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Developing novel long-lived room-temperature polymer phosphorescence (RTPP) materials could significantly expand their
application scope. Herein, a series of RTPP materials based on eight simple vanilla derivatives for security ink application are
reported. Attributed to strong mutual hydrogen bonding with polyvinyl alcohol (PVA) matrix, vanilla-doped PVA films exhibit
ultralong phosphorescence emission under ambient conditions observed by naked eyes, where methyl vanillate shows the
longest emission time up to 7 s. Impressively, when vanilla-doped PVA materials are utilized as invisible security inks, and the
inks not only present excellent luminescent emission stability under ambient conditions but also maintain perfect reversibility
between room temperature and 65°C for multiple cycles. Owing to the unique RTPP performance, an advanced
anticounterfeiting data encoding/reading strategy based on handwriting technology and complex pattern steganography is
developed.

1. Introduction

Pure organic luminogens with room temperature phospho-
rescence (RTP) have attracted increasing attention owing to
their unique material characteristics and the wide application
potential in optoelectronic and biological fields including
sensitive sensing [1–3], anticounterfeiting [4, 5], organic
optoelectronics [6–8], and biological imaging [9–11]. To
obtain efficient phosphorescent emission [12], many strate-
gies based on the molecular structure design and spatial
stacking have been proposed to facilitate the spin-orbit cou-
pling, promote the intersystem crossing (ISC) [13–15], or
restrain nonradiative transition [16], which include heavy
atom effect [17], hydrogen bonding [18, 19], crystallization
[20], host-guest complexation [21], and ionic bonding [22,
23]. Thus, many different types of inorganic materials with
variable luminescence output have been explored, such as
transition element complexes, inorganic semiconductor
nanocrystals [24], carbon dots [25], and rare earth metal-
organic frameworks [26]. While metal-containing com-
pounds are efficient RTP luminophores, heavy metal com-

plexes are often costly and highly biological toxic, with low
processability as well as poor flexibility and good biocompat-
ibility [26–30]. Compared to inorganic materials, some
organic phosphorescence materials have the advantages of a
wide variety, high compatibility, appreciable stability, and
good processability [5, 31, 32]. Therefore, organic RTP mate-
rials possessing ultralong emission from their structural ver-
satility are attractive alternatives.

Conventional single component RTP emission has nor-
mally an emission lifetime over 100ms and quantum yield
(Φp) below 5% under ambient conditions [33, 34]. Some
recently discovered long-lived RTP systems show Φp of up
to 31.2% (2,4,6-trimethoxy-1,3,5-triazine powder) [35] and
a lifetime of more than 1,360ms (isophthalic acid structure)
[21, 23]. Studies have also been conducted to realize persis-
tent RTP through single component organic materials and
doped systems, which include a persistent luminescence
material based on the organic photo-induced charge separa-
tion system [36], amide derivatives with high quantum yield
and long lifetime [33], visible-light-excited organic green
phosphorescence emission system [37], and single-crystal
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emission system from blue to red based on the diphenylsul-
fone core functionalized with phenoxazine and phenothia-
zine units [38]. Meanwhile, we recently reported a series
of pyrene derivatives doped in polyvinyl alcohol (PVA)
matrix to show tunable room-temperature polymer phos-
phorescence (RTPP) from blue to red [39] and dynamic
excitation-dependent polymeric long persistent lumines-
cence systems using polyphosphazenes [40]. Nevertheless,
RTPP systems with ultralong lifetime and high quantum
yield are still rare.

Although electronic medium has become an indispens-
able part of our daily life, the paper is still a widely used
information storage medium. Therefore, the security
requirements of paper information are demanding higher
and higher. One of the most popular ways to achieve
paper-based secure data recording is to use security ink,
where printed information or patterns are visible only under
ultraviolet light [41, 42]. While a series of photoluminescent
material inks such as stimulus-responsive discolored sys-
tems, photochromic polymers, metal-free carbon dots, and
ion quenched fluorescence switches have been reported
[43, 44], fluorescent inks are mainly limited to single security
with short fluorescence lifetime, which is unable to fulfill
higher level security requirements.

