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Abstract

Background: Using gene order as a phylogenetic character has the potential to resolve previously unresolved species
relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of
marine cyanobacteria.

Methodology/Principal Findings: Orthologous gene sets and their genomic positions were identified from 12 species of
Prochlorococcus and 1 outgroup species of Synechococcus. From this data, inversion and breakpoint distance-based
phylogenetic trees were computed by GRAPPA and FastME. Statistical support of the resulting topology was obtained by
application of a 50% jackknife resampling technique. The result was consistent and congruent with nucleotide sequence-
based and gene-content based trees. Also, a previously unresolved clade was resolved, that of MIT9211 and SS120.

Conclusions/Significance: This is the first study to use gene order data to resolve a bacterial phylogeny at the genus level. It
suggests that the technique is useful in resolving the Tree of Life.
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Introduction

Comparisons of genomes reveal difference in the order of genes.

This provides a phylogenetic character to resolve species

relationships and complements the standard approach of using

the nucleotide as the character of interest. Genes are rearranged in

the genome by evolutionary events such as inversion, transposi-

tion, and inverted transposition, collectively called genome

rearrangements [1–3]. Since these are rare events, a phylogeny

inferred from gene rearrangements has the potential to resolve

ancient phylogenetic relationships [2]. Consequently, gene order

data has been used in phylogenetic reconstructions of mitochon-

drion and chloroplast genomes [4–6] as well as bacterial genomes

[7]. With the increasing number of whole genome sequences and

the development of new algorithms, gene order data presents an

accessible means to reconstruct species phylogenies [7].

Prochlorococcus is a genus of photosynthetic marine cyanobacteria

which accounts for nearly one-half of the photosynthetic biomass

and primary production in tropical and subtropical oceans [8,9].

Past phylogenetic studies of Prochlorococcus has mainly relied upon

nucleotide sequence data [10–12]. However, some key parts of the

topology were unresolved. For example, whether SS120 and

MIT9211 form a monophyletic group remained unknown [11]. In

this study, we use alternative approaches to investigate the

Prochlorococcus phylogeny and better resolve the topology.

Currently, twelve whole genome sequences in the genus

Prochlorococcus are available and provide an opportunity to study

the evolution of this organism from a genomic perspective. In this

study, we use inversion and breakpoint distances to reconstruct the

phylogeny of the genus Prochlorococcus and to resolve a controversial

node with statistical confidence.

Methods

Genome annotation
The whole genomic DNA sequences of the 12 Prochlorococcus

genomes and the Synechococcus WH8102 genome were downloaded

from NCBI and re-annotated by the RAST Server [13]. The RAST

Server identified protein-encoding, rRNA and tRNA genes using

subsystem technology and formatted the results as a Genbank file

[13]. Using Perl scripts, this file was parsed for the predicted protein-

coding sequences and their corresponding genomic positions.

Ortholog identification
The predicted protein sequences from these 13 genomes were

pooled, and then the BLASTCLUST software [14] was used to

cluster sequences based upon their similarity. BLASTCLUST is a

two-step procedure where homologous genes are identified by

pairwise similarity and then clustered into gene families by the

single-linkage method. The criteria used to find pairwise matches

were more than 30% sequence similarity across a minimum of

50% of their lengths. For the gene families with paralogs,

additional BLASTCLUST procedures with higher stringency

were implemented to discover the true orthologs. This process was

repeated to recover all putative protein-coding orthologous genes

shared by these 13 genomes.
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Gene order generation
Perl scripts were written to extract the positions of all protein-

coding regions. The order of orthologs in each genome was

determined based upon their starting position and strandedness.

Each genome was coded as an ordered set of signed genes where

sign indicates strandedness [2].

Gene order phylogenetic reconstruction
GRAPPA [1,15] was used to compute the pairwise inversion

and breakpoint distances from the gene order data. This software

outputs a distance matrix. Then the FastME [16] program

constructed the inversion and breakpoint distance-based phyloge-

netic trees. The tree topologies were displayed by MEGA4 [17].

To calculate the statistical reliability of the branches of the

phylogeny, we applied a jackknife resampling technique that

randomly removed 50% of the initial orthologous gene sets. We

generated 100 jackknife random samples and acquired 100

matrices for both inversion and breakpoint distances. These 100

matrices were imported into the FastME program to obtain 100

inversion and breakpoint distance-based trees. Finally, the

CONSENSE program in the PHYLIP software package [18]

was used to obtain a majority rule consensus tree with the numbers

at each node representing the percentage that the clade defined by

that node appears in the 100 jackknife trees. These values were

assigned to the nodes of the initial gene order tree.

