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Abstract: In the present study, L-serine (Ser)-modified poly-L-lysine (PLL) was synthesized to
develop a biodegradable, kidney-targeted drug carrier for efficient radionuclide therapy in renal cell
carcinoma (RCC). Ser-PLL was labeled with 111In/90Y via diethylenetriaminepentaacetic acid (DTPA)
chelation for biodistribution analysis/radionuclide therapy. In mice, approximately 91% of the total
dose accumulated in the kidney 3 h after intravenous injection of 111In-labeled Ser-PLL. Single-
photon emission computed tomography/computed tomography (SPECT/CT) imaging showed that
111In-labeled Ser-PLL accumulated in the renal cortex following intravenous injection. An intrarenal
distribution study showed that fluorescein isothiocyanate (FITC)-labeled Ser-PLL accumulated
mainly in the renal proximal tubules. This pattern was associated with RCC pathogenesis. Moreover,
111In-labeled Ser-PLL rapidly degraded and was eluted along with the low-molecular-weight fractions
of the renal homogenate in gel filtration chromatography. Continuous Ser-PLL administration over
five days had no significant effect on plasma creatinine, blood urea nitrogen (BUN), or renal histology.
In a murine RCC model, kidney tumor growth was significantly inhibited by the administration of
the beta-emitter 90Y combined with Ser-PLL. The foregoing results indicate that Ser-PLL is promising
as a biodegradable drug carrier for kidney-targeted drug delivery and efficient radionuclide therapy
in RCC.

Keywords: kidney-targeted delivery; radionuclide therapy; renal cell carcinoma; L-serine; yttrium (90Y)

1. Introduction

Renal cell carcinoma (RCC) is a kidney cancer originating in the lining of the proximal
tubules and is reputed to be the most lethal malignant urological tumor [1]. The current
standard treatments for RCC include inhibitors of tyrosine kinase, mTOR, and immune
checkpoints. As these therapies have several pharmacokinetic issues, however, their efficacy
and safety are questionable [2–4]. It is therefore necessary to develop a drug delivery system
(DDS) for the selective transport of therapeutic agents, particularly to the proximal tubule
associated with RCC pathogenesis. Nevertheless, it is difficult to develop a drug carrier
with high renal selectivity simply by using the conventional kidney-targeted approach
of DDS technology. Furthermore, there are few reports of the successful development of
renal-targeted DDS with superior efficacy and safety [5–7].

Recently, we observed that after L-serine (Ser)-modified polyamideamine (PAMAM)
dendrimer (Ser-PAMAM) was intravenously injected into mice, it accumulated in the
proximal tubules of the renal cortex. In Ser-PAMAM, multiple Ser moieties are covalently
bound to the PAMAM surface [8–10]. Ser is a biological component and its physicochemical
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properties are well known. Thus, it is considered superior to conventional kidney-targeted
moieties in terms of safety and ease of synthesis. PAMAM is familiar as a novel artificial
dendritic macromolecular drug carrier and is anticipated for clinical use [11]. It is unknown,
however, whether Ser modification could be applied in a kidney-targeted delivery system
using linear macromolecular drug carriers. In addition, little is known about the biocom-
patibility and biodegradability of the inner core of the drug carrier in this kidney-targeted
drug delivery system.

In the present study, we selected linear poly-L-lysine hydrobromide (PLL) as a car-
rier backbone and modified it with Ser to obtain Ser-modified poly-L-lysine (Ser-PLL).
Ser-PLL consists almost exclusively of amino acids. Hence, it is expected to have high
biocompatibility and biodegradability.

The indium (111In) (imaging)/yttrium (90Y) (therapy) combination has been evaluated
in cancer radiotheranostics [12–14]. Recently, 111In/90Y-loaded ibritumomab (anti-CD20
antibody) thiuxetane was approval by the United States Food and Drug Administration and
has been used to treat CD20-positive relapsed or refractory low-grade B-cell non-Hodgkin’s
lymphoma and mantle cell lymphoma. In this formulation, ibritumomab is bound to
111In/90Y via the chelating agent (1-(2)-methyl-4-isocyanatobenzyl-diethylenetriamine-
N,N,N′,N”,N”-pentaacetic acid (MX-DTPA; thiuxetane) [15,16]. We hypothesized that an
imaging/therapy combination involving 111In/90Y may facilitate the development of an
innovative RCC treatment modality.