Based on the molecular design viewpoint, hydrogen
bonding interaction is very important for achieving RTPP
by minimizing the nonradiative decay processes [45, 46].
Vanilla derivatives can form inter/intramolecular hydrogen
bonding in the PVA matrix to suppress nonradiative transi-
tion or reduce molecular motions and triplet deactivation
process by forming a relatively rigid amorphous environ-
ment (Figure 1). Herein, we tuned methoxy (-OCH3) and

carboxylic acid (-COOH) functional groups on vanilla deriv-
atives, where vanilla molecules surrounded by mutual hydro-
gen bonding interactions in the PVA matrix could lead to
suppressed nonradiative transition. To validate this strategy,
eight simple vanilla derivatives (M1 to M4 and M1-acid to
M4-acid) were doped into the PVA matrix. Obviously, all
films (except M2) emit sky blue phosphorescence emission
after the removal of 254 nm UV lamp. These films exhibit
strong RTPP performance with long lifetime phosphorescence
emission, reaching 7 s emission under naked eye observation
(Supplementary Figure S1 and Table S1). M4 with the PVA
matrix shows the longest phosphorescence lifetime up to
369.8ms, which is longer than most of the reported RTPP
materials. It is noteworthy that the phosphorescent lifetime
of M2 with the PVA matrix is 3.9 times higher than its acid
form M2-acid in the PVA matrix. These results demonstrate
a new method to discover more RTPP materials. Because of
the selective emission characteristics of the paper matrix,
the visualization for on/off switching of phosphorescence
signals could be realized, showing promising potential for
information encryption and fingerprint identification.

2. Results and Discussion

To study the photophysical properties, a series of films were
fabricated by a drop-coasting method based on hydrolyzed
PVA aqueous solution (30mgmL-1) containing different
concentrations of vanilla compounds (0.1, 0.3, 0.5, 1.0, and
3.0mgmL-1 denote as M-0.1mg, M-0.3mg, M-0.5mg, M-
1.0mg, and M-3.0mg, respectively). As PVA has a lot of
hydroxy groups, these vanilla compounds with hydroxy
groups could easily form hydrogen bonding with PVA. The
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Figure 1: Chemical structures and long-lived phosphorescence photographs. (a) Chemical structures of M1, M1-acid, M2, M2-acid, M3, M3-
acid, M4, and M4-acid. (b) Long-lived phosphorescence photographs of M-doped PVA films under 254 nm excitation.
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formed hydrogen bonding interactions provide a relatively
rigid environment to suppress nonradiative transition, bene-
ficial to the generation of long-lived phosphorescence emis-
sion [18, 19]. Thus, hydrogen bonding is the main factor to
suppress the total nonradiative decay from triplet excited
state based on the intramolecular and intermolecular pro-
cesses in vanilla-doped PVA films (Figures 2(a) and 2(b)
and Supplementary Figure S2).

Among them, M1-M4-doped PVA films have a longer
phosphorescence lifetime than that of M-acid-doped ones
because of different substitutions. There are two major rea-
sons to consider. (i) Because having more methyl groups
would occupy more space and result in the suppression of
nonradiative decay [47], M1 shows a longer phosphores-
cence lifetime than that of M1-acid in the PVA film. The
intermolecular motion of the -COOH group is easier than
that of -COOCH3, which may increase the Knr

Phos rate from

the triplet excited state in the M-acid series. For example,
while the chemical structures of M1 and M1-acid are very
similar, the Knr

Phos of M1-acid is 3.5 times higher than that
of M1 in the PVA film (Supplementary Figure S3). (ii)
Energy dissipation in the form of thermal relaxation of
the -OCH3 group is larger than that of the -CH3 group,
which influences the phosphorescence lifetime. For example,
M1-doped film (363.8ms) has a longer phosphorescence
lifetime than M2 (282.2ms), M1-acid-doped film (101.3ms)
has a longer lifetime than M2-acid (72.8ms), M4-doped film
(369.8ms) has a longer lifetime than M1 (363.8ms), and
M4-acid doped film (105.5ms) has longer lifetime than M1-
acid (101.3ms).

