each developing RC synchronises with other RCs. Moreover, the nuclear
volumes are enlarged at the late stage of lytic replication [50]. It has also been observed
that 4′,6-diamidino-2-phenylindole (DAPI) does not stain the sites of RCs, and electron
microscopic analysis has shown that host chromatin is shoved by RCs and condensed [42].
Thus, for RC development and successful viral production, the extrachromosomal space
is essential (Figure 1b). BGLF4 EBV-coded protein kinase, which is expressed in the early
stage of lytic replication and is mostly located in RCs, interacts with the condensin complex
and stimulates topoisomerase II, which conducts chromosomal condensation similar to a
premature mitotic event and provides extra space for RCs [53]. BGLF4 kinase inactivates
MCM4-MCM6-MCM7 helicase activity by phosphorylating MCM4, which blocks host
chromosomal DNA replication and allows RCs to occupy more space [54]. Even in the late
stage of lytic replication, DNA synthesis occurs continuously, maintaining the morphology
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of the RCs [55]. Some BZLF1-inducible host factors, such as target-of-rapamycin complex
2 (TORC2), localize to RCs [56]. These factors may contribute to the continuous DNA
replication in RCs. EBNA1, an EBV latent protein, is also expressed during the lytic
phase and accumulates in RCs. EBNA1 is thought to bind to the ori-P region on newly
synthesized DNA stored in RCs, which functions as a scaffold to maintain the RC structure
in the nuclei [57]. Interestingly, even the exogenous gene coding ori-Lyt is amplified in RCs
coordinated with RCs [58]. This evidence allows us to imagine RCs, which successfully
gain enough space and separate the nucleus spatiotemporally, benefiting the protection of
both newly synthesized EBV genomes and assembled viral capsids and the coordination
among single episomes.
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4. The DNA Storage Subdomain, the BMRF1-Core

As mentioned before, viral replication proteins are recruited to the RC and compose
replication forks in the RCs. BMRF1 is a multifunctional EBV replication protein that plays
a central role in lytic replication via RCs. It acts as a DNA polymerase processivity factor, a
dsDNA-binding protein, and a lytic gene transcription factor. BMRF1 is considered an E
gene and is highly expressed through the lytic phase. Electrophoresis, sedimentation assay,
and blue native PAGE analysis have revealed that BMRF1 mostly exists as a C-shaped
head-to-head homodimer connecting the βI1 strands and requires C95. Such dimeric
forms possess dsDNA binding activity [59]. However, some BMRF1 molecules form a
ring-shaped tetramer via tail-to-tail contact, which contributes to viral replication [60].
Mutations lacking the dsDNA binding capacity fail to form RCs. Therefore, in RCs, it
is suspected that newly synthesized viral dsDNA is covered by BMRF1. We previously
discovered that BMRF1 binding to dsDNA occurs at discrete areas of the RCs, and, using
confocal microscopic analysis and 3D reconstruction, found that BMRF1 seems to be
surrounded by other viral replication proteins such as BALF2 or BALF5 [23]. This evidence
suggests that there are BMRF subdomains in RCs, which we named the “BMRF1-core”. The
BMRF-core has been observed at 24 h post-lytic induction when using the B95.8 cell line.
Viral DNA labelling experiments using thymidine analogues have revealed short- 5-chloro-
2’-deoxyuridine (CldU) pulse-labeled viral DNA outside the BMRF1-core, where BALF2
or BALF5 are also located (Figure 2a, upper panels). In contrast, short-CldU pulse and
long-term-chase-treated viral DNA move to the inside of the BMRF1-core (Figure 2a, lower
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panels). Hence, these observations suggest that during lytic replication, newly synthesized
viral DNA is bound by BMRF1, which possesses dsDNA binding capacity, folded to form
the BMRF1-core, and stored until packed into the viral capsid (Figure 2b). In fact, our
previous study indicated that the BMRF1-core is the site of capsid assembly. We observed
that EBV capsid packaging proteins are localized inside the BMRF1-core, although EBV
capsid proteins are located outside and inside. These results suggest that EBV viral empty
capsids are assembled in RCs and transported to the BMRF1-core, and that the packed
BMRF1-core stores viral DNA into the capsids [42]. The BMRF1-core divides the area of the
RCs spatiotemporally, which allows for efficient capsid assembly.
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Figure 2. (a) Pulse-chase analysis revealing the existence of the RC subdomain, the BMRF1-core.
The lytic phase was induced in Tet-Z/B95.8 cells by Dox treatment. At 24 h post-induction, the
cells were treated with CldU for 10 min (short-CldU pulse). Then, cells were washed and incubated
for 1 h to allow labelled DNA to move to DNA storage sites (short-CldU pulse and long-term
chase). Approximately 40 cells were analyzed and images were captured. (b) Model of BMRF1-core
formation. (i) The newly synthesized viral DNA mainly at the outside of the BMRF1-core in the
RC. (ii) BMRF1 binds to synthesized viral DNA and folds to form the BMRF1-core that seems to
be accumulated in the BMRF1-core. (iii) Viral DNA is stored until packed into the viral capsid.
(iv) Finally, viral DNA is packed into the self-assembled capsid.