The aims of this study were to develop a biodegradable kidney-targeted drug carrier
using the amino acids Ser and Lys and evaluate its efficacy as a radionuclide therapy for
RCC. We endeavored to develop a kidney-targeted radiotheranostics system using Ser-PLL
with 111In/90Y via the chelating agent diethylenetriaminepentaacetic acid (DTPA). We
intravenously injected 111In-labeled Ser-PLL in mice and analyzed its tissue distribution.
We then assessed the efficacy of 90Y-labeled Ser-PLL at preventing increases in the number
of tumor cells in the kidneys of a mouse RCC model.

2. Materials and Methods
2.1. Chemicals and Reagents

Poly-L-lysine hydrobromide (PLL) (MW range = 4000–15,000) and polyamidoamine
(PAMAM) dendrimer with an ethylenediamine core (generation (G) 3) in methanol were
purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). Boc-Ser(tBu)-OH and HOBt
were purchased from Watanabe Chemical Industries (Hiroshima, Japan). Hexafluorophos-
phate benzotriazole tetramethyl uronium (HBTU) was purchased from Merck Millipore
(Burlington, MA, USA). Dimethyl sulfoxide (DMSO; super dehydrated grade), N,N-
dimethylformamide (DMF; super dehydrated grade), N,N-diisopropylethylamine (DIPEA),
piperidine, trifluoroacetic acid (TFA), triisopropylsilane (TIS), Turk’s solution, and poly-
L-lysine hydrobromide (MW range = 15,000–30,000) were purchased from Fujifilm Wako
Pure Chemical Industries Ltd. (Osaka, Japan). PD-10 was purchased from GE Healthcare
Japan (Tokyo, Japan). The 111InCl3 was supplied by Nihon Medi-Physics (Tokyo, Japan).
90YCl3 was purchased from Eckert Radiopharma (Berlin, Germany). DTPA anhydride was
purchased from Chemical Dojin Co., Ltd. (Kumamoto, Japan). All other chemicals were of
commercial reagent grade.

2.2. Animals

Male ddY mice (age 5 wks; average weight 25 g) and male Balb/c mice (age 5 wks;
average weight 20 g) were purchased from Japan SLC (Shizuoka, Japan). The animals
were maintained under conventional housing conditions. All animal experiments were
conducted according to the principles and procedures outlined in the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. The Animal Experimentation
Committee of the Kyoto Pharmaceutical University approved this experimental protocol.
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2.3. Synthesis of Ser-Poly-L-Lysine

