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Introduction
Cancer as a single entity is the number one cause of deaths 
globally and currently the world’s biggest healthcare chal-
lenge. Due to the rapid population growth and aging popula-
tions, we are in the era of an impending cancer “tidal wave,” 
with the projected number of new cancer cases expected to 
increase by 70% over the next two decades to reach 24  million 
per year.1 Associated annual deaths are expected to nearly 
double in the same period from 8.2 to 14.6 million (http://
www.globocan.iarc.fr).

Despite a long history of investment in the search for a 
“cure for cancer,” we are still facing a gloomy outlook when 
it comes to effectively treating the disease. Patient stratifica-
tion based on the combination of selective molecular-based 
therapies with biomarkers has seen some improvements in the 
success rate of cancer treatment, representing a real paradigm 
shift in clinical practice; however, this current best practice 
still fails to help the majority of patients. At the basis of this 
often inadequate response is a lack of understanding of the 

high level of genetic (and epigenetic) heterogeneity exhibited 
by patients and their tumors, not only between patients but 
also often within tumors, a level of heterogeneity that current 
approaches to cancer treatment do not fully embrace.2,3

Recent advances in high-throughput sequencing tech-
nologies by initiatives such as the International Cancer 
Genome Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA), focused on analyzing the genetic basis of cancer, are 
bringing to light a fuller appreciation of the molecular com-
plexity of cancer and the realization that identification of key 
driver mutations may not be possible in many cancer types, 
an enhanced understanding that is ushering in a shift of focus 
from individual genes to a more expansive and heterogeneous 
cancer mutational landscape.4–7 With the advent of such prog-
ress, analysis of the generated “big data” becomes a major issue 
in biological research and translational medicine.8 Due to the 
availability of appropriate computational tools and computing 
power capabilities, systems-based computational approaches 
are being developed that can incorporate this emerging view 
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of cancer and facilitate elucidation of pathways and networks 
involved in the response and resistance to treatment.

Here, we highlight how systems-based virtual patient 
models, in particular, the most relevant and influential tech-
niques for the nascent field of mechanistic modeling, are 
shifting the theranostic paradigm for selection of individual-
ized optimal therapy choices in cancer patients and targeted 
drug development.

The evolving Landscape of cancer treatment
Over the past few years, large-scale sequencing initiatives (eg, 
ICGC and TCGA) have exponentially broadened our knowl-
edge of the genetic and epigenetic alterations impacting an 
individual’s risk of cancer, the development of their tumor(s), 
and their prognosis. In tandem, associated research is further 
elucidating the function of an ever increasing number of genes 
and proteins. Fueled by this accumulating knowledge base, 
and the realization that human biology is extremely complex, 
the landscape of cancer treatment is also beginning to evolve.

The prevailing approach to cancer treatment has been 
statistical, identifying the treatment that works best on large 
patient cohorts, ie, the first-line treatment. However, this 
approach fails to address the inherent individuality of each 
patient and their cancer, reflected by the low success rates of 
these treatments.9,10 This strategy has been supplanted by a 
more stratified approach, in which patient groups are subdi-
vided on the basis of biomarkers, providing a crucial and neces-
sary first step toward individualized medicine. Implementation 
of this biomarker-based approach has undoubtedly improved 
understanding of the molecular subtypes of cancer, with asso-
ciated translational success. Of particular note is the use of 
human epidermal growth factor receptor 2 (HER2), a proto-
oncogene encoding the HER2 tyrosine kinase receptor, as a 
biomarker for selecting treatment options. HER2- positive 
patients (between 15% and 20% of breast cancer patients) 
often exhibit an aggressive clinical phenotype associated with 
high metastatic potential and shortened survival.11 Targeting 
the HER2 receptor with trastuzumab, a monoclonal antibody 
therapy, as well as other HER2-directed agents, such as per-
tuzumab, has dramatically improved patient outcomes in all 
stages of the disease12,13; however, despite these major steps 
forward, complete remission is still elusive.14 Similarly, the use 
of Kirsten rat sarcoma viral oncogene homolog (KRAS) muta-
tional status can help determine which patients will respond to 
anti-epidermal growth factor receptor (EGFR) therapies (eg, 
cetuximab and panitumumab)15–17; in contrast to the HER2 
biomarker, the response rate of combined EGFR inhibitor/iri-
notecan therapy in second-line colon cancer is only increased 
from 10% to 35% using the KRAS diagnostic test.18 Treatment 
approaches guided by a limited number of mutations within 
single genes fail to encompass the numerous associated altera-
tions [eg, besides those in KRAS and B-Raf proto-oncogene, 
serine/threonine kinase (BRAF)] that may lead to differential 
responses. These current approaches are proving insufficient to 

provide the level of stratification required to improve therapy 
outcomes for the broader cancer patient pool.