5. The Contribution of DNA Damage Responses to Viral DNA at RCs

Genomes packed into capsids should maintain high fidelity to ensure EBV survival.
Herpesviruses hijack and/or utilize the host DNA damage response (DDR) and DNA
repair system to assist their replication (Figure 3). Some lytic genes are DDR inducers,
and their main target is ataxia telangiectasia-mutated (ATM), the central kinase of the
DDR. ATM normally exists as a homodimer or as a multimer inactive form. Once DNA
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damage is sensed, ATM rapidly autophosphorylates at serine 1981, which causes dimer
dissociation [61]. The activation of ATM by autophosphorylation initiates ATM kinase activ-
ity. BGLF4 phosphorylates and activates TIP60 histone acetyltransferase, promoting DDR
through the acetylation of ATM, which causes the phosphorylation of ATM, H2AX, and
downstream factors [62]. BZLF also induces phosphorylation of ATM, H2AX, and 53BP1
independently of other lytic proteins [63]. BGLF4- and BZLF1-DDR induction activities are
modulated by SUMO binding [64]. Most activated DDR factors, such as phosphorylated
ATM (pATM) and phosphorylated H2AX (γH2AX), are recruited to RCs upon lytic infec-
tion [63,65,66]. S-phase cyclin-dependent kinases (CDKs) are highly activated via ATM
checkpoint signaling, one of the downstream pathways of ATM that creates an S-phase-like
intracellular environment [65]. The phosphorylation of Sp1, a host transcriptional factor,
by ATM is also important for viral DNA synthesis and RC maintenance [66]. ATM also
facilitates DNA repair in a manner similar to that of homologous recombination repair
(HHR). As newly replicated viral DNA possesses double-strand breaks (DSBs), the DSB
sensor activated by ATM (the Mre11–Rad50–Nbs1 (MRN) complex) binds to the DSB re-
gion. The MRN complex promotes sequential HHR to repair DSBs in newly synthesized
viral DNA, cooperating with viral lytic replication [67]. Proliferating cell nuclear antigen
(PCNA), a DNA sliding clamp, is loaded onto newly synthesized viral DNA, and a series of
mismatch repair (MMR) factors are recruited to viral DNA in RCs [68]. Factors belonging
to the MMR pathway have been observed inside the BMRF1-core, although HHR factors
are located both outside and inside the BMRF1-core [23]. This suggests that MMR is in-
volved in the maturation of the newly synthesized viral DNA. The BMRF1-core plays a
part in spatiotemporally dividing the different pathways. Studies on the accumulation of
such DDR factors to herpesviral RCs have been conducted in other herpesviruses, such
as herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). RCs of
HSV-1 or HCMV are also formed; HRR factors, including the MRN complex and Rad51,
are recruited to the RCs [69–74]. In addition, BPLF1, an EBV-coded deubiquitinase, recruits
polymerase eta (pol η), which is the host polymerase that specializes in DNA repair, onto
newly synthesized viral DNA during the lytic phase to mature but not synthesize viral
DNA [75]. Furthermore, BPLF1 enhances pol η expression, likely by inhibiting proteasomal
degradation through its deubiquitinase activity.
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Figure 3. Model of the interactions among DNA damage response factors which enhance EBV DNA
synthesis and viral proteins at RCs. The central kinase of the DDR, ATM, is activated by BGLF4 and
BZLF1. Phosphorylated ATM (pATM) activates H2AX (γH2AX), S-phase cyclin-dependent kinases
(CDKs), Sp1, and homologous recombinational repair (HRR) enhance viral DNA synthesis. BPLF1
recruits pol η onto newly synthesized viral DNA to mature. Mismatch repair (MMR) factors are also
involved in the maturation of viral DNA stored at the BMRF1-core.

