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Abstract

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental 

states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and 

forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and 

defined regional cellular diversity and differentiation dynamics. Projection of bulk tumor 

transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived 

mossy fiber neuronal lineage, embryonal tumors with multilayered rosettes fully recapitulate a 

neuronal lineage, while Group 2a/b atypical teratoid/rhabdoid tumors may originate outside of the 

neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies 

mirroring transcriptional programs of the corresponding normal lineages. Our findings identify 

impaired differentiation of specific neural progenitors as a common mechanism underlying these 

pediatric cancers and provide a rational framework for future modeling and therapeutic 

interventions.

Brain tumors are the leading cause of cancer-related morbidity and mortality in children. 

Despite intensive multi-modal therapies, cure remains a rare exception for several subtypes, 

while for most, the long-lasting effects of life-saving therapies on the developing brain are 

devastating1. Childhood brain tumors and their driver mutations show a specific spatio-

temporal distribution and are presumed to be tightly linked with development2–7. Embryonal 

tumors with multilayered rosettes (ETMRs), a lethal brain tumor of younger children8, are 

mostly supra-tentorial and largely driven by a fusion of the brain-specific TTYH1 promoter 

with the primate-specific C19MC microRNA cluster9, linked to the expression of a fetal 

neurodevelopmental program9. WNT-subtype medulloblastomas mostly occur in children 

between 7–10 years of age10,11 and, despite being considered cerebellar tumors, they are 

located in the midline, adherent to the posterior part of the brainstem from which they are 

thought to derive12. Pediatric high-grade gliomas (pHGG) also show a specific age and 

mutation distribution13,14. Midline gliomas are largely characterized by lysine-to-methionine 

substitution at position 27 in histone 3 (H3) variants (H3K27M)6,14,15 and localize in the 

pons of younger children (3–7 years) and upward in the thalamus in older children (7–12 

years). HGGs occurring in patients 12–35 years of age are mostly located in the cerebral 

hemispheres (parietal lobes), and a portion uniquely harbor the driver initiating events 

glycine to arginine or valine mutations at position 34 in H3F3A (H3.3G34R/V)13–19. In 

contrast, atypical teratoid/rhabdoid tumors (ATRTs) are a rare exception regarding spatio-

temporal patterns. These deadly embryonal brain tumors are characterized by homozygous 

loss-of-function alterations of SMARCB120, a key component of the SWI/SNF chromatin 

remodelling complex4,21. Molecularly indistinguishable rhabdoid tumors can arise in the 

brain and spine, but also in soft tissues including muscle and kidney4,21,22, leading us to 

hypothesize that they may originate from a non-neural restricted precursor.

Jessa et al. Page 3

Nat Genet. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Current evidence thus supports a common etiological model for these tumors, where genetic 

alterations in vulnerable cell types disrupt developmental gene expression programs, 

ultimately leading to oncogenesis. However, data to identify these vulnerable cell types are 

scarce. The fetal cerebral cortex has been investigated at limited time points or coverage in 

humans23–26 and mice27–29, whereas the prenatal pons has never been comprehensively 

profiled. Here, we report single-cell transcriptomic data for the developing mouse pons and 

forebrain (E12.5-P6) and for the prenatal human brainstem (17–19 post-conception weeks), 

and molecularly define the cell types and their differentiation dynamics in these regions. 

Using this reference dataset, we mapped bulk transcriptomes for 240 human samples and 

single-cell transcriptomes from human WNT medulloblastomas, ETMRs, and ATRTs to 

identify the neurodevelopmental programs disrupted in these tumors. Our findings reveal the 

exquisite developmental dependencies and origins of these tumors, providing a cornerstone 

for orienting accurate modeling and future therapies.