Virtual Patient Models
If we view the onset and progression of a disease as a mal-
function in the biological networks that act on multiple levels, 
spanning molecules, cells, tissues, whole body and populations 
and determined by various genetic and environmental factors, 
then a detailed modeling of the networks integral to a spe-
cific disease should deliver an enhanced understanding of that 
disease, as well as health. For the first time, we are now at 
a stage of understanding and technological development that 
enables the creation of more comprehensive computational 
models of cancer. A combination of decades of research on 
cancer relevant pathways,19,20 increased information on func-
tional interaction networks, and improved technological and 
computational capabilities now makes it feasible to construct 
individualized computational models with predictive capacity. 
Implementation of such technology is set to drive a shift from 
the classical standpoint, in which there is insufficient informa-
tion to accurately describe a complex biological system (eg, a 
cell) and predict its behavior to one that uses computational 
predictive modeling to identify any deregulated components 
within a system and predict its overall direction and behavior.

Various approaches for understanding the biologi-
cal complexity of disease mechanisms have been employed, 
including multivariate analyses of variance, logistic regression 
models, and machine learning to identify intrinsic factors cor-
related with specific disease traits or treatment response. These 
approaches have been used to identify predictive biomarkers 
in the context of drug treatment in cancer cell lines or to auto-
matically classify mutations identified in a given cancer sample 
as functionally important for drug treatment.21–23 The success 
of statistical as well as machine learning methods is very much 
dependent on the statistical model applied to a large set of 
data. Machine learning methodologies can be used for analyz-
ing patient data; however, the large datasets generated today 
by international consortia such as the TCGA and ICGC can 
be seen as a compendium of small datasets with limited data/
information available for each patient. The amount of train-
ing data for each patient is limited by the amount of somatic 
mutations, gene amplifications, deletions and/or differentially 
expressed genes, and other individual-specific information. 
Machine learning approaches, such as those implementing 
Bayesian models, build a statistical model based on avail-
able patient data, but they do this without acknowledging 
the biological, biomedical, and network context of that data. 
 Nevertheless, multiple individualized statistical models can be 
coupled, potentially enabling patient classification into sub-
groups, eg, responders to certain forms of cancer treatment or 
long-term survivors of HIV infection,24 even if the statistical 
model has not been trained on a particular individual.

Mechanistic modeling. To investigate the dynamic 
behavior of such complex systems, mechanistic modeling 
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approaches are also used, based on fundamental knowledge 
of the interactions occurring between components of a com-
plex biological system, to generate in silico models with large-
scale predictive capabilities. At least two distinct approaches 
are taken in mechanistic modeling: discrete and continuous. 
In discrete models, variables reflect either binary ON/OFF 
(Boolean) or multiple states, whereas continuous models, 
such as ordinary differential equation (ODE)-based models, 
can integrate continuous values. The timescales considered in 
these different modeling approaches also differ fundamentally, 
eg, a discrete, arbitrary, or continuous timescale can be imple-
mented for updating species and parameter values present in 
the model (Table 1).25 Depending on the intended applica-
tion and the available dataset to be reflected by the model, 
different combinations of approaches to model variables and 
time are used.25–30 An accurate description of the qualitative, 
semiquantitative, or even quantitative behavior of biologi-
cal signaling systems can be gained. To generate quantita-
tive predictions of signaling models and their associated gene 
regulatory networks, a combination of continuous variables 
that are simulated on a continuous timescale is required – an 
approach that can be taken using ODE systems. In particular, 
this applies to predictive mechanistic models implemented for 
simulation of direct (and indirect) effects of genetic alterations 
in a given patient and functional prediction of drug effects 
based on in silico modeling of drug action.