On the other hand, EBV lytic replication triggers and utilizes the DDR for genome
integrity and fidelity. Recent studies have shown that EBV also interferes with some part of



Microorganisms 2022, 10, 896 8 of 14

the DDR to avoid apoptosis. BZLF1 causes mislocalization of 53BP1 and RNF8, the latter be-
ing a ubiquitin–protease ligase that acts in the DNA repair pathway, but not those of pATM,
MDC1, or γH2AX from DSBs [76]. BMRF1 interacts with the nucleosome remodeling and
deacetylation (NuRD) complex at RCs, which prevents the accumulation of the essential
RING finger ubiquitin ligase for DNA repair, RNF168, in sites of DBSs, mainly in the host
genome [77]. Additionally, the BKRF4 EBV tegument protein, which is expressed at the
late stage of the lytic phase and is not located in RCs, interferes with histone ubiquitination
at DSBs by inhibiting the recruitment of RNF168 [78,79]. Likewise, DDR factors, such
as γH2AX, Mre11, and RPA32, are recruited to Kaposi’s sarcoma-associated herpesvirus
(KSHV) RCs and not 53BP1 [80]. Taken together, these phenomena may contribute to
the herpesvirus-specialized forms of DDR and DNA repair, and indirectly protect newly
synthesized viral DNA stored in RCs. Mislocalization of DNA repair molecules from DSBs
in host DNA induces cellular genome instability [81–83]. The formation of RCs and the
specialization of a set of DDR factors at RCs indirectly contribute to EBV-driven oncogenesis
by promoting viral genome stability and host genomic instability, even during the lytic
phase [33].

6. The Regulation of L Gene Transcription in RCs

RCs are also transcription sites. The major breakthrough regarding EBV transcription
during the lytic phase was the discovery of the viral pre-initiation complex (vPIC). In the
EBV L promoter region, a TATT motif is present instead of the TATA box that is normally
found in eukaryotic promoters [84–86]. BcRF1 has been identified as a TATA-binding
protein (TBP)-like protein that interacts with the TATT motif on the L promoter region
and is essential for L gene transcription [46]. Six viral proteins (BDLF3.5, BDLF4, BVLF1,
BGLF3, BFRF2, and BcRF1) compose the vPIC, all of which are necessary for L gene
transcription [45]. This transcriptional system via vPIC is conserved among beta- and
gamma- but not alpha-herpesviruses. Some set of vPIC components are stabilized by host
factors such as CDK2, an S-phase-like CDK that is activated during the lytic phase through
the phosphorylation of BDLF4 [87]. Herpesviral TBP-like proteins, such as BcRF1, can
directly bind to host RNA polymerase II (Pol II) via the N-terminal domain, although
cellular TBP does not normally bind to Pol II [88]. Confocal microscopy has revealed that
Pol II accumulates inside the BMRF1-core at the late stage of the lytic cycle, while at the
early stage Pol II is located outside the BMRF1-core [47]. BcRF1, which is considered to
bind to Pol II, and transcribed mRNAs of L genes are localised inside the BMRF1-core,
whereas the mRNAs of E genes are located outside the BMRF1-core [47]. vPIC-mediated L
gene transcription requires continuous viral lytic replication [89] and seems to template
mature and stored newly synthesized viral DNA in the BMRF1-core (Figure 4) [90].

In contrast, although vPIC is essential for almost all L genes, some sets of L genes,
such as BCRF1 (vIL10) and BPLF1, do not require vPIC [91,92]. The “leaky” transcription
of these genes is activated in a DNA replication-dependent manner and is caused by
superimposition of both early and late transcription at the same promoter [90,91]. BGLF4
kinase activity elevates both vPIC-dependent and -independent L-gene transcription [92,93].
Therefore, continuous lytic DNA synthesis at RCs is required for both “true” and “leaky” L
gene transcription (Figure 4) [55].