Ser-PLL was synthesized by reacting Ser with PLL (MW range = 4000–15,000) using
the previously published HBTU-HOBt method with slight modifications [8,17] (Scheme S1).
Briefly, PLL (MW range = 4000–15,000) was coupled to its surface amino groups with 1.1 eq
(equivalent to the surface amino group of PLL) Boc-Ser(t-Bu)-OH in DMF/DMSO (3:1) by
mixing it with 1.1 eq HBTU, 1.1 eq HOBt, and DIPEA to adjust the pH to 8−9. The mixture
was stirred at room temperature until a ninhydrin test yielded negative results for thin-layer
chromatography (TLC) analysis. After the coupling, the reaction mixture was evaporated
and the product was dissolved in chloroform. The organic phase was washed three times
with 5% NaHCO3 and saturated with sodium chloride thrice. Then, the organic phase was
dried over anhydrous MgSO4 and vacuum-filtered and evaporated. The precipitates were
then dissolved in a trifluoroacetic acid (TFA) cocktail (95% (v/v) TFA, 2.5% (v/v) thioanisole
(TIS), and 2.5% (v/v) purified water) to deprotect the Boc and t-Bu groups and protect the
Ser oxygen atom. The mixture was then incubated at room temperature for 90 min. After
deprotection and evaporation, the crude precipitate was dispersed in ultrapure water. After
dialysis with ultrapure water overnight, the solution was lyophilized to obtain Ser-PLL,
which was identified using a 1H nuclear magnetic resonance (NMR) spectroscopy (AM-300
FT-NMR spectrometer; Bruker Corp., Billerica, MA, USA) in deuterated water (D2O). In
the PLL 1H NMR spectrum, peaks were observed at δ 4.18 (s, α–CH), 2.81 (m, ε–CH2),
1.82–1.05 (s, β–CH2, γ–CH2, and δ–CH2) [18]. In the Ser-PLL 1H NMR spectrum, the
peaks corresponding to Ser appeared at δ 3.72–3.85 (m, CH2), and the integral ratio of Ser
methylene protons to PLL methylene protons indicated that the desired product had been
obtained (the degree of modification of the Ser moiety linked to the amino groups of PLL
was approximately 97%) (Figure S1). As the polymerization degree of PLL is estimated to
be approximately 19–72 units with a MW range of 4000–15,000, these results indicate that
the average composition of Ser units of the obtained Ser-PLL was 45, with an approximate
Ser-PLL molar mass of 10 kDa.

Ser-PLL was then dissolved in phosphate-buffered saline (PBS) (pH 7.4), and its mean
particle diameter and zeta potential were measured with a Zetasizer PRO Blue Label
(Malvern Instruments, Worcestershire, UK). To synthesize high-MW Ser-PLL (Ser-PLL
(H)), we reacted PLL (MW = 15,000–30,000) with Boc-Ser(t-Bu)-OH using the preceding
methods. Ser-modified polyamidoamine dendrimer (G3) (Ser-PAMAM conjugating ~32 Ser
molecules) was synthesized and used as a control according to the previously reported
HBTU-HOBt method [8].

2.4. Tissue Distribution of 111In-Labeled Ser-Poly-L-Lysine

Ser-PLL was labeled with 111In using DTPA according to a previously published
method to determine the tissue distribution of Ser-PLL [19,20]. The 111In-labeled Ser-PLL
was intravenously injected at 1 mg/kg dose into the tail vein of each ddY mouse. At
appropriate time points after the injection, blood was collected from the abdominal vena
cava under isoflurane anesthesia. The liver, kidneys, spleen, heart, and lungs were excised,
rinsed with saline, blotted dry, and weighed. The blood was centrifuged at 2000× g for
5 min to obtain the plasma. The organ samples and 100 µL plasma were transferred
to counter tubes and their radioactivity levels were measured with a gamma counter
(1480 WizardTM 3′; PerkinElmer, Boston, MA, USA). The tissue distribution of PLL was
determined as previously described, using 111In-labeled PLL as a control.

2.5. In Vivo SPECT/CT Imaging of 111In-Labeled Ser-Poly-L-Lysine Tissue Distribution

Single-photon emission computed tomography/computed tomography (SPECT/CT)
was performed with a NanoSPECT/CT (Bioscan Inc., Washington, DC, USA) according to
a previously reported method [10]. Briefly, 111In-labeled Ser-PLL (15.6 MBq/mouse) was
intravenously injected into a ddY mouse. A CT scan of the mouse was performed under
isoflurane anesthesia for anatomical reference. Three hours after the injection, a 1-h SPECT
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scan was obtained under isoflurane anesthesia. The SPECT image was reconstructed and
analyzed with VivoQuant v. 5.1 (inviCRO, Hillsboro, OR, USA).