Detailed mechanistic approaches to modeling cellular 
signaling events require a comprehensive assessment of the 
most important biological reactions underlying each event; 
however, this may not be directly perceived from the infor-
mation available on a given pathway. Therefore, the actual 
process of model creation and improvement often requires 
several iterative steps, comprising (i) annotation of specific 
signaling events, based on the available scientific literature 
and/or pathway databases of signaling nodes (eg, protein spe-
cies and their biochemical complexes, including any molecular 
modifications such as phosphorylation); (ii) identification and 
implementation of the biochemical reactions and molecular 
alterations with which a given network node influences the 
associated nodes (eg, activation/inhibition, phosphorylation, 
and transcriptional induction). This step ensures that the infor-
mation flux within the interaction network follows a known 
and predetermined path given a priori by the known biol-
ogy of the network; (iii) identification and implementation of 

 appropriate kinetic laws along with their respective parameters 
and  variables, including appropriate initial values (eg, species 
concentrations of the network nodes); and (iv) identification 
and implementation of reasonable values for parameters asso-
ciated with molecular reaction kinetics, the latter reflecting 
the velocity and equilibrium of each individual reaction.

In recent years, a plethora of mechanistic computational 
models that aim to simulate disease processes have been estab-
lished. These models effectively represent individual pathways 
(metabolic processes, individual signal transduction pathways, 
and cell cycle regulation) and have generated unprecedented 
biological insights, eg, into the oncogenic process.31–33 How-
ever, the insights gained may be limited, as these focused 
models do not effectively represent key cellular cross-talk 
mechanisms – a feature that is of particular significance in 
the context of predicting patient responses to drugs, as each 
drug perturbs multiple biological targets and is potentially 
involved in multiple biological processes. Overall, a larger 
scale approach is necessary.

Modeling of large-scale systems. Integral to the devel-
opment of large-scale mechanistic models has been the steady 
increase (over the past 10–15 years) in the availability of pub-
lic information sources, providing access to relevant data. 
Examples include PathGuide,34 a comprehensive list of data-
bases and resources for molecular and cellular pathways and 
interaction networks, and the well-known pathway databases 
KEGG35 and Reactome.36 Consensus PathDB is a metadata-
base that integrates different types of functional interactions 
from heterogeneous interaction data resources, as well as from 
other public databases.37 The current version comprises 32 dif-
ferent resources and can be used to generate generic cellular 
networks and perform enrichment or overrepresentation anal-
ysis, eg, of patient molecular data. BioModels38 and JWS39 
are repositories for mathematical models of biological systems, 
while databases such as Brenda40 and SABIO-RK41 provide 
additional information on reaction kinetics and kinetic para-
meters. Detailed information on molecular species and drugs 
can be found in databases such as ChEMBL.42 An overview 
of the frequently used pathway interaction databases, kinetic 
repositories, and information resources for cellular molecules 
and drugs is given in Table 2.

Major progress has also been achieved in the develop-
ment of systems biology software to facilitate the establish-
ment of detailed mechanistic models and to study the behavior 

Table 1. Different approaches to computational modeling of biological networks.

VARIAbLES/TIME ITERATIoNS DISCRETE CoNTINUoUS

Boolean Boolean networks stochastic boolean networks

multi-valued Generalized logic models Discrete time piecewise linear  
differential equations

stochastic multi valued gene networks/
Piecewise linear differential equations

Continuous fuzzy logic models Chemical kinetics

Note: adapted from ref. 25.
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Table 2. Pathway and model data resources and databases.

DATAbASE/DATA RESoURCE DESCRIPTIoN REfERENCE

Pathway databases

PathGuide Comprehensive reference list of pathway-related databases  
and resources

http://www.pathguide.org/34

strInG (meta-)database of physical and functional protein-protein  
interactions

http://string-db.org/60

iHoP exploring gene/protein interaction networks by directly  
navigating through scientific literature

http://www.ihop-net.org/61

Geneontology (Go) Comprehensive biological ontology database http://geneontology.org62