Powder X-ray diffraction (XRD) studies show supporting
evidence (Supplementary Figure S4). Pure PVA film exhibits
two diffraction peaks at θ1 = 19:52° and θ2 = 22:44°. To our
surprise, the diffraction peaks of M1 (θ1 = 19:32° and θ2 =
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Figure 2: Schematic illustration and spectral studies. (a, b) Schematic illustration of the RTPP process and hydrogen bonding in vanilla-
doped PVA films. Fluo.: fluorescence; Nonrad.: nonradiative transition. (c) Fluorescence spectra (λex = 254 nm) of M1-M4-doped PVA at
0.3mgmL-1 doping concentration. (d) UV-Vis absorption spectra of M1-doped PVA films at 0.1mg, 0.3mg, 0.5mg, 1.0mg, and
3.0mgmL-1. (e) Phosphorescence spectra of M1-0.3mg PVA film with 250 nm-360 nm excitation wavelength. (f) Phosphorescence
spectra (λex = 254 nm) of vanilla-doped PVA films at 0.3mgmL-1 doping concentration.
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22:40°) and M1-acid (θ1 = 19:40° and θ2 = 22:50°) doped
with PVA are different from that of the pure PVA film. A
similar situation happens to other doped PVA films. These
results indicate that different microstructures of these
vanilla-doped PVA films have a different degree of
hydrogen bonding formation, leading to the shifts of the
two characteristic diffraction peaks in all doped films.
Differential scanning calorimetry results exhibit that M1-
0.3mg has the highest glass transition temperature than
other M1-doped PVA samples. Thermogravimetric analysis
also exhibits that M1-0.3mg has the highest temperature of
95% weight loss (Supplementary Figure S5), indicating an
important role of hydrogen bonding interaction in the
doped PVA. The effect of the hydroxyl group was also
confirmed in different rigid matrices. It was proven that the
amount of hydrogen bonding interactions in doped systems
is closely related to the suppression of nonradiative
processes (Supplementary Figure S6).

The maximum emission peak of these vanilla-doped
PVA locates around 460nm (M4-doped PVA is at 435nm).
Under the excitation at 254nm (Figure 2(c) and Supplemen-
tary Figure S7), M1-doped PVA shows an obvious
fluorescence emission peak even at low concentrations (0.1
and 0.3mg). To confirm the most suitable excited
wavelength, UV-vis absorption spectra were obtained,
indicating that M1-doped PVA has two different absorption
peaks (Figure 2(d)). M1-0.1mg and M1-0.3mg only show
the UV absorption at 315nm, while M1-0.5mg, M1-1.0mg,
and M1-3.0mg systems present two new absorption peaks at
267nm and 306nm. At the same time, transmittance spectra
indicate that all films possess good transparent properties
(Supplementary Figure S8). Phosphorescence emission
spectra of the M1-PVA film exhibit slight excitation-
dependent emission under 250-360nm excitation, and the
maximum emission peak shifts from 462nm to 473nm
upon changing the excitation from 250nm to 340nm
(Figure 2(e) and Supplementary Figure S9a). Other doped
PVA films were also investigated (Figure 2(f)). It should be
noted that the maximum phosphorescence emission of M1-
doped PVA film (465nm) red shifts as compared with that
of M1-acid-doped PVA film (453nm). The reason might be
ascribed to different electron delocalization of substituents
(-COOCH3 and -COOH) on the phosphor molecules
(Supplementary Figure S9b,c). M2-doped PVA film shows
the copper green emission at 501nm when compared
with the M2-acid-doped PVA film, as indicated in the
Commission Internationale de’L’eclairage (CIE) map
(Figure 3(b)). The different RTPP emission ranges may
be caused by different emission states (aggregated or
separated) of phosphors in the PVA matrix.

