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Cancer is a leading cause of deathworldwide.We aim to provide a systematic review about the roles of reactive oxygen species (ROS)
in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen). Danshen, including its lipophilic and hydrophilic constituents, is
potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending
on the specific type of cancer cells involved. Danshen may enhance TNF-𝛼-induced apoptosis, upregulate caspase-3, caspase-8,
caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK,
mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshenmay downregulate human telomerase reverse
transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31,
NF-𝜅B, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor
receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways.Therefore, Danshen
may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS
generation on tumor progression, tumor promotion, and tumormetastasis. Based on the available evidence regarding its anticancer
properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

1. Introduction

Cancer is a leading cause of mortality throughout the world.
In addition to conventional therapies such as surgery, chem-
otherapy, and radiotherapy, traditional Chinese medicine
and other complementary or alternative therapies may be
necessary for cancer patients [1]. Salvia miltiorrhiza Bunge

(Danshen) has been used widely for the treatment of various
diseases [2–7] including cancers [8–12] for thousands of
years within the China community. Danshen, a Chinese
herbal medicine, contains two major groups of chemicals
[12–15]. The first group includes lipophilic compounds
such as tanshinone I, tanshinone IIA, acetyltanshinone IIA,
cryptotanshinone, isocryptotanshinone, dihydrotanshinone,
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Figure 1: Chemical structures of the different constituents of Danshen. Danshen contains lipophilic compounds including tanshinone I,
tanshinone IIA, acetyltanshinone IIA, cryptotanshinone, isocryptotanshinone, dihydrotanshinone, and miltirone. Danshen also contains
hydrophilic phenolic acids including salvianolic acids A and B.

15,16-dihydrotanshinone I, and miltirone. The second group
includes the hydrophilic phenolic acids such as salvianolic
acids A and B (Figure 1). Our research and numerous other
publications have demonstrated that both groups of Danshen
compounds may have anticancer effects (Tables 1 and 2).
This systematic review provides an appraisal of the roles
of reactive oxygen species (ROS) in cancer biology and
anticancer therapy with Danshen. Based on the evidence
demonstrating anticancer properties of Danshen and the
roles of ROS in cancer biology, this review summarizes
current data regarding the ROS-related anticancer effects of
Danshen components and brings new insights for further

anticancer research or clinical trials with this traditional
Chinese herb.

2. Methods

Keyword searches were done using the combined terms
“reactive oxygen species and cancer and Danshen” or “reac-
tive oxygen species and cancer and Salvia miltiorrhiza”.
These searches were done using the Medicine, PubMed,
EMBASE, Cochrane library, CINAHL, and Scopus databases.
The contents of the identified articles were summarized and
the current review focused on the ROS-related anticancer
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Table 2: Hydrophilic components from Salvia miltiorrhiza that modify ROS-related effects on cancer cells.

Components [reference] Cancer cells Effects

Salvianolic acid A [51] MCF-7 breast cancer cells

Downregulates the level of P-glycoprotein and triggers
apoptosis, which is associated with increased caspase-3 activity,
disrupted mitochondrial membrane potential, downregulated
Bcl-2 expression, and upregulated Bax expression in resistant
cells

Salvianolic acid A [52] Human neuroblastoma SH-SY5Y
cells

Prevents 1-methyl-4-phenylpyridinium ion-induced
cytotoxicity, which may be ascribed to its antioxidant properties
and antiapoptotic activity via regulating the expression of Bcl-2
and Bax

Salvianolic acid B [53] Human glioma U87 cells Induces apoptosis through p38-mediated ROS generation

Salvianolic acid B [54] Human neuroblastoma SH-SY5Y
cells

Prevents 1-methyl-4-phenylpyridinium-induced apoptosis by
relieving oxidative stress and modulating the apoptotic process

Salvianolic acid B [55] Human neuroblastoma SH-SY5Y
cells

Prevents dopamine-induced apoptosis that may be mediated by
the ROS and the Erk and Bcl-2 pathways

effects of Danshen. After removing duplicate publications
and excluding information that was unrelated to ROS, we
collected 39 articles about the ROS-related anticancer effects
of Danshen. These publications included a consideration of
34 lipophilic and 5 hydrophilic compounds isolated from
Danshen.