KeGG – Kyoto encyclopedia  
of Genes and Genomes 

Provides pathway maps for biological interpretation http://www.genome.jp/kegg/35

reactome manually curated open-data resource of human pathways 
and reactions

http://reactome.org36

ConsensusPathDB meta-database integrating functional interaction data from 
 heterogeneous interaction data resources

http://consensuspathdb.org/37

PID (Pathway Interaction  
Database)

Collection of curated and peer-reviewed pathways of human 
molecular signaling and cell processes

http://pid.nci.nih.gov/63

Kinetic databases

Brenda Information systems for functional and molecular properties 
of enzymes

http://www.brenda-enzymes.org/40

sabio-rK Comprehensive information about biochemical  
reactions and their kinetic properties

http://sabio.villa-bosch.de/41

Model databases

Biomodels repository for mathematical models of biological processes http://biomodels.org38

JWs online repository for kinetic models of biological systems that can  
be simulated and interrogated online.

http://jjj.biochem.sun.ac.za/39

Chemical entity and drug databases

CheBI Database of chemical entities of biological interest http://www.ebi.ac.uk/chebi/64

ChemBL open access large-scale bioactivity database https://www.ebi.ac.uk/chembl/42

PubChem Public repository of biological activity data on small  
 molecules and rnai reagents

http://pubchem.ncbi.nlm.nih.gov65

Guide to pharmacology open access resource on pharmacological, chemical,  
genetic, functional and pathophysiological targets of  
approved and experimental drugs

http://www.guidetopharmacology.org/66

 

of complex systems. Examples include CellDesigner43 and 
COPASI44; CellDesigner acts as a structured diagram editor 
for drawing biochemical and gene regulatory networks and 
enables simulations using an internal ODE solver or COPASI 
as a backend. In contrast, COPASI does not have a graphic 
diagram editor, but features stochastic and deterministic time 
course simulation functions and provides advanced methods 
for steady-state analysis, metabolic control analysis, parameter 
scanning, and parameter estimation.

More than 10 years ago, we started developing a web-
based modeling system called PyBioS (http://pybios.molgen.
mpg.de).45,46 PyBioS uses an object-oriented design, which 
allows the generation of large-scale models of cellular interac-
tion networks comprising “objects” (eg, genes, proteins, protein 
modifications, and small molecules). Using PyBioS, we have 
established a large and comprehensive model of cancer-related 
signal transduction pathways and related processes leading to 
the development of the predictive ModCell™ systems biology 

modeling platform.46–48 ModCell™ is based on a mechanistic 
model of cancer-related cellular pathways and processes and 
currently integrates 45 different signal transduction pathway 
“modules” that represent the flow of information through 
the cellular signaling network. The model’s modular struc-
ture enables flexible extension of the network through inte-
gration of relevant information, eg, loss- or gain-of-function 
effects triggered by specific mutations in oncogenes/tumor 
suppressor genes, or drug action-specific effects. At present, 
284 mutation-specific modules covering 116 different genes 
(a total of 728 genes are implemented in the model) and 108 
drug- specific modules are part of the ModCell™ network, 
representing many of the known signaling pathways related 
to  cancer.19,20 Updates to the network are made as part of an 
ongoing process as and when relevant information becomes 
available. ModCell™ incorporates only a fraction (∼2.5%) 
of all human protein-encoding genes and, as yet, it does not 
include aspects of the immune system, metabolism, and other 
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factors, such as the microbial milieu, that may influence the 
response to drugs. However, the approach taken does provide 
a large-scale signaling network and has been robust enough 
to identify patient-specific responses to miRNA-based treat-
ments.48 Further work is ongoing to evaluate the validity and 
accuracy of the predictions (including within clinical scenarios) 
generated by ModCell™ and to address sensitivity and uncer-
tainty issues. Examples of the signaling pathways, receptors, 
and ligands implemented within the model are described in 
detail in the study by Röhr et al.48