Long-lived phosphorescence decay profiles show mono-
exponential fitting, indicating that only one triplet emission
center exists for these films (Figure 3(a) and Supplementary
Figure S10 and S11). Luminescent lifetime and intensity
decrease with the increase of temperature from 77K to
300K, exhibiting typical RTP emission characteristics
(Supplementary Figure S12-S14 and Table S2). For further
understanding, the mechanism of the long-lived
phosphorescence, the phosphorescence emission lifetime,

and quantum yields of these films were recorded under
ambient conditions. M4-doped PVA shows the longest
phosphorescence lifetime (τ = 369:8ms) with Φp of 11.19%,
while M2-acid-doped PVA exhibits the shortest
phosphorescence lifetime (τ = 72:8ms) with Φp of 12.93%. It
should be noted that, although M2-doped PVA has lower Φp
than that of M2-acid-doped PVA, the former exhibits 4 folds
of lifetime higher than that of the latter. Similarly, M3-doped
PVA (τ = 303:8ms) shows a longer phosphorescence
lifetime than that of M3-acid-doped PVA (τ = 223:4ms),
and the phosphorescence lifetime of M4-doped PVA is
longer than that of M4-acid-doped PVA. As compared with
M4-doped PVA, M1 with one more -OCH3 group in the
PVA matrix presents a longer lifetime, but lower Φp. The
reason may be that the -OCH3 group rotates more easily
than -CH3, thus causing higher intermolecular motion. It is
very interesting that these pure organic compounds in the
PVA matrix show such a long phosphorescence lifetime
with high quantum yields, attributed to the strong
hydrogen bonding interaction for suppressing nonradiative
transition in the doped systems. Taking M1 as an example
(Supplementary Figure S2, Figure S3, and Table S1), the
Knr

phos value of M1 at the crystal state and doped film state
is 2258 s-1 and 2.56 s-1, respectively. For these doped PVA
films, the RTPP is dominated by the doping concentration
of phosphors. An optimum concentration of vanilla-doped
PVA was determined to be 0.3mgmL-1 of vanilla
compounds in the PVA aqueous solution (30mgmL-1). At
lower doping concentrations, vanilla compounds could not
form enough hydrogen bonding with PVA to suppress the
nonradiative transition. When the doping concentration is
over 0.5mgmL-1, excessive -COOH and/or -OH groups of
phosphors cannot fully form hydrogen bonding with the
PVA chain, thus increasing the vibration of the PVA system.
Therefore, it is generally appreciated that photophysical
properties are closely related to the molecular structure of
these phosphors.

Interestingly, the phosphorescence property of these
vanilla-doped PVA films shows obvious temperature depen-
dence. The major attraction is the significant change of phos-
phorescence spectra upon naturally cooling from 65°C to
room temperature under ambient conditions, where the
maximum phosphorescence emission intensity decreases
from 3,250 to almost 0 a.u. after 50min (Figure 3(c)). By
heating the samples under the same conditions, obvious
phosphorescence intensity could be recovered (Figure 3(d)).
In addition, M1-0.3mg-doped film exhibits almost identical
phosphorescence intensity in different environments (i.e.,
air, argon, and oxygen), revealing the inertness of the triplet
excited states to oxygen (Supplementary Figure S15a).
However, the phosphorescence emission spectra are sensitive
to water molecule (Supplementary Figure S15b). On account
of hydrogen bonding interaction in these RTPP systems,
the temperature dependence should be caused by moisture
in the air, i.e., water could permeate into films to break
hydrogen bonding between vanilla molecules and PVA
matrix [5]. During the cooling process, hydrogen bonding
interactions would be destroyed by the interference of
the water molecules, resulting in increased nonradiative
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transition pathways in doped systems. On the contrary, in
the heating process, the evaporation of water molecules
from the doping systems leads to the reformation of
hydrogen bonding interactions between phosphors and
PVA.