3. Role of ROS in Cancer

Carcinogenesis is a progressive process from normal to can-
cerous cells. Reactive oxygen species (ROS) are closely re-
lated to carcinogenesis and play an important role in can-
cer. Previous studies have shown that ROS may be involved
in multistep tumorigenesis including tumor initiation and
transformation, tumor progression, tumor promotion, tumor
angiogenesis, and tumor metastasis [56–58]. ROS are gener-
ated by both mitochondria and NADPH oxidases. Oxidative
stress results from the generation of free radicals such as the
superoxide anion, perhydroxyl radical, hydroxyl radical, and
nitric oxide, as well as other nonradical but reactive species
such as hydrogen peroxide, singlet oxygen, hypochlorous
acid, and peroxynitrite [56, 57].

Mitochondria in malignant cells are characterized by the
overproduction of ROS and differ structurally and function-
ally from those in normal cells [59]. A major source of ROS
is oxidative metabolism in the mitochondria of eukaryotic
cells. In normal cells, low-level concentrations of ROS, related
to mitochondrial electron transport activity, are required
for many cellular processes and signal transduction. Cancer
cells generate more ROS as compared to normal cells. The
increased generation of ROS in cancer cells may alter mito-
chondrial metabolism [59, 60] and disturb cellular signaling
pathways [61, 62] that are mediated through the transcrip-
tion factors NF-𝜅B and STAT3, hypoxia-inducible factor-1𝛼,
kinases, growth factors, cytokines, and other enzymes [63].

ROS can induce cellular DNA damage and DNA methy-
lation [64] resulting in mutations, which causes healthy
cells to transform into malignant cells. Some cancer cells
overexpress the ROS-producing NADPH oxidases and ROS-
removing antioxidant enzymes. Conversely, there is also

evidence showing that excess ROS can result in cancer cell
death through autophagy [65, 66] and/or apoptosis [62, 67].
Cancer cells may be more sensitive than normal cells to the
overproduction of ROS. Thus, increasing oxidative stress by
generating ROS exogenously may be selective for cancer cells
without affecting normal cells [68, 69].

4. Lipophilic Components of Danshen

Tanshinone I, tanshinone IIA, acetyltanshinone IIA, cryp-
totanshinone, isocryptotanshinone, dihydrotanshinone, and
miltirone are the main lipid-soluble potential anticancer
constituents of Danshen. These compounds have shown
anticancer activity (Table 1) with remarkable dose- and time-
dependent inhibitory effects on the viability on prostate, lung,
breast, leukemia, gastric, oral, colon, cervical, hepatoma,
renal, melanoma, rhabdomyosarcoma, and neuroblastoma
cancer cells. These effects, in terms of ROS, are described in
more detail for each cell type in the following sections.

4.1. ROS-Related Anticancer Effects of Tanshinones on Prostate
Cancer Cells. Tanshinone I enhanced tumor necrosis factor-
(TNF-) related apoptosis inducing ligand (TRAIL) via in-
creasing cleaved poly-ADP ribose polymerase (PARP), arrest-
ing cells in the subG1 phase, activating caspase-8 and caspase-
9, and upregulating miR-135a-mediated death receptor 5 [17].
The induction of apoptosis and autophagy by tanshinone
IIA was dependent on intracellular ROS production [20].
Cryptotanshinone suppressed androgen receptor-mediated
cell growth [43] and induced ROS thereby phosphorylating
(i.e., activating) P38/JNK and inhibiting Erk1/2, resulting in
caspase-independent death in DU145 prostate cancer cells
[40].