Results

A census of the developing pons and forebrain

To define the normal developmental state of brain regions where a large proportion of high-

grade embryonal and pediatric brain tumors arise, we isolated the brainstem of two human 

specimens aged 17–19 post-conception weeks (PCW), as well as the pons/hindbrain and the 

forebrain from mice at five time points (E12.5-P6, Extended Data Fig. 1). In total, we 

profiled >65,000 cells (61,595 mouse, 3,945 cryopreserved human cells). The extent of the 

mouse data permitted a three-tiered analysis: per sample, per brain structure, or a combined 

full dataset, to achieve different degrees of granularity and complementary analysis of 

transcriptional dynamics. We first defined cell populations using a shared nearest neighbor 

clustering algorithm30,31. We verified that common sources of variation in single-cell data 

(mitochondrial gene content, library size and cell cycle) did not drive this clustering 

(Extended Data Fig. 2a and Supplementary Note), and then defined the identity of the cell 

populations using a combination of computational and manual methods. These included 

mapping previously reported gene sets specific to the main neural cell classes32 

(Supplementary Table 1a and Extended Data Fig. 2b) and individual canonical markers 

(Supplementary Table 1b and Extended Data Fig. 2c,d). We identified cluster-specific 

marker genes (Supplementary Table 2), which in many cases unambiguously defined known 

cell types. We then evaluated the effect of cryopreservation on cell populations and found 

that neuronal types were extremely sensitive to the procedure, while glial cells were mainly 

unaffected (Supplementary Note). Therefore, neurons and small clusters from the human 

brainstem were removed from analyses. Finally, to validate our cell-type identification 

strategies, we assessed the agreement of our cluster labels with a comprehensive atlas of the 

juvenile mouse nervous system33 (Extended Data Fig. 2e). Altogether, our transcriptomic 

atlas contains 191 cell populations defined at the sample level and 54 populations defined at 

the brain region level (Supplementary Table 2).

To understand the relationships between cell populations, we constructed a dendrogram of 

mouse cell types based on gene expression distance (Fig. 1a). Cells split first by 

developmental compartment of origin (neuroectoderm or mesoderm/others), and next by 
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broad cell class, resulting in a molecularly defined cell taxonomy. Overall, we observed 

striking differences between the pons and forebrain for progenitors, astrocytes, and neurons 

in general. In contrast, other glial and mesodermal cell types showed more convergent 

transcriptional states between the two structures. Pontine progenitors and neurons were 

clearly distinct, segregating into separate subtrees. They also displayed low correlations with 

previously reported neuronal types and a dual match with neuroblasts and progenitor 

populations (Extended Data Fig. 2e), indicating an extensive cell diversity unique to the 

pons. Reconstruction of gene regulatory networks34 allowed us to identify transcription 

factors and their direct gene targets (regulons) underlying this molecular taxonomy (Fig. 1a 

and Supplementary Table 3).

Temporally, we captured rich cellular dynamics reflecting differentiation. Early embryonic 

time points in both structures contained a substantial proportion of progenitors (Fig. 1b,c and 

Extended Data Fig. 1e,f), which were progressively depleted over time and, in the mouse, 

transitioned to gliogenesis by P0, when a glial expansion was evident. To identify the 

transcriptional networks induced in the pons during early differentiation, particularly during 

the switch from radial glial cells (RGCs) to gliogenic/neurogenic programs, we re-embedded 

the embryonic RGCs and progenitors. Principal component analysis (PCA) showed that the 

first two components, explaining 33% of the variance, were directly related to proliferation 

and a neurogenic/gliogenic differentiation path (Fig. 2a,b). We reconstructed this path using 

trajectory analysis35,36 (Fig. 2c), retrieving cells at various stages of lineage commitment. 

This allowed us to uncover the transcription factors associated with fate decision using 

branched expression analysis modeling (BEAM)36 and to characterize transitional states 

(Fig. 2d), identifying known but also novel markers of these states (Supplementary Table 3).