2.6. Intrarenal Distribution of FITC-Labeled Ser-Poly-L-Lysine

Ser-PLL was labeled with fluorescein isothiocyanate (FITC), as previously reported [8].
The FITC-labeled Ser-PLL was then injected into the tail vein of each ddY mouse. After
60 min, the kidneys were excised under isoflurane anesthesia, immersed with 30% sucrose
solution. After the immersion at 4 ◦C overnight, the kidneys were fixed with optimal
cutting temperature (OCT) compound, and frozen. The frozen kidney sections were stained
with 10 µg/mL of 4′,6-diamidino-2-phenylindole (DAPI) (Fujufilm Wako Pure Chemical
Industries Ltd.). The stained kidney sections were observed under a laser-scanning confocal
microscope (Nikon A1R, Nikon Corp.; Tokyo, Japan).

2.7. Biodegradability of Ser-Poly-L-Lysine

Ser-PLL biodegradability was evaluated using a previously published method,
with slight modifications [21]. Briefly, 111In-labeled Ser-PLL, 111In-labeled PLL (control),
111In-labeled PAMAM (G3) (control), and 111In-labeled Ser-PAMAM (G3) (control) were
intravenously injected at 1 mg/kg dose into the tail vein of each ddY mouse and the animals
were sacrificed 3 h later by abdominal vena cava amputation under isoflurane anesthesia.
Residual blood in each kidney was removed by passing saline through the left ventricle.
Each kidney was then immediately ice-cooled, combined with 4 mL purified water, and
homogenized. Saturated KCl solution (1 mL) was added to each kidney homogenate. The
suspension was allowed to stand at 4 ◦C overnight and then centrifuged. The supernatant
(1 mL) was eluted with a PD-10 column and 0.1 M acetate buffer (pH 6.0). The radioactivity
levels of each fraction (10 drops, 0.35 mL) were measured. The high- and low-MW fractions
were determined based on the elution patterns.

2.8. Ser-Poly-L-Lysine Nephrotoxicity in Mice

Ser-PLL (1 mg/kg/d) was continuously injected intravenously into the tail vein of
each ddY mouse for 5 d and acute nephrotoxicity was evaluated [8]. Six days after the first
intravenous injection, blood was collected from the vena cava, the kidneys were isolated
under isoflurane anesthesia, and the mice were sacrificed. Plasma creatinine was measured
with a commercially available kit (Lab Assay; Fujifilm Wako Pure Chemical Industries Ltd.).
Blood urea nitrogen (BUN) was measured with a commercially available kit (DIUR-100;
BioAssay Systems, Hayward, CA, USA). The kidneys were then excised, fixed with 4%
(v/v) buffered paraformaldehyde (PFA), and embedded in paraffin blocks. Then 5-µm
sections were cut with a microtome from the paraffin blocks. The kidney sections were
stained with hematoxylin and eosin (H&E), and hepatic injury was evaluated under a light
microscope (Biozero; KEYENCE, Osaka, Japan). HgCl2 was subcutaneously injected at a
dose of 8 mg/kg, and the mouse group bred for 2 d served as a positive control.

2.9. Effects of 90Y-Labeled Ser-Poly-L-Lysine on Tumor Growth in a Mouse Renal Cell Carcinoma Model

Ser-PLL was labeled with 90Y using DTPA and the method applied for 111In-labeling [14,19].
The RCC model was established using a previously published method with slight modifi-
cations [22]. Briefly, the RCC model was produced by injecting 2.5 × 105 firefly luciferase
gene-labeled Colon/26 (Colon26/Luc) cells along with Matrigel® matrix (Corning, NY,
USA) into the right renal cortex of each Balb/c mouse under isoflurane anesthesia. Then
PBS, free 90Y and 90Y-labeled Ser-PLL was immediately injected into the tail vein at a dose
of 0.3 MBq/mouse. After 14 d, blood was collected from each vena cava and the kidneys
were isolated under isoflurane anesthesia. The right kidney was homogenized in lysis
buffer and its luciferase activity was measured with a luminometer (Lumat LB9507; EG&G
Berthold, Württemberg, Germany). The cancer cells in each kidney were enumerated based
on the luciferase activity and by using a regression line, as previously reported [23,24].
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Blood was transferred to a microtube containing ethylenediamine-N,N,N′,N′-tetraacetic
acid dipotassium salt dihydrate (EDTA-2K) and diluted tenfold with Turk’s solution (Fuji-
film Wako Pure Chemical Industries Ltd.). The white blood cells were then enumerated
on a counting plate (Improved NEUBAUER; Elma Sales Co., Ltd., Saitama, Japan) under
a microscope [25]. Sections of the untreated left kidneys were examined, and plasma
creatinine was measured according to previously described methods.