To gain a deep insight into the unique phosphorescence,
the UV stability experiments of all luminescent films were
conducted (Supplementary Figure S16). The maximum
emission intensity shows a very little change when the
irradiation time increases from 0 to 20 hours, revealing that
the UV stability of these long-lived room-temperature
polymer phosphorescence films is high. In addition, weak
phosphorescence emission of M1-0.3mg-doped PMMA
also proved that a relatively rigid amorphous matrix
provided by PVA is necessary for vanilla phosphors
(Supplementary Figure S17). Powder XRD studies provide
further evidence for the temperature dependence of the
films (Supplementary Figure S18). A new diffraction peak

at about θ = 22° for M1-0.3mg PVA film appears under
gentle heating (Figure 3(e)), because of the reformation of
hydrogen bonding after the water removal. On the
contrary, no diffraction peak appears at the same position
(Supplementary Figure S18b) during the cooling process.
These studies also indicate that more hydrogen bonding
interactions are formed with the increase of M1 phosphor
concentration in the doped PVA film (Supplementary
Figure S18c). Hydrogen bonding interaction between the
matrix and phosphors was proven circumstantially by
Fourier-transform infrared (FT-IR) spectroscopy. The
vibration of the -OH group in pure PVA matrix locates at
3,252 cm-1, attributed to intermolecular and intramolecular
hydrogen bonding interactions (Figure 3(f) and
Supplementary Figure S19). The -OH vibration of vanilla-
doped PVA films shows upward shifts of 6-24 cm-1 (24 cm-1

for the M1-doped PVA film and 6 cm-1 for M2-doped
PVA). These results clearly validate that the vanilla
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phosphors have a strong ability to form hydrogen bonding
interaction with PVA.

To further probe into the nature of obvious RTPP prop-
erties from these films under ambient conditions, proton
nuclear magnetic resonance (1H NMR) spectra were carried
out (Figure 4). Taking M1-acid as an example, its protons
are marked as A-D, and -OH of PVA is labelled as E in
Figure 4(b). Proton D from -COOH located at 12.5 ppm
completely disappears after doping M1-acid with PVA at
low concentrations, attributed to D-E type hydrogen bond-
ing. A similar situation occurs to proton A from -OH located
at 9.86 ppm, with A-E type hydrogen bonding. Besides, three
peaks from isotactic, heterotactic, and syndiotactic struc-
tures of the -OH group at 4.3 ppm to 4.6 ppm become a
broad peak at 4.5 ppm after forming the M1-acid-3.0mg
PVA film. Upon increasing the doping concentration, pro-
tons B and C on the benzene ring gradually appear, along
with a red shift. At high concentrations, those initially disap-
peared proton peaks recover. A possible explanation is that
PVA cannot provide enough hydroxy groups to bind with
vanilla molecules at high concentrations. 1H NMR spectra
of other doped films show a similar trend (Supplementary
Figure S20). These observations prove the formation of

strong intermolecular hydrogen bonding between vanilla
compounds and PVA matrix.

Unique RTP property and sensitive RTPP character of
M1-acid-0.3mg PVA make it an attractive ink material in
advanced anticounterfeiting and information storage since
such a long-lived excited state is very difficult to be replicated.
The rapid anticounterfeiting processes of phosphorescent ink
pen made using M1-acid-0.3mg PVA are illustrated in
Figure 5(a), where the fluorescence and phosphorescence
emission on paper could be carefully controlled. As shown
from Figure 5(b) and Supplementary Video S1, the “CQUT”
letters on the postcard were written just once, and invisible
information could be easily read by the naked eye after turn-
ing off the UV lamp. Long-lived phosphorescence emission
could be recognized more than 3 s after removing the UV
lamp, indicating that the RTPP ink can be used to hand-
write on the postcard substrate. To further explore more
abundant applications, we carried out this on/off visualiza-
tion with different substrates, including offset papers, parch-
ment, white card papers, kraft papers, and glazed printing
papers, marked as I-V, respectively. M1-acid-0.3mg PVA
was used as the RTPP pen ink to paint on these five types
of paper substrates (Figure 5(c) and Supplementary Video
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S2). Surprisingly, the RTPP ink is highly selective to the sub-
strates, showing different RTP intensities and phosphores-
cence emission time. The longest emission about 5 s is from
paper V, and paper I exhibits the shortest RTPP emission
(still over 1 s). The emission difference may be due to the dif-
ferent composition and cellulose contents of these papers.
The ink on these papers could still be distinguishable regard-
less of weak blue fluorescence interference from the paper
background, showing its high application potential for multi-
ple information anticounterfeiting.