To carry out simulations, the model is converted into a 
system of ODEs, which can be solved numerically, provid-
ing predictions regarding the functional consequences of the 
molecular changes observed within a particular model. The 
system is seeded with known initial values of all model com-
ponents as well as kinetic parameters used in the differential 
equations, allowing the fate of each object in the system to 
be tracked. In the context of cancer, the process of predict-
ing a patient’s response to a drug or drug combination is a 
stepwise process involving: (i) adaptation of the existing 
ModCell™ generic cancer signaling network to incorporate 
additional pathway information relevant to the specific  cancer 
being studied; (ii) validation of pathway integration; (iii) indi-
vidualization of the network with omics data (eg, exome/
transcriptome/proteome) generated from individual patient 
samples (germline and tumor). Inclusion of germline (control) 
data, eg, from a blood sample, allows identification of mole-
cular data that are unique to the tumor; (iv) incorporation of 
relevant drug data, eg, mechanistic information and kinetic 
parameters; and (v) simulation of the effect of the drug(s) on 
a particular patient tumor using a molecular readout (eg, Myc 
levels, phosphorylation status of TP53, cleavage of PARP1, 
and GTP loading status of RAC1 and CDC42) as a proxy for 
phenotypic effects (eg, cell proliferation, senescence, apoptosis 
induction and cell migration; Fig. 1).

Due to the vast complexity of the biological basis of a 
disease and our incomplete understanding of disease mecha-
nisms, mechanistic modeling of large-scale systems generates 
substantial networks with many unknown parameters. In the 
absence of accurate knowledge on parameter values, a Monte 
Carlo approach can be used to sample the unknown para meters 
from appropriate probability distributions.46 The Monte Carlo 
approach can take into account all existing knowledge on 
reaction kinetics and their parameters as well as any existing 
experimental data that can be linked to model parameters, eg, 
RNAseq expression data describing protein synthesis rates. 
Unknown reaction kinetics can subsequently be modeled by 
simple kinetic laws, such as mass action  kinetics, and their 
parameters can be sampled from appropriate probability dis-
tributions. The Monte Carlo approach enables prediction of 
the consequences (some) of the integrated molecular altera-
tions related to cancer, including pathway cross-talk, on a 
patient-by-patient basis. Proof-of-principle data to support 
the effectiveness of this approach have been provided using 

the PyBioS modeling and simulation system to predict the 
effects of perturbations induced by anticancer drug target 
inhibitors.46 The effects of single drugs and drug combina-
tions on cell proliferation were simulated using models of the 
epidermal growth factor signaling network, constructed with 
and without relevant mutations. The predictions generated 
clearly aligned with evidence from the literature; for example, 
simulation results showed that models with a specific KRAS 
mutation did not have a predicted response to the drugs gefi-
tinib and erlotinib,49 while models with a PIK3CA mutation 
were resistant to cetuximab.50
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figure 1. overview of the modCell™ predictive modeling approach in 
oncology. modCell™ uses publicly available resources, representing 
the sum of knowledge on cancer, cell signaling, and drug action 
(eg, dissociation constants and molecular targets), to construct a large-
scale mechanistic model of cellular signaling. a generic large-scale 
signaling network is established, which can be personalized with omics 
data (eg, transcriptome/exome/proteome) from individual patient tumors/
cell lines/experimental tissues (public and/or private data resources). 
The effects of identified molecular alterations on pathway function 
and cross-talk can then be simulated using the mechanistic modeling 
approach implemented by modCell™ and the underlying PyBios 
modeling framework. response to molecularly targeted drugs (single or 
in combination) can be predicted through establishment of a molecular 
readout (eg, mYC levels, phosphorylation status of tP53, cleavage of 
ParP1, and GtP loading status of raC1 and CDC42) as a proxy for 
phenotypic effects (eg, cell proliferation, senescence, apoptosis induction 
and cell migration), allowing identification of the optimal treatment.
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In tandem, to improve model capabilities, approaches 
that either allow model reduction or enable parameter estima-
tion in the context of large-scale ODE systems are applied 
(or improved).51 These include novel optimization techniques, 
such as deployment of a memetic algorithm based on local 
search chains (MA-SSW-Chain),52 which seeks to minimize 
the difference between predicted and experimental data, as 
well as logically derived predictions. Agreement between 
prediction and observation will differ depending on the para-
meter vectors used; therefore, improvements in the choice of 
parameter space, informed by which regions provide better 
predictions, will help to increase the accuracy of the model.