2.10. Statistical Analysis

Statistical significance was analyzed using Student’s t-test for two independent groups
at a significance level of p < 0.05 and Dunnett’s test for multiple comparisons with p < 0.05
as the minimum level of significance.

3. Results
3.1. Physicochemical Properties of Ser-Poly-L-Lysine

Table 1 shows the physicochemical properties of Ser-PLL and PLL. The mean particle
diameters of PLL and Ser-PLL were 3.3 ± 0.5 and 4.1 ± 0.9 nm, respectively. The zeta
potentials of PLL and Ser-PLL were 8.9 ± 1.6 and 6.6 ± 3.7 mV, respectively.

Table 1. Physicochemical properties of poly-L-lysine and Ser-poly-L-lysine.

Compound Diameter (nm) Zeta Potential (mV)

Poly-L-lysine 3.3 ± 0.5 8.9 ± 1.6
Ser-poly-L-lysine 4.1 ± 0.9 6.6 ± 3.7

3.2. Tissue Distribution of 111In-Labeled Ser-Poly-L-Lysine

Figure 1 shows the tissue distribution of 111In-labeled Ser-PLL following intravenous
injection. Unmodified 111In-labeled PLL quickly disappeared from the plasma and was
distributed to the liver and kidneys to levels of ~39% and ~23% of the dose, respectively,
after 3 h. By contrast, 111In-labeled Ser-PLL accumulated mainly in the kidneys and ~91%
of the original dose was retained there. Kidney accumulation was inversely proportional to
the MW of Ser-PLL (Figures 1 and S2B). Ser-PAMAM accumulated mainly in the kidneys
to levels of ~84% after 3 h in a similar manner to our previous study (Figure S2A) [8].
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Figure 1. Plasma concentrations and tissue distributions of 111In-labeled poly-L-lysine (PLL)
(A) and 111In-labeled Ser-poly-L-lysine (Ser-PLL) (B) after intravenous injection into mice. Data
are means ± SE for three mice. #, plasma; N, liver; �, kidney; 3, spleen;4, heart; �, lung.

3.3. Biodistribution Imaging of 111In-Labeled Ser-Poly-L-Lysine

Figure 2 shows SPECT/CT images of tissue distribution of 111In-labeled Ser-PLL after
intravenous injection. The 111In-labeled Ser-PLL accumulated mainly in the renal cortex.
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Figure 2. SPECT/CT imaging 180 min after intravenous injection of 111In-labeled Ser-poly-L-lysine
(Ser-PLL) in mice. (A) 3D imaging; (B) sagittal plane; (C) coronal plane; (D) transverse plane.

3.4. Intrarenal Distribution of FITC-Labeled Ser-Poly-L-Lysine

An evaluation of the intrarenal accumulation by FITC labeling clearly displayed
fluorescence intensity derived from FITC-labeled Ser-PLL in the renal cortex (Figure 3A)
but none in the renal medulla (data not shown). Enlarged microscopic images of the renal
cortex exhibited high fluorescence intensity derived from FITC-labeled Ser-PLL in the
proximal tubules (Figure 3B).
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Figure 3. Intrarenal distribution of FITC-labeled Ser-poly-L-lysine (Ser-PLL) in tissue sections 60 min
after intravenous injection into mice. (A) Renal cortex (scale bar = 200 µm) and (B) magnified image
of cortex (scale bar = 25 µm). Fluorescence intensity was observed under a laser-scanning confocal
microscope.