Additionally, the EBV-coded transcriptional factors BZLF1, Rta, and BMRF1 act as
mediators of L gene transcription. Rta interacts with host factors such as TSG101 at RCs and
upregulates L gene transcription [94]. The region encoding the transcription activity of the L
gene in BZLF1 is involved in RC formation [95]. A subset of L genes classified as “true late”
are partially transcribed in response to cellular transcriptional factors, such as AP-1 proteins
with alanine-to-serine mutations, independently of viral DNA replication [96,97]. The
interaction of BMRF1 with the SWI/SNF chromatin modifier subset BRG1 also upregulates
L gene transcription [98]. Taken together, the roles of RCs in L gene transcription are:
(1) acting as sites of vPIC-mediated transcription for storing viral DNA in the BMRF1-core,
(2) allowing continuous replication, which leads to L gene transcription in vPIC-dependent
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and -independent manners, and (3) recruiting most EBV-coded transcription mediators
and their interaction partners. RC formation may provide advantages for the interactions
among viral transcriptional factors, cellular factors, and viral DNA.
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Figure 4. The interaction between continuous replication and vPIC-dependent or -independent
L gene transcription in RCs. (i) Continuous replication is required by vPIC-dependent L gene
transcription. vPIC, including viral TBP-like protein, interacts with the TATT motif on the L promoter
region of viral DNA stored in the BMRF1-core. (ii) Some sets of L genes are transcribed independently
of vPIC. Viral DNA replication stimulates such gene transcription.

7. The Indirect Maintenance of RCs

Viral and cellular factors, even those that do not localize to RCs, partly assist the
formation and maintenance of RCs. One of the heat shock proteins (Hsps), Hsp90, is a
well-conserved molecular chaperone that mediates molecule maturation, stabilization, and
intracellular trafficking [99]. Since BALF5 does not possess nuclear localization signals
(NLSs), Hsp90 beta, which is localized in the cytoplasm, mediates the interaction between
BALF5 and BMRF1, facilitating the nuclear translocation of BALF5 [100].

APOBEC3B (A3B) is a member of the APOBEC family of ssDNA cytosine deaminases,
which participate in antiviral innate immunity, and seems to be antagonistic to EBV viral
gene stability, as A3B catalytic activity mediates deamination of cytosine to uracil in ssDNA.
BORF2, an EBV ribonucleotide reductase, interacts with A3B and is transported to the
cytoplasm from the nucleus, although deletion of BORF2 leads to the localization of A3B to
RCs and reduces viral production [101]. Such protection systems by viral ribonucleotide
reductases are highly conserved among alpha- and gamma-herpesviruses [102]. This
shows that viral DNA stored in the RC is well protected from the cellular antiviral innate
immune response.

8. Conclusions and Future Directions

Once EBV reactivation occurs, RC formation is observed. The four reasons for RC
formation are: (1) RCs enable the spatial separation of newly synthesized viral DNA from
the cellular chromosome for viral DNA protection and maturation; (2) EBV-coded proteins
and their interaction partners are recruited to RCs, which enhances interactions among
viral proteins, cellular proteins, and viral DNA; (3) RC formation facilitates continuous
replication, leading to L gene transcription; and (4) DNA storage and maturation leads
to efficient progeny viral production. These aspects benefit EBV, since viral genomes can
be amplified rapidly and immediately, in addition to maintaining stability by interacting
with host factors, such as DNA repair factors, and evasion of some DDR factors or A3B.
Most viral genes that encode structural proteins are classified as L genes [9]. Both efficient
L gene transcription and genome stability are essential for virion production. RCs play an
important role in almost all phases of lytic replication.
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Recently, the period from primary infection to the establishment of latency, termed
the pre-latent phase, has attracted great interest because early events are directly linked
to EBV-driven transformation [103,104]. During the pre-latent phase, latent genes, as well
as some sets of lytic genes, are expressed temporarily [103,105]. DDR is also temporarily
induced and attenuated until latency is established [106]. However, unlike lytic replication,
cellular DNA synthesis and cell division occur several days after primary infection, progeny
viruses are not produced, and BZLF1 is not necessary for infection during the pre-latent
phase [107,108]. Thus, because cellular aspects during the pre-latent phase differ from
those of the lytic phase, little is known about how viral DNAs are synthesized, including
whether RCs are formed, although viral DNA is abundantly amplified during the pre-latent
phase. Moreover, recently it has been suggested that cells during the “abortive lytic phase”
exist [109]. The “abortive lytic phase” is, so to speak, an “incomplete lytic cycle”, wherein
several early lytic genes are expressed without progeny viral production like the pre-latent
phase [108,110]. Studying these “incomplete lytic phases”, including whether RCs are
assembled or not, might unveil the novel significance of RC formation.
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