Given that most parameters of intermediate-to-large-
sized models of biological systems are usually unknown and 
their values might not be identifiable unambiguously on the 
basis of experimental data, the analysis of uncertainty and 
sensitivity can help to judge the reliability of the predictions 
made by a given model. Uncertainty analysis qualifies the 
model’s output as generated from ambiguities in parameter 
inputs. This enables quantification of the degree of confidence 
in the estimated parameters as derived from the experimen-
tal data. Uncertainty analysis can be performed using Monte 
Carlo sampling, in particular, the Latin hypercube sampling 
method,53 for efficient implementation. In addition, sensitiv-
ity analysis enables measurement of the impact of each model 
parameter on its variables. Due to nonlinearity of a model, 
this usually depends on the individual parameter vector.

We anticipate that the large-scale and fine-grained 
 cancer network biology reflected in ModCell™, together with 
improved parameter optimization approaches applied to indi-
vidual molecular cancer profiles, will provide a competitive 
edge over statistical methods. Early evaluation of the model’s 
capabilities has proved that it is robust enough to assess the 
potential of miRNAs as a therapeutic target in colon cancer 
and can identify patient-specific responses to miRNA-based 
treatments.48 In the study conducted by Röhr et al, analysis of 
miRNA expression profiles within normal, tumor, and meta-
static tissues from eight colorectal cancer patients revealed a 
number of miRNAs that were constantly over- or underex-
pressed in tumor and metastatic tissues. One of the identified 
miRNAs, miRNA-1, was selected as representative, and the 
effects of depletion as well as overexpression, as a potential 
treatment, were simulated using the generic cancer model 
(covering more than 42 signaling pathways, plus associated 
ligands and receptors; refer the study by Röhr et al,48 for fur-
ther details of model components). RNA expression levels (in 
normal, tumor, and metastatic tissues) from four patients were 
used to initialize individual-specific models. Each patient 
model was treated with different miRNA-1 concentrations 
and gene expression levels were compared between the  tissue 
types. Gene expression levels were graded (from beneficial to 
negative effects), with those comparable to the normal state 
being positive, and patients who were likely to benefit from 
miRNA-1 treatments were identified. Ongoing research 

as part of a number of international and national projects 
(eg, OncoTrack, SYBIL, and EPITREAT) is further estab-
lishing the validity and accuracy of the model’s predictive 
capacity, and the results generated will be made available to the 
wider scientific community in due course. Clinical validation 
of ModCell™ is also underway as part of a project involving 
11 clinical centers with the aim of optimizing therapy choice 
for patients with metastatic melanoma (TREAT20plus).

Modcell™ Applications
In the context of predicting clinical efficacy of specific thera-
pies for individual patients through computer simulations, 
the deployment of the large-scale mechanistic approach used 
by ModCell™ opens up a number of possible applications, 
including personalized medicine and virtual clinical trial sce-
narios, as well as streamlining the drug discovery and devel-
opment processes (Fig. 2).

Personalized medicine. Given that the majority of 
 cancer patients do not respond to first-line treatment,8 increas-
ing the likelihood that treatments administered actually have 
 beneficial outcomes would not only be a significant step 
toward improving patient welfare but also help to reduce the 

Applications
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drug combinations
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De novo drug target identification

Identification of biomarkers of response to drugs

figure 2. applications of virtual patient modeling in oncology. the 
ability to predict the effects of drugs in silico opens up numerous 
avenues of application, from personalized medicine in the clinic to 
virtual clinical trial scenarios, enabling in silico testing of drug effects 
(single or combination) and potential side effects on individual or large 
patient (or preclinical model) cohorts. In virtual clinical trial scenarios, 
the patients who are most likely to benefit from a particular drug/
drug combination can be selected, based on biomarkers identified, 
for inclusion in smaller, less risky, and less-expensive real-life clinical 
trials. A test bed is also created for assessing the efficacy of existing 
(drug repurposing) or failed drugs (‘fallen angels’), again providing a 
low risk and cost-effective route for further development. for early drug 
development, in silico models can be deployed for selecting the most 
relevant drugs/models for further development.
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spiraling healthcare costs. In particular, due to the growing 
appreciation of the complexity of cancer, and the realization 
that multiple drugs with different mechanisms may provide 
more effective treatment options, there has been a shift from 
the “one-target-one-drug” approach to the application of 
multiple drugs.54 Determination of the right combination is, 
however, extremely cost and time intensive, even in preclinical 
settings. Implementation of ModCell™ for simulating patient 
responses to drug combinations provides a cost-effective and 
risk-attenuated approach for determining the optimal multi-
targeted treatment strategy for individual patients. Due to 
the ongoing optimization of modeling algorithms, treatment 
decisions within the clinic could be supported by a tool that 
can operate essentially in real time, ie, within minutes once 
analyzed genome and/or transcriptome data are available.