3.5. Ser-Poly-L-Lysine Biodegradability

The biodegradability of 111In-labeled Ser-PLL was evaluated using the elution profiles
of 111In-radioactivity recovered from the kidney homogenates (Figure 4). Relatively high
111In-radioactivity was detected in the high-MW fractions after the elution of intact 111In
-labeled Ser-PLL, PLL, Ser-PAMAM, and PAMAM. The 111In-radioactivity partially shifted
to the low-MW fraction. Nonetheless, it remained in the high-MW fraction after the elution
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of the kidney homogenates derived from mice injected with 111In-labeled Ser-PAMM
and PAMAM (Figure 4A,B). In contrast, the 111In-radioactivity shifted to the low-MW
fraction after the elution of the kidney homogenates derived from the mice injected with
111In-labeled Ser-PLL and PLL (Figure 4C,D).
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Figure 4. Gel filtration patterns of 111In-radioacticity in kidney homogenates from mice injected
with 111In-labeled polyamidoamine (PAMAM) (A), 111In-labeled Ser-PAMAM (B), 111In-labeled
poly-L-lysine (PLL) (C), and 111In-labeled Ser-poly-L-lysine (Ser-PLL) (D). #, pre-injection (intact
compounds); �, 180 min post-injection.

3.6. Ser-Poly-L-Lysine Nephrotoxicity

Figure 5 shows the renal toxicity of Ser-PLL after continuous intravenous injection in
mice. HgCl2 administration significantly increased the nephrotoxicity indicators plasma
creatine and BUN. By contrast, Ser-PLL did not increase the foregoing biomarkers after
continuous intravenous injection for 5 d (Figure 5A,B). The kidney sections disclosed severe
gap junction damage and necrosis (arrows) after the HgCl2 treatment. However, Ser-PLL
had negligible adverse effects on renal structure, and the tissue from Ser-PLL-treated mice
was similar to that from PBS-treated and naïve mice (Figure 5C).

3.7. Therapeutic Potential and Safety of 90Y-Labeled Ser-Poly-L-Lysine in Mouse Model of Renal
Cell Carcinoma (RCC)

Figure 6 shows the therapeutic potential of 90Y-labeled Ser-PLL in a mouse RCC model.
Intravenously injected free 90Y had a negligible effect on kidney tumor growth. By contrast,
intravenously injected 90Y-labeled Ser-PLL significantly suppressed any increase in the
number of kidney tumor cells.

Intravenously injected free 90Y had a negligible effect on the white blood cell counts but
significantly increased plasma creatine. In contrast, intravenously injected 90Y-labeled Ser-
PLL had a negligible effect on plasma creatine or the white blood cell counts (Figure 7A,B).
Partial glomerular damage and necrosis (arrow) was observed in the kidney sections of the
free 90Y group. By contrast, no severe damage was detected in the kidney sections of the
90Y-labeled Ser-PLL group (Figure 7C).
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Figure 6. Effects of 90Y-labeled Ser-poly-L-lysine (Ser-PLL) on kidney tumor growth after tumor
induction and intravenous injections. Number of Colon26/Luc cells in kidneys of mice intravenously
injected either with free 90Y or with 90Y-labeled Ser-poly-L-lysine (Ser-PLL). Mice were sacrificed
14 d after tumor inoculation. Data are means ± SE for seven mice. * statistically significant difference
compared with PBS group (p < 0.05).
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Figure 7. Plasma creatinine (A) and white blood cell counts (B) after intravenous injection of 90Y-
labeled Ser-poly-L-lysine (Ser-PLL) at 0.3 MBq/mouse into mice inoculated with Colon26/Luc cells
in right kidney cortex. (C) Histological examination of left kidneys of mice injected with 90Y-labeled
Ser-poly-L-lysine (Ser-PLL) at 0.3 MBq/mouse and inoculated with Colon26/Luc cells in right kidney
cortex. PBS (a), free 90Y (b), 90Y-labeled Ser-poly-L-lysine (Ser-PLL) (c). (scale bar = 100 µm) Mice
were sacrificed 14 d after tumor induction. Data are means ± SE of ≥ three mice. * statistically
significant difference compared with PBS group (p < 0.05).