4.2. ROS-Related Anticancer Effects of Tanshinones on Lung
Cancer Cells. Tanshinones inhibited the proliferation of 95D
lung cancer cells by increasing caspase-3 activity and in-
ducing apoptosis and prosurvival autophagy [16], through
the increased generation of intracellular ROS. Tanshinone
IIA decreased vascular endothelial growth factor/vascular
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Tanshinone I
Tanshinone IIA
Acetyltanshinone IIA
Cryptotanshinone
Isocryptotanshinone
Dihydrotanshinone
Miltirone

Lipophilics Salvinolic A
Salvinolic B

Salvia miltiorrhiza

Upregulation Downregulation

Antiproliferation/apoptosis/autophagy/antiangiogenesis/antimetastasis

Hydrophilics

Caspase-3, caspase-8, caspase-9
ER stress
P21, P53
Bax/Bcl-2
DR5
AMP-activated protein kinase
MAPK signal pathway
P38/JNK signaling
FasL signal pathway

TNF-𝛼-induced ligand hTERT mRNA/telomerase
Survivin
VEGF/VEGFR2

MMP
Microtubule assembly
Tyrosine kinase EGFR/HER2
P-glycoprotein
PI3K/Akt/mTOR signal pathway
Estrogen receptor signaling

CD31, NF-𝜅B, Erk1/2

Figure 2: Schematic diagram of ROS-related anticancer effects mediated by Danshen. Upregulation: TNF-𝛼, caspase-3, caspase-8, caspase-9,
endoplasmic reticulum (ER) stress, P21, P53, Bax/Bcl-2, DR5, AMP-activated protein kinase, MAPK signaling pathways, the phosphorylation
(activation) of p38/JNK signaling, and the FasL signaling pathway. Downregulation: hTERT mRNA, telomerase, survivin, VEGF/VEGFR2,
CD31, NF-𝜅B, Erk1/2,MMP,microtubule assembly, tyrosine kinases such as EGFR/HER2, P-glycoprotein, and PI3K/Akt/mTOR, and estrogen
receptor signaling.

endothelial growth factor receptor 2 (VEGF/VEGFR2) ex-
pression and induced apoptosis with cell cycle arrest at
the S phase in human non-small cell lung cancer A549
cells [22]. These researchers noted that tanshinone IIA ac-
tivated a ROS-induced, P53-independent [27], and caspase-
dependent mitochondrial apoptotic cell death pathway that
was characterized by an increased ratio of Bax to Bclx1 or
Bax to Bcl-2, decreased mitochondrial membrane potential
[30], caspase activation, PARP-1 cleavage, and cytochrome c
release in A549 cells and small cell lung cancer H146 cells
[31]. Cryptotanshinone also inducedROS-mediated prodeath
autophagy through JNK signaling [37].

4.3. ROS-Related Anticancer Effects of Tanshinones on Breast
Cancer Cells. Tanshinone I downregulated the PI3K/Akt/
mTOR signaling pathway, induced cell cycle arrest, and inhib-
ited the proliferation of breast cancer MCF-7 and MDA-
MB-453 cells [18]. Acetyltanshinone IIA induced G1/S phase
arrest and apoptosiswith downregulation of receptor tyrosine
kinases such as epidermal growth factor receptor (EGFR)/
HER2 and activated AMP-activated protein kinase (AMPK)
[33]. Acetyltanshinone IIA also induced ROS generation and
Bax translocation tomitochondria resulting inmitochondrial
damage, cytochrome c release, caspase-3 activation, and
apoptotic cell death in HER2 positive breast cancer cells [34].

Cryptotanshinone suppressed estrogen receptor signaling
and induced endoplasmic reticulum (ER) stress-mediated
apoptosis [42] and ROS generation, activating P38/JNK
and inhibiting Erk1/2. This led to caspase-independent cell
death in MCF-7 breast cancer cells [40]. Isocryptotanshi-
none induced apoptosis and activated the mitogen-activated
protein kinase (MAPK) signaling pathway in MCF-7 breast
cancer cells [45].

4.4. ROS-Related Anticancer Effects of Tanshinones on Leu-
kemia Cells. Some researchers found that tanshinone I acti-
vated caspase-3 and decreased human telomerase reverse
transcriptase (hTERT) mRNA expression and telomerase
activity, as well as downregulating survivin expression, in
monocytic leukemia U937 THP-1 and SHI 1 cells [19]. An-
other study reported that tanshinone IIA induced apoptosis
through the activation of PXR, which suppressed NF-𝜅B
activity in leukemia U937 cells [29].