Overall, the sampling of glial populations was quite extensive across species, developmental 

stages, and brain structures. We report gene signatures for 8 oligodendrocyte precursor cells 

(OPC), 8 oligodendrocyte, and 18 distinct astrocyte populations (Supplementary Table 2a). 

Most relevant to the biology of several tumors of focus, we detected transitional cell types 

along the full pontine oligodendrocyte path and the astro-ependymal lineage (Fig. 2e–g).

Neurogenesis was the dominant process in the forebrain. Isolation and re-embedding of the 

forebrain RGCs combined with a random forest approach identified discriminant gene 

markers and revealed dorsal-ventral patterning in these populations (Extended Data Fig. 3a–

c). This defined the RGCs that give rise to cortical intermediate progenitor cells (IPC), the 

progenitors of the excitatory neurons (dorsal, Pax6+, Emx2+) and those that yield the 

migratory interneuron neuroblasts that eventually populate the cortex (ventrally-derived, 

Nkx2.1+, Olig2+). We also identified thalamic progenitors (Barhl2+, Otx2+, Olig3+), and 

small subpopulations from the cortical hem (Wnt8b+, Dkk3+), the organizing region in the 

medial forebrain neuroepithelium, which has not been profiled before. Altogether, this first 

transcriptomic survey of the developing pons, combined with a high-resolution profile of the 

forebrain, provides a molecular definition of 191 distinct cell populations (Supplementary 

Table 2), as well as a novel, extensive reference of cellular transitions occurring during 

differentiation of the main neural cell lineages (Supplementary Table 3).
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Developmental signatures stratify tumor types

To identify developmental programs abnormally persistent in pediatric brain tumors, we first 

extracted gene signatures from each of the 191 cell populations (human and mouse) and 

projected them across 240 human bulk RNA-seq samples (186 patient-derived, 43 normal 

adult brain and 11 normal fetal brain samples, Supplementary Table 4) using single-sample 

Gene Set Enrichment Analysis37 (ssGSEA). In all cases, ssGSEA scores for human 

populations were extremely close to their mouse counterparts, indicating no major cross-

species differences at this level of analysis. Dimensionality reduction based on this 

projection demonstrates that similarities to distinct developmental cell populations are 

sufficient to segregate tumors by type (Fig. 3a), indicating a specific developmental context 

at the core of each of these tumors. Notably, ETMRs clustered with early fetal brain (13–18 

PCW) in all comparisons. We next asked which of the normal cell populations best matched 

a specific tumor type (Fig. 3b and Extended Data Fig. 4). Overall, each tumor type presented 

a distinct signature, indicating that ETMRs, WNT medulloblastomas, ATRTs and H3K27M 

HGGs have spatially and temporally distinct developmental origins.

WNT medulloblastomas match the rhombic lip-derived mossy fiber neuron lineage

Lower rhombic lip (LRL) progenitors in the embryonic dorsal brainstem (Zic1+, Pax6+, 

Olig3+) have been implicated as the potential cellular origin of WNT medulloblastoma12. 

However, the precise cell lineage has not yet been defined due to shared expression of 

markers between auditory LRL and pre-cerebellar LRL-derived lineages (including mossy 

fiber neurons and climbing fiber neurons).

In our developmental atlas, co-expression of Zic1, Pax6, and Olig3 is restricted to a pontine 

mossy fiber neuron (MFN) population and to a subset of cells within the pontine LRL 

precursor cluster at E12.5 (see Extended Data Fig. 5 for a detailed characterization of these 

populations). Bulk transcriptomic mapping using ssGSEA (Fig. 3b), confirmed by 

deconvolution analysis (Fig. 4a), selected the MFN lineage as the best match for WNT 

medulloblastoma. This match, specific to WNT medulloblastoma, was not observed in any 

other tumor type, including Group 4 medulloblastoma, which predominantly mapped to 

unipolar brush cells (Extended Data Fig. 4) as previously reported38. We next identified the 

most discriminant MFN gene markers by two alternative methods (differential expression 