4. Discussion

In the present study, we successfully developed and evaluated Ser-PLL as a biodegrad-
able kidney-targeted drug carrier to be administered as radionuclide therapy for renal
cell carcinoma (RCC). We previously reported that Ser-PAMAM accumulated mainly in
the kidneys, and the hydroxyl and amino groups of Ser play important roles in kidney
targeting [8]. For this reason, we coupled the amino groups of PLL with the carboxyl
groups of Ser to form Ser-PLL, which bears both hydroxyl and amino groups. Ser-PLL
had slightly greater kidney accumulation than Ser-PAMAM (Figure S2A), possibly because
the estimated average number of conjugated Ser residues was 45 in Ser-PLL, whereas
Ser-PAMAM conjugated only 32. The number of conjugated Ser residues is proportional
to renal affinity [8]. These results indicate that Ser modification could be applied in a
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kidney-targeted delivery system using linear macromolecular drug carriers in addition to
branched macromolecular drug carriers.

Kidney targeting is challenging because most drug nanocarriers are trapped in the
hepatic and splenic reticuloendothelial systems. It is essential to maintain the balance
between target site affinity and non-target site elimination [26,27]. Here, the hydroxyl
groups of Ser might have eluded recognition by the hepatic and splenic reticuloendothelial
systems as they are readily hydrated and induce a cage effect against the reticuloendothelial
system [28]. In our previous study, we demonstrated that Ser-PAMAM was distributed
in the proximal tubules via glomerular filtration. Micropinocytosis and caveola-mediated
endocytosis have been implicated in the affinity of Ser-PAMAM for proximal tubules [8].
Therefore, we postulate that Ser-PLL is distributed in the proximal tubules in the same man-
ner as Ser-PAMAM, due to the size of Ser-PLL (~5 nm), which is smaller than the glomerular
filtration size cutoff (10 nm) [29–31]. Moreover, both Ser-PLL and Ser-PAMAM have the
same surface functional groups. The foregoing results of Ser-PLL (PLL MW = 4000–15,000)
(Figure 1) and the low renal accumulation of Ser-PLL (H) (PLL MW range = 15,000–30,000)
(Figure S2B) suggest that Ser-PLL (PLL MW = 4000–15,000) is the optimal size for kidney-
targeted delivery mediated by glomerular filtration.

Post-elution 111In radioactivity detection by gel filtration chromatography was estab-
lished as a method to assess the biodegradability of macromolecular drug carriers [21].
Akamatsu et al. (1998) evaluated the biodegradability of poly-L-glutamic acid (PLGA)
and PLL using the aforementioned system and demonstrated that PLGA and PLL were
degraded and eluted in the low-MW fractions of gel filtration chromatography [21]. This
finding was in good agreement with the results for unmodified PLL in the present study
(Figure 4C). Ser-PLL is a polymeric bilayer with two different types of amino acids. Its
surface Ser layer was released into the kidneys at 3 h after intravenous injection (Figure 4D).
Gel filtration chromatography of unmodified PLL and Ser-PLL, together with the results of
quick kidney distribution (Figure 1), indicated that both substances were digested in the
kidneys within 3 h after their distribution. Ser-PAMAM was synthesized by coupling Ser
with PAMAM via the same amido linkage as Ser-PLL. Nevertheless, these two conjugates
differed in terms of the release rates of their surface Ser layers. Ser-PLL released its surface
Ser layer faster than Ser-PAMAM (Figure 4B,D) possibly because the dendritic structure of
Ser-PAMAM partially blocked peptidase access and, by extension, conjugate digestion in
the kidneys. These discoveries, along with the fact that unmodified PAMAM is more slowly
biodegradable than unmodified PLL (Figure 4A,C), indicate that Ser-PLL has superior
biodegradability to dendritic Ser conjugates.