Virtual clinical trials. Through upscaling of the appli-
cation, virtual clinical trial scenarios are feasible. Virtual 
clinical trials can be conducted with virtual patient (or pre-
clinical model) cohorts, each comprising multiple in silico 
models  individualized with patient-generated and/or pub-
licly available omics data. In such a scenario, predictions for 
a 1000-patient cohort with two drugs in combination would 
take days to model in silico, compared to months or even years 
required for a “real-life” clinical trial. Predictions generated 
by these  models, plus potential biomarkers of responders/ 
nonresponders derived in the analysis process, provide a robust 
starting point to tailor smaller, more rapid, and cost-effective 
targeted clinical trials. Such a stratification of the patient 
cohort prior to treatment, according to defined cancer bio-
markers, allows the  identification of responders and the most 
beneficial targeted treatment. As part of the validation pro-
cess, ModCell™ is currently being deployed within a clinical 
trial scenario as part of the TREAT20plus project, aimed at 
optimizing therapy choices for patients with metastatic mela-
noma. Further clinical validation studies are currently in the 
planning phase.

Virtual patient technology and virtual clinical trials also 
provide many opportunities for streamlining the drug devel-
opment and approval process, offering avenues for improving 
the current approval rates for newly discovered and already 
existing drugs. Prediction of responder groups from avail-
able omics data (public or private) can help to focus early 
drug development stages, guiding experimental validation in 
animal and cell line experiments. The technology can also be 
deployed in drug discovery projects to determine the effects of 
specific chemical inhibitors in vitro. In silico modeling based 
on whole genome and transcriptome data in a virtual (pre)
clinical trial scenario can provide suggestions as to which 
cancer cell lines and cancers are most likely to respond to the 
chosen compounds.

Drug repositioning (or repurposing) and rescue (‘fallen 
angels’), a process of recycling with the aim of finding new 
therapeutic uses for existing drugs, is another promising area 
of application. Due to the fact that drugs can perturb multiple 

biological targets, each potentially being involved in multiple 
biological processes, there is scope to discover new cancer 
treatments within the large pool of drugs that already have 
approval for different diseases or that have failed clinical trials 
due to lack of efficacy rather than safety issues. Drug repo-
sitioning efforts span a continuum from purely serendipitous 
observations to targeted knowledge-based efforts that rely on 
more complex computational strategies.55,56 Recent efforts 
have highlighted the usefulness of network-based computa-
tional approaches for prediction of drug–target interactions, as 
well as network visualization of drug–target, target–disease, 
and disease–gene associations, to provide information that 
could facilitate discovery of new therapeutic indications or 
adverse effects associated with old drugs.57,58 In the context 
of ModCell™, information generated by such resources can 
be used to extend the model with further molecular pathway 
information, helping to define the topology of the model and 
reflecting additional kinase activities of interest.

An integrated approach to drug repositioning and rescue 
that incorporates the heterogeneity of patients and their disease 
and provides options for elucidating unknown disease mecha-
nisms can be taken. By capitalizing on the knowledge already 
available on well-characterized drugs, including mechanisms 
of action, as well as the growing molecular information base 
on individual cancer patients generated by initiatives such as 
the TCGA and ICGC, new drug candidates can be selected 
for individual patients or patient cohorts. In this way, virtual 
patient models in oncology provide an ideal testing ground 
for drug repurposing, accelerating timelines, reducing risks to 
patients, and improving cost-effectiveness of the drug discov-
ery and development pipelines.

drug target identification. An enhanced understanding 
of the functional effects of disease-related molecular altera-
tions on cellular signaling and subsequent gene regulation 
also provides opportunities for de novo drug target identifi-
cation. Based on omics data and/or disease-specific mecha-
nistic changes as well as disease-specific molecular readouts, 
the generic model of cellular pathways in ModCell™ can be 
adapted to a specific disease by defining appropriate molecular 
alterations. A subsequent systematic alteration of each model 
component or a comprehensive sensitivity analysis could pro-
vide a list of candidates to which the disease-specific readouts 
are most sensitive. These candidates could potentially be the 
most promising targets for subsequent drug development. Such 
an in silico prescreening process can help focus the drug target 
identification process and hence make the development of new 
drugs (eg, for orphan diseases) feasible and cost-efficient.