Powder XRD and FT-IR analyses prove different RTPP
emissions on these paper substrates, attributed to different
hydrogen bonding interactions as previously demonstrated.
In powder XRD patterns, the peak of the blank paper V at
θ = 28:47° gradually increases to 29:52° after painting with
PVA solution, indicating that the hydrogen bonding forma-
tion takes effect on paper V. Meanwhile, FT-IR spectra also
show the stabilizing process by weakening the vibration of
-OH in paper V (Supplementary Figure S21). Offset paper
and parchment exhibit a similar stabilization process
through hydrogen bonding interaction (Supplementary
Figure S22). Atomic force microscopy (AFM) studies also
demonstrate no variation of roughness on the surface of
encrypted papers (Supplementary Figure S23). The tensile
test shows that doped vanilla compounds have a certain
effect on the toughness of the films when increasing the
doping concentrations (Supplementary Figure S23). The
results indicate that the pure PVA film has the highest
tensile strength of 25.61MPa. The tensile strength of the
M1-0.3mg PVA film under the best luminescence intensity
is 19.66MPa, still having a good ductility.

Herein, we show how to use a flat brush to brush the
security ink on the papers and refill the ink into a pen.
We make exquisite patterns with highly efficient identifica-
tion and double emission (Figures 5(d) and 5(e) and
Supplementary Video S3 and Video S4). The preparation
process is very simple and convenient. The results in
Figure 5(d) indicate that this kind of long-lived phospho-
rescence emission ink could be used in a large area, achiev-
ing very strong fluorescence and phosphorescence dual
emission on the papers. After heating and cooling treat-
ments based on the procedure shown in Figure 5(a) for
50 cycles, excellent luminescence performance could still
be maintained, demonstrating the high robustness of the
ink. Refilling the RTPP ink into an empty signing pen is
highly feasible and reproducible (Figure 5(e)). We draw a
lotus flower picture only once on the white card paper with
the RTPP ink pen. What excites us is that the pattern with
double emission characteristics drawn by hand is even more
exquisite than that drawn by the painting brush, which
would lay a foundation for the generalization of the RTPP
ink pen in the future.

3. Conclusion

In conclusion, we have fabricated a series of efficient RTPP
systems by doping simple vanilla derivatives into PVA
through hydrogen bonding interactions, achieving the maxi-
mum phosphorescence lifetime of 369.8ms and the maxi-
mum phosphorescence quantum yield of 14.36%. Because
of unique photophysical properties with long-lived phospho-
rescence emission, these RTPP systems could be employed as

5.0 s4.5 s4.0 s3.5 s3.0 s2.5 s 2.0 s1.5 s1.0 sUV on UV off
Papers

Heat HeatCool Fluos.
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RTPP security ink
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(c) (e)

3 cm
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Refilled ink pen

2 cm
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Figure 5: Painting, reading, and erasing processes of the RTPP ink. (a) Controllable RTPP emission process of M1-acid-0.3mg PVA ink on a
substrate. (b) Sensitive anticounterfeiting on a postcard after turning off 254 nm light. (c) Comparison of the ink emission observed from five
different paper substrates. (d) Photos of ink-brushed leaf pattern on glazed printing paper, showing temperature-dependent changes between
room temperature (RT) and 65°C for 50 times. Bright blue fluorescence emits when turning on the 254 nm UV lamp, and cobalt
phosphorescence emission is observed when turning off the 254 nm UV lamp. (e) A hand-painted lotus flower pattern with M1-acid-
0.3mg PVA ink showing cobalt phosphorescence emission after heating treatment (65°C) and turning of the UV light.
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security inks. The security inks could be widely utilized on
different substrates, with the longest emission over 5 s on
the glazed printing paper. The prepared security inks not
only maintain excellent luminescent properties under ambi-
ent conditions but also exhibit highly identifiable characters
after repeated heating/cooling cycles for at least 50 times.
Owing to these remarkable features of the RTPP inks, an
advanced anticounterfeiting data encoding/reading strategy
based on handwriting technology and complex pattern steg-
anography has been proposed for future practical uses.