Results and Discussion

Orthologs shared among Prochlorococcus and
Synechococcus WH8102 genomes

Reconstruction of inversion and breakpoint distance-based

phylogenies depend on finding shared orthologous genes among

the organisms of interest. The BLASTCLUST procedure revealed

1131 orthologous genes which are shared by all 13 genomes, the

12 Prochlorococcus and the outgroup Synechococcus WH8102. These

1131 orthologous genes represent the core genome. This count of

orthologous genes is lower than the 1273 reported previously [11],

but this latter study had no outgroup.

Sequence-based and gene-content based phylogeny of
Prochlorococcus

Based on the pigment composition as well as their phylogenetic

relationships, Prochlorococcus cells are classified into high light (HL)

adapted and low light (LL) adapted ecotypes [12]. To date, 12

Prochlorococcus genomes have been sequenced, which consist of 6

HL and 6 LL strains.

The usual approach of using 16S rRNA and protein-coding

genes has been applied to reconstructing the relationships within

Prochlorococcus. In the 16S rRNA tree and the consensus tree

inferred from single core genes, the 6 HL genomes form a

monophyletic cluster, while 6 LL genomes are paraphyletic

(Fig. 1A & 1C). In addition, these two trees show that the 6 HL

genomes form 2 separate clades, with MED4 and MIT9515

comprising one cluster and the remaining 4 HL genomes forming

the other cluster.

Although a single gene tree has been used extensively to estimate

the species tree, evidence has been shown that gene trees may differ

in topology from each other and the true tree [19]. Also, it is

especially difficult to use gene trees to represent the prokaryotic

species phylogeny, as it has been documented that lateral gene

transfer (LGT) occurs among prokaryotic genomes, and LGT may

obscure the phylogenetic signal [20]. Although it was believed that

such reconstruction is still possible if a group of core orthologous

genes is available which is not affected by LGT, it is difficult to obtain

such an orthologous gene set that is refractory to LGT [20,21].

Consequently, we do not know the fraction of truly orthologous

genes that were used to reconstruct the consensus tree of

Prochlorococcus (Fig. 1C).

A recent study proposed that the ‘‘Tree of Life’’ may be resolved

by concatenation of 31 orthologs occurring in 191 species [22], and

an analogous approach has been applied to infer Prochlorococcus

phylogeny by random concatenation of 100 protein sequences

sampled from the Prochlorococcus core genome [11]. The concatena-

tion-based phylogeny is consistent with the above relationships shown

in the 16S rRNA tree and the consensus tree (Fig. 1A, 1B & 1C).

Recently, it has been proposed that gene content is a

phylogenetically informative character in species phylogeny

Figure 1. Phylogeny of 12 Prochlorococcus genomes inferred from (A) 16S rRNA, (B) random concatenation of 100 protein sequences
sampled from core genome, and (C) concensus tree of all core genes. Trees were reconstructed by neighbor-joining (A), maximum
parsimony (B), and maximum parsimony (C) methods. The trees are reprints from Kettler [11]. HL, high light adapted strains; LL, low light adapted
strains.
doi:10.1371/journal.pone.0003837.g001
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reconstruction [23]. The gene-content based phylogeny has also

been reconstructed for the genus Prochlorococcus, which shows the

same topology as the gene concatenation tree [11].

Among the 6 LL genomes, all of the above three sequence-

based phylogenies and the gene-content tree show that NATL1A

and NATL2A form a cluster, and MIT9303 and MIT9313 form

another cluster. However, these trees differ in regard to whether

SS120 and MIT9211 form a separate cluster. Though the

concatenation-based and gene-content based phylogeny supported

the monophyly of these two organisms (Fig. 1B), the consensus tree

did not show sufficient support and the 16S rRNA supported

alternative topologies for this node (Fig. 1A & 1C [11]). In the

sequence-based consensus tree, values for each node represent

fraction of genes supporting each node, and it is apparent that the

SS120/MIT9211 node lacks sufficient statistical support (Fig. 1C),

and in the 16S rRNA tree they do not cluster. In other words, the

16S rRNA phylogeny supports four separate clades for the 6 LL

genomes. The 16S rRNA phylogeny has been frequently cited and

discussed elsewhere [11,24,25].