ModCell™ also holds promise for predicting off- target 
effects of selective drugs. Many cancer drugs target the selec-
tive expression of mutations within tumor tissues; for example, 
the activating BRAF V600E mutation that is often expressed 
in melanoma and colon cancer.59 Vemurafenib, a selective 
inhibitor of the BRAF V600E mutant protein, is effective 
in treating V600E-positive melanoma; however, it can also 
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cause severe side effects due to off-target activation of the 
wild-type RAF-dependent signaling cascade. The combina-
tion of knowledge on the molecular mechanisms underlying 
the effectiveness of such inhibitors with in-depth analysis 
of an individual’s genetic background offers opportunities 
for ModCell™ to provide a more comprehensive analysis of 
drug effectiveness.

Future Perspectives
The application of virtual patient models such as ModCell™ 
opens up a number of novel avenues of application, from the 
development of companion tools to inform clinical decision 
making to positively impacting the drug development and 
approval pipeline for the pharmaceutical industry. In the 
medium to the long term, application of the virtual patient 
mechanistic modeling approach would provide the opportu-
nity to implement a more systematic approach to the treat-
ment of patients. Clinical decision making would be informed 
by a clinical companion tool that would categorize patients 
through an iterative and standardized decision-making pipe-
line, identifying patients likely to respond to a specific drug 
or drug combination and those at risk of developing side 
effects. In the first instance, this would be applicable within 
oncology, with the potential to expand the area of applica-
tion to a broader disease (and drug type) panel, in particular, 
 diseases with  primarily genetic causes, eg, diabetes and vas-
cular diseases.

Identification of more effective treatment options using 
single drugs repurposed for a new disease type or even using 
combinations of targeted drugs approved for the same disease 
could clearly benefit the patient in terms of effectiveness of the 
initial treatment regime and help to avoid multiple rounds of 
stressful and costly treatment cycles. In their present form, 
clinical trials assess the safety of a single drug with respect 
to concentration tolerance, side effects on healthy individu-
als, etc., whereas combinations of drugs are not rigorously 
assessed in the same way. Due to toxicity concerns, application 
of targeted drug combinations is often hindered by regula-
tory obstacles. ModCell™ can predict drug combinations that 
would make most sense with respect to therapeutic outcomes, 
but that may prove impractical as a treatment approach due to 
other issues, such as unforeseen toxic side effects. An expan-
sion of phase 1 clinical trial design may be required to allow 
combinatory drug treatments with a broader scope than the 
current, “off label”/“compassionate use” of drugs within indi-
vidual patients.

Virtual patient models in oncology – and beyond – are 
set to become an integral part of the normal clinical diagno-
sis and treatment process, increasing the likelihood of ben-
eficial outcomes for patients and cost-effectiveness of already 
cash-strapped healthcare systems. Such technology not only 
holds promise for improving patient outcomes by focusing 
diagnoses and treatment decisions but through virtual clini-
cal trials will also help to ensure that patients most likely to 

respond positively to a drug will be enrolled in clinical trials, 
with the  associated impact for drug development pipelines. 
Virtual clinical trials also present opportunities to reduce or 
even abolish animal testing in preclinical drug developmental 
stages. In the future, virtual clinical trials will be an obliga-
tory ethical responsibility, helping to avoid unnecessary suf-
fering of both animals and patients.

However, concerted effort is still required to reap the 
benefits of the ongoing progress in computational modeling 
technologies and the accumulating knowledge base on disease 
processes at the level of the individual. Personalized, precision 
medicine, based on the systematic molecular characterization 
of patients and their diseases, requires development of the rel-
evant technological infrastructure, comprising an improved 
environment for data handling, data processing, and data 
exchange, as well as the accompanying legal, regulatory, and 
educational framework.
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