4. Experimental Methods

4.1. Preparation of Doped Matrix. PVA solid (6 g) with
hydrolysis degree of 100, 89, and 80 was, respectively, dis-
solved in deionized water (200mL) at 95°C for 1 h, which
was then filtered to obtain PVA aqueous solution
(30mgmL-1) for further use. Poly(methyl methacrylate) solid
(3 g) was dissolved in tetrahydrofuran (100mL) at 65°C for
1 h and then filtered for further use.

4.2. Preparation of Vanilla-Doped Films and Phosphorescent
Inks. Firstly, M1, M1-acid, M2, M2-acid, M3, M3-acid, M4,
and M4-acid (0.3mgmL-1 for each molecule) were, respec-
tively, dispersed in eight vials of PVA solutions with the con-
centration of 30mgmL-1, and eight homogeneous solutions
were obtained after ultrasonication for 3 h. Secondly, a series
of films were fabricated by a drop-coasting method using
each aqueous solution (30mgmL-1) containing different
concentrations of vanilla compounds. Meanwhile, these eight
solutions were, respectively, injected into eight pen cartridges
to yield eight security inks. Thirdly, a hand-painted lotus and
ink-brushed leaf were prepared by hand painting. Fourthly,
after drying in air, the patterns were dried under 65°C in an
oven for 1 h.
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Supplementary Materials

Materials, measurements, and photoluminescence quantum
yield. Figure S1: phosphorescence emission lifetime of
vanilla- (0.3mg-) doped PVA (phosphorescence time: ms).
Figure S2: (a) phosphorescence emission decay profiles of
these vanilla derivatives in the crystal state at room tempera-
ture. Quantum yield of M1 crystal: 0.64%. (b) Phosphores-
cence emission of M1 in its crystal state (M1-Crystal) and
M1- (0.3mg-) doped film at 77K. Figure S3: nonradiative
decay rate of phosphorescence (Knr