Although it has been shown that phylogenetic reconstruction

based upon concatenation of multiple orthologous genes can

generate a more accurate tree than a consensus of multiple gene

trees, concatenated alignments may severely reinforce the

systematic errors accompanied with some individual genes, which

can be erroneously represented by high bootstrap values [26].

Therefore, it would be desirable to investigate the questionable

node in the Prochlorococcus phylogeny using other models

independent of sequence-based methods.

Gene order phylogeny of Prochlorococcus
Recently, gene order phylogenies have been gaining ground [4–

7]. Distance-based reconstruction of gene order phylogeny can be

implemented by computing breakpoint and inversion distances.

Breakpoint distance is the number of gene adjacencies that are

present in one genome but absent from the other genome, hence

breakpoint distance describes the dissimilarity of the gene order

between two genomes [27]. Inversion distance is calculated from

the minimum number of inversion events that are required to

convert one genome to the other [27]. As has been shown, both

breakpoint and inversion distances may underestimate the true

evolutionary distance, while a distance-correction algorithm,

called empirically derived estimator (EDE), outperforms the other

two methods by correcting the minimum inversion distance

between the two genomes [27].

Alteration of gene order implemented by inversion, transposi-

tion, and inverted transposition was deemed as rare events, so it

has been suggested that gene order phylogeny reconstruction is

able to resolve deep phylogenetic relationships [27]. Indeed, gene

order data was successfully applied to reconstruct phylogeny of 30

genomes of Gamma-Proteobacteria [7]. However, no studies have

been reported regarding the application of gene order data in

phylogenetic reconstruction of shallow relationships, such as at the

genus level. We are fulfilling this gap by illustrating that gene order

based phylogeny is able to resolve a controversial node regarding

the position of MIT9211 and SS120 in the phylogeny of the genus

Prochlorococcus.

The inversion distance-based tree has the same topology as the

breakpoint distance-based tree (Fig. 2). There was also a strong

correlation between inversion and breakpoint distances (R = 0.99),

indicating that inversions are the primary events causing the

breakpoints in Prochlorococcus genomes. The inversion and break-

point distance-based trees are generally consistent with the

sequence-based and gene-content based trees, showing that 6

HL genomes form a monophyletic group, while 6 LL genomes do

not, and that the 6 HL genomes comprise two separate clades.

Regarding the 6 LL genomes, inversion and breakpoint distance-

based phylogenies show that NATL1A and NATL2A, as well as

MIT9313 and MIT9303 form two separate clusters, which is

Figure 2. Phylogeny of 12 Prochlorococcus genomes inferred from (A) an empirically derived estimator (EDE) inversion distance and
(B) a breakpoint distance matrix tree. Values at nodes show the number of times the clade defined by that node appeared in the 100 jacknife
trees. Values above branches and the scale bar show number of genome rearrangement events. The Synechococcus WH8102 is used as an outgroup.
doi:10.1371/journal.pone.0003837.g002
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congruent with all sequence-based trees. However, the two gene

order phylogenies provided strong evidence that MIT9211 and

SS120 form a separate cluster by showing high jackknifing value

support. It appears that gene order phylogeny is a potent tool to

resolve controversial nodes generated by sequence-based methods.

Together with the observation that the gene order tree is

generally congruent with sequence-based and gene-content based

cladograms, we conclude that gene order data is useful in

phylogenetic reconstruction of closely related bacteria.

Proposed phylogeny of Prochlorococcus
Though gene order approach is powerful in resolving

controversial phylogenetic relationships, there are some limitations

for the application of gene order to phylogenetic reconstruction of

closely related organisms. We notice that the phylogenetic

relationship of four organisms, including MIT9312, MIT9215,

MIT9301, and AS9601, was not resolved in the gene order tree.

We further note that the inversion and breakpoint distance

between each pair of the four organisms were very low (,10

events), suggesting that few genes were altered in their genomic

positions. When 50% of the common orthologous genes were

removed in the 100 jackknifing tests, those few phylogenetically

informative genes were likely removed many times, resulting in

collapse of the topology of those four organisms. In addition, the

inversion and breakpoint distance-based trees show that the

MIT9211/SS120 clade is closer to the 6 HL genomes than the

NATL1A/NATL2A clade with high jackknifing value support,

while the sequence-based trees show that the latter clade is closer

to the HL species/strains than the former one. These two

hypotheses are not yet resolved.

We integrated the phylogenetic reconstruction of Prochlorococcus

from gene order data as well as concatenated alignments, and

proposed two alternative phylogenies of the genus Prochlorococcus in

Figures 3A and 3B.
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