The 90Y isotope is a β-emitter with a high endpoint energy. It is classified as a first-
order unique forbidden emitter and is expected to be suitable for radionuclide therapy
against various tumor cells [12–14]. As 90Y beta rays do not penetrate from outside the
body, however, it is impossible to confirm their tissue distribution by imaging. Therefore,
111In was selected for the tissue distribution analysis as it is a gamma-nucleus species with
high penetrating power, imageable gamma rays, and a physical half-life near that of 90Y.
It was confirmed from the results of the animal experiments that there was no significant
difference between 111In and 90Y [12,13] in terms of their in vivo tissue distributions. Hence,
both 90Y-labeled Ser-PLL and 111In-labeled Ser-PLL would be similar in this respect. In
the mouse RCC model, cancer cells were inoculated into the proximal tubules and their
vicinity in the renal cortex as these structures are associated with RCC pathogenesis.
Here, specific kidney renal cortex distributions of 111In-labeled Ser-PLL were observed.
According to the intrarenal distribution study, FITC-labeled Ser-PLL accumulated mainly in
the proximal tubules. Thus, we postulate that 90Y-labeled Ser-PLL would also accumulate
in the proximal tubules, where the tumor localizes. Furthermore, beta-rays suppressed
kidney tumor growth.

It was reported that 90Y readily induces bone marrow depression (BMD) [14]. However,
neither free 90Y nor 90Y-labeled Ser-PLL affected the white blood cell counts here. Therefore,



Pharmaceutics 2022, 14, 1946 11 of 13

the beta ray energy derived from 90Y fell below the BMD threshold. Moreover, the selective
renal distribution of Ser-PLL also avoided inducing BMD.

It was previously reported that glomerular capillary endothelial and mesangial cells
play important roles in the pathogenesis of radiation-induced nephropathy. In addition, 90Y
caused radiation damage mostly in the glomeruli [32]. Based on the tissue and intrarenal
distribution analyses performed here, Ser-PLL should pass through the glomeruli after
intravenous injection. Hence, we suggest that the glomerular distribution and radiation
nephrotoxicity of 90Y could be avoided by using Ser-PLL. Detailed toxicological studies
on 90Y-Ser-PLL are required before it can be clinically applied. Notwithstanding, the
results of this work indicated that 90Y-labeled Ser-PLL effectively suppresses renal tumor
growth while attenuating 90Y nephrotoxicity. To the best of our knowledge, this is the first
study to demonstrate suppression of renal tumor growth by kidney-targeting of 90Y after
intravenous injection.

5. Conclusions

The present study demonstrated that Ser modification was effective in kidney-targeted
drug delivery using a linear PLL as the drug carrier core. Ser-PLL selectively accumulated
in the renal proximal tubules which are the sites of renal cell carcinoma (RCC) pathogenesis.
Ser-PLL had higher biodegradability than the dendritic Ser conjugate. Renal tumor growth
was effectively suppressed by 90Y-mediated kidney targeting via Ser-PLL. The foregoing
findings indicate that Ser-PLL is promising as a biodegradable kidney-targeted drug carrier
for radionuclide therapy against RCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14091946/s1. Scheme S1: Ser-poly-L-lysine (Ser-
PLL) synthesis; Figure S1: 1H-NMR spectra for Ser (A), poly-L-lysine (PLL) (B), and Ser-poly-L-
lysine (Ser-PLL) (C,D) in deuterated water.; Figure S2: (A) Kidney accumulation of 111In-labeled
Ser-polyamidoamine (PAMAM) dendrimer (G3) and 111In-labeled Ser-poly-L-lysine (Ser-PLL) after
intravenous injection in mice. (B) Plasma concentration and tissue accumulation of 111In-labeled
high-MW Ser-poly-L-lysine (Ser-PLL(H)) wherein poly-L-lysine (MW range = 15,000–30,000) was
conjugated with Ser after intravenous injection into mice. Data are means ± SE for three mice. #,
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with Ser-PAMAM group (p < 0.05).
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