Cryptotanshinone inhibited cellular movement and in-
duced G2/M phase arrest in acute lymphoblastic leukemia
cells [36]. Another study revealed that cryptotanshinone
enhanced TNF-𝛼-induced apoptosis through the ROS-de-
pendent activation of caspase-8 and p38 in chronic myeloid
leukemia KBM-5 cells [44]. 15,16-Dihydrotanshinone I in-
duced apoptosis through activation of the JNK and FasL
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signaling pathways in human HL-60 leukemia cells [48].
Miltirone induced G2/M cell cycle arrest and apoptosis in
acute lymphoblastic leukemia cells [50].

4.5. ROS-Related Anticancer Effects of Tanshinones on Oral,
Gastric, and Colon Cancer Cells. One previous study re-
ported that tanshinone IIA induced apoptosis through the
mitochondria-dependent pathway with the loss of mitochon-
drial membrane potential and the activation of caspase-9 and
caspase-3 in human oral cancer KB cells [23]. Another study
that examined the effects of tanshinone IIA reported that
it suppressed cell growth by blocking glucose metabolism
in gastric cancer cells [21]. Another article revealed that
UDP- glucuronosyltransferase 1A compromised the apop-
totic effects of tanshinone IIA by reducing its intracellular
exposure and switching the NAD(P)H: quinine oxidore-
ductase 1-triggered redox cycle to metabolic elimination
[24]. Other research noted that dihydrotanshinone I induced
caspase and ROS-dependent apoptosis and autophagy in
colon cancer cells [47].

4.6. ROS-RelatedAnticancer Effects of Tanshinones onCervical
Cancer Cells. Our previous studies showed that tanshinone
IIA had anticancer effects on typical cervical HeLa and
advanced cervical CaSki cancer cells. Tanshinone IIA induced
apoptosis by interfering with the microtubule assembly pro-
cess, leading to G2/M phase arrest and subsequent apoptosis
in HeLa cells [32]. It also appeared to inhibit cell growth
through activating the ER stress pathway and promoting
caspase cascades with concomitant upregulation of the phos-
phorylation of the p38 and JNK-Bax-caspase-3/9 signaling
pathways (Figure 3) in CaSki cells [25].

4.7. ROS-Related Anticancer Effects of Tanshinones on Hep-
atoma Cells. Tanshinone IIA increased Bax and caspase-3
levels and decreased CD31 expression in human hepatoma
J5 cells [26]. Cryptotanshinone induced ER stress-mediated
apoptosis [42] and inducedG1 cell cycle arrest and autophagic
cell death by activating the AMPK signaling pathway [38].
Dihydrotanshinone activated ROS-mediated phosphoryla-
tion of p38 MAPK in HepG2 cells [46]. Miltirone activated
the caspase-dependent apoptotic pathway and triggered the
ROS-mediated MAPK signaling pathway in human hep-
atoma HepG2 cells [49].

4.8. ROS-Related Anticancer Effects of Tanshinones on Renal
Carcinoma Cells, Melanoma, Neuroblastoma, and Rhabdomy-
osarcoma Cells. Previous research noted that tanshinone IIA
induced apoptosis in renal carcinoma cells by activating p53
expression and subsequently inducing the upregulation of p21
and Bax [28].

The other cryptotanshinone would restore the sensitivity
of A375 melanoma cells that were resistant to TRAIL by
upregulating the expression of death receptor 5 (DR5) [39].
It also could inhibit sodium nitroprusside-induced apoptosis
by an antioxidant effect and by regulating NF-𝜅B and the
MAPKpathway inNeuro-2a cells [41]. Cryptotanshinonewas
reported to induce ROS, then activate P38/JNK, and inhibit

Normal cell
Low ROS

Cancer cell
High ROSROS

ROSSalvia miltiorrhiza

JNK

Cytochrome C

Caspase-9 

Caspase-3 

PARP cleavage

Bcl-xL

ER stress

P38 MAPK

Apoptosis
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Oxidized proteins or DNA methylation

Bax/Bcl-2

Fas/FasL

NF-𝜅B

O2 H2O2 OH∙O2
∙−

Figure 3: Schematic diagram of effects of Salvia miltiorrhiza on
reactive oxygen species-related apoptosis of cancer cells.