phos) for vanilla deriva-
tives (0.3mg) doped with PVA matrix. Figure S4: powder
XRD patterns of vanilla-doped PVA films with 0.3mg dop-
ing concentration. Figure S5: (a) DSC curves of M1-doped
PVA films with different doping concentrations. (b) TGA
curves of M1-doped PVA films with different doping con-
centrations. (c) DSC curves of M1-M4 doped PVA films with
0.3mg doping. (d) DSC curves of M1-acid-M4-acid-doped
PVA films with 0.3mg doping. Figure S6: phosphorescence
spectra of M1- (0.3mg-) doped PVA-100, PVA-87, PVA-
80, and PMMA. Figure S7: (a) fluorescence spectra of M1-
acid to M4-acid-doped PVA at 0.3mg doping concentration.
(b) fluorescence spectra of M1-doped PVA with different
doping concentrations. Figure S8: (a) transmission spectra
of the M1-doped PVA film with different doping concentra-
tions. (b) Transmission spectra of the pure PVA film and
vanilla-doped PVA films with 0.3mg doping concentration.
(c) UV absorption spectra of the pure PVA film and
vanilla-doped PVA films with 0.3mg doping concentration.
Figure S9: (a) phosphorescence spectra of M1-doped PVA
with different doping concentrations. (b, c) Steady state fluo-
rescence (red dashed line) and long-lived phosphorescence
(blue solid line) spectra of M1 and M1-acid-doped PVA. Fig-
ure S10: fluorescence lifetime of M1- (0.3mg-) doped in PVA
(M1-0.3mg-PVA) and in the crystal state (M1-crystal) at
ambient conditions. M1-0.3mg-PVA: @ 364nm; M1-crystal:
@ 384nm. Figure S11: (a) phosphorescence decay profiles of
M1-doped PVA films with different doping concentrations.
(b) Phosphorescence decay profiles of M1-doped PVA films
with different excitation wavelengths. (c) Phosphorescence
decay profiles of M1-M4 at 0.3mg concentration. Figure
S12: temperature-dependent (a) luminescence decay curves
and (b) phosphorescence emission spectra for M1- (0.3mg-)
doped film. Figure S13: (a)–(h) steady state fluorescence (black
line) and long-lived phosphorescence (red line) spectra of
vanilla-doped PVA at 0.3mg doping concentration at 77K.
Figure S14: (a)–(h) Steady state fluorescence (black line) and
long-lived phosphorescence (red line) spectra of vanilla-
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doped PVA at 0.3mg doping concentration at room tempera-
ture. Figure S15: phosphorescence emission spectra of theM1-
(0.3mg-) doped PVA film (a) in different environments at
room temperature (air, argon, and oxygen) and (b) under dif-
ferent fumigating times by commercial humidifier. Figure S16:
phosphorescence emission spectra of the M1-acid- (0.3mg-)
doped PVA film under different irradiation times by UV
254nm at room temperature. Figure S17: phosphorescence
emission of M1 (0.3mg) doped in PMMA and PVA matrix
under dry argon atmosphere. Figure S18: (a) powder XRD pat-
terns of vanilla derivatives in solid state. (b) Powder XRD pat-
terns showing the cooling process of the M1-doped PVA film
at 0.3mg doping concentration. (c) Powder XRD patterns of
M1-doped PVA films with different doping concentrations.
Figure S19: (a) FT-IR spectra of vanilla-doped PVA. (b) FT-
IR spectra of M1-doped PVAwith different doping concentra-
tions. Figure S20: 1H NMR spectra of M4 and M4-acid-doped
PVA in DMSO-d6. Left: M4 structure with four H protons
(a)–(d), M4-acid structure with three H protons (a)–(c), and
PVA structure with E proton. Right: 1HNMR spectra showing
the changes of different H protons. Figure S21: (a) FT-IR spec-
tra of blank paper I, paper with 30mgmL-1 PVA, and paper
with M1-acid-0.3mg PVA. (b) FT-IR spectra of blank paper
II, paper with 30mgmL-1 PVA, and paper with M1-acid-
0.3mg PVA. (c) FT-IR spectra of blank paper III, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (d)
FT-IR spectra of blank paper IV, paper with 30mgmL-1

PVA, and paper with M1-acid-0.3mg PVA. Figure S22: (a)
phase scanning XRD patterns of blank paper I, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (b)
Phase scanning XRD patterns of blank paper II, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (c)
Phase scanning XRD patterns of blank paper III, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (d)
Phase scanning XRD patterns of blank paper IV, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (e)
Phase scanning XRD patterns of blank paper V, paper with
30mgmL-1 PVA, and paper with M1-acid-0.3mg PVA. (f)
FT-IR spectra of blank paper V, paper with 30mgmL-1

PVA, and paper with M1-acid-0.3mg PVA. Figure S23:
AFM surface topography of vanilla-doped PVA inks with
0.3mg doping concentration applied on paper V. Scale: 5 × 5
μm. Figure S24: tensile tests of M1-doped PVA films with dif-
ferent doping concentrations. (a) Film stretching process. (b)
Tensile curves of M1-doped PVA films. Table S1: fluorescence
quantum yields (Φf), phosphorescence lifetime (τp), and
quantum yields (Φp) of M1, M1-acid, M2, M2-acid, M3,
M3-acid, M4, and M4-acid-doped PVA films. Table S2:
singlet-triplet energy gap (ΔEST) of vanilla derivatives doped
with the PVA film at 0.3mg doping concentration. Video S1
(.avi format): emission of M1-acid-0.3mg-doped PVA ink
applied on postcard when the UV light is on and off. Video
S2 (.avi format): emission of M1-acid-0.3mg-doped PVA ink
applied on paper V when the UV light is on and off. Video
S3 (.avi format): emission of M1-0.3mg-doped PVA ink
brushed on paper V when the UV light is on and off. Video
S4 (.avi format): emission of M1-0.3mg-doped PVA ink
hand-drawn on paper V when the UV light is on and off.
See References [48–50]. (Supplementary Materials)
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