Erk1/2 in rhabdomyosarcoma cells. These effects then led to
caspase-independent cell death in these cells [40].

5. ROS-Related Anticancer Effects of
Hydrophilic Components Found in Danshen

Polyphenols, as dietary antioxidants, are most abundant in
fruits, vegetables, and cereals [70, 71]. Numerous clinical
studies, as well as in vitro and in vivo experiments, have
strongly supported the ability of polyphenols to reduce the
risk of many cancers. Some antioxidant polyphenols can
downregulate TNF and might be useful as mitochondrially
targeted anticancer drugs [72–74].

Salvianolic acids A and B are the main water-soluble
polyphenolic derivatives found in Danshen. Similar to other
natural polyphenols, they have potential anticancer effects
(Table 2). Salvianolic acid A elevated ROS levels, downreg-
ulated P-glycoprotein, and triggered apoptosis by increasing
caspase-3 activity and upregulating Bax expression, while
downregulating Bcl-2 expression and disrupting the mito-
chondrial membrane potential in multidrug resistanceMCF-
7 human breast cancer cells [51]. Other research showed that
salvianolic acids A and B had antioxidant and antiapoptotic
properties that were involved in protecting SH-SY5Y human
neuroblastoma cells against 1-methyl-4-phenylpyridinium
ion-induced mitochondrial dysfunction. This dysfunction
was characterized by loss of the mitochondrial membrane
potential, condensation of nuclei, cytochrome c release, and
increases in the Bax/Bcl-2 ratio [52, 54]. Salvianolic acid
B prevented 6-hydroxydopamine-induced apoptosis in SH-
SY5Y cells by reducing the increase of caspase-3 activity
and the translocation of cytochrome c into the cytosol from
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mitochondria [55]. Another study revealed that salvianolic
acid B induced apoptotic cell death in human glioma U87
cells through p53 and the phosphorylation and activation of
p38 MAPK to increase ROS generation [53].

6. Conclusion

Danshen may be a potential complementary or alternative
therapy for various cancer patients. We found the potential
utility of this natural product, or its active constituents in-
cluding lipophilic compounds such as tanshinone I, tanshi-
none IIA, acetyltanshinone IIA, cryptotanshinone, isocryp-
totanshinone, dihydrotanshinone, 15,16-dihydrotanshinone
I, miltirone, and hydrophilic phenolic acids such as salviano-
lic acids A and B (Figure 1). The ROS-related anticancer
effects of the lipophilic and hydrophilic constituents isolated
from Danshen vary, depending on the specific type of
cancer cells (Tables 1 and 2). Overall, Danshen can suppress
cell proliferation through antioxidation on tumor initiation
and induce apoptosis (Figure 3) or autophagy through
ROS generation on tumor progression, tumor promotion,
and tumor metastasis. Some components of Danshen may
enhance TNF-𝛼-induced apoptosis and upregulate caspase-
3, caspase-8, caspase-9, ER stress, P21, P53, Bax/Bcl-2, DR5,
and AMPK and activate the p38/JNK, MAPK, or FasL sig-
naling pathways. Conversely, these compounds can downreg-
ulate hTERT mRNA, telomerase, survivin, VEGF/VEGFR2,
CD31, NF-𝜅B, Erk1/2, MMPs, microtubule assembly, tyrosine
kinases such as EGFR/HER2 and P-glycoprotein and inhibit
the PI3K/Akt/mTOR or estrogen receptor signaling pathways
(Figure 2). Combined, these effects inhibit cancer cell prolif-
eration by arresting cell cycle progression, inducing cancer
cell apoptosis and/or autophagy, and exerting antiangiogenic
and antimetastatic effects. However, in accordance with
laboratory evidences obtained in vitro and in vivo, rigorous
human studies are needed to demonstrate the anticancer
effects ofDanshen. Futurewell-designed clinical studies, such
as randomized controlled clinical trials, will be necessary to
confirm the efficacy of Danshen as an anticancer agent in
human patients.
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