analysis and a machine learning approach, Fig. 4b,c). MFN-specific genes, such as Nkd1 
that permitted classification of MFN with nearly 80% accuracy, were among the top 20 

genes driving the tumor match (Fig. 4d). They were also significantly upregulated in WNT 

medulloblastoma bulk tumors (Fig. 4e). Importantly, a recent study of active 

medulloblastoma enhancers39 reports NKD1 as the top super-enhancer active in WNT 

medulloblastoma. In addition to NKD1, a negative regulator of the WNT signaling pathway, 

several enhancers of MFN markers were active in this tumor type, including ZIC1, PAX6, 
BARHL1, PDE1C, PCSK9, and OLIG3. Based on lack of enhancer activity for markers of 

the climbing fiber neurons (PTF1A, NEUROG1, ASCL1, FOXD3, BRN3A), this study also 

allowed us to exclude this lineage as the one at the origin of WNT medulloblastoma. 

Altogether, these results indicate that WNT medulloblastoma transcriptionally mirror cells 

within the LRL-derived mossy fiber neuron lineage, confirming the postulated progenitor 

source12, and resolving their specific cellular lineage (Fig. 4f).
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To further delineate the differentiation state of tumors, and investigate intra-tumor 

heterogeneity and cellular hierarchy, we performed scRNA-seq on three patient samples 

(Fig. 4g,h and Extended Data Fig. 5g–j). We first distinguished malignant and normal cells 

based on copy number aberration (CNA) analysis (Fig. 5a–d, monosomy 6, documented in 

WNT medulloblastoma40). Expression of ZIC1, OTX2 and CTNNB1 broadly marked the 

malignant cells (Extended Data Fig. 5g). Cell-type specific gene sets, on the other hand, 

unambiguously identified small clusters of microglia, OPCs, astrocytes and mesodermal 

cells. Among malignant cells, we found a consistent cellular structure across patient 

samples. Three major cell populations formed a continuous transcriptional gradient that 

could be reconstructed using trajectory analysis (Extended Data Fig. 5h). A first non-

proliferating subpopulation expressed WNT16. A second non-proliferating population 

expressed the WNT signaling inhibitors Dikkopf proteins (DKK1/2/4+). DKK3, on the other 

hand, was absent, consistent with its frequent downregulation in WNT medulloblastoma41. 

These observations indicate that the WNT signalling pathway, which molecularly 

characterizes this tumor, exhibits at the single-cell level a gradient of activation. A third 

cellular population displayed an early neuronal-committed phenotype: non-migrating 

(DCX-), immature (RBFOX3-), and expressing NEUROD1 at high levels. The best match to 

normal developmental cell populations, using ssGSEA scores, remained the MFN. 

Moreover, malignant cells expressed MFN marker genes and lacked expression of climbing 

fiber neuron marker genes (Extended Data Fig. 5g). Altogether, these results indicate that 

WNT medulloblastomas share a common cellular origin in the pre-cerebellar LRL, and 

specifically the MFN lineage. The recurrent cellular structure at the single cell level and the 

persistent match to this specific brainstem population are consistent with a model of stalled 

differentiation, with oncogenic mutations entrapping tumor cells in a progenitor-like 

phenotype that retains features of the lineage of origin.

ETMRs recapitulate a neuronal lineage

ETMRs, driven by a fusion between the brain-specific TTYH1 gene and the oncogenic 

microRNA cluster C19MC9, have low inter-tumoral genetic heterogeneity. High LIN28A 
and low OLIG2 levels, gain of chromosome 242, and a very distinctive DNA methylation 

profile are hallmarks of ETMRs8,9. The cell of origin is unknown, although a Sox2+/Pax6+ 

apical radial glia of the cortical ventricular zone has been postulated as a potential source of 

ETMRs43.

To define the cell of origin of ETMRs, we profiled expression of TTYH1 across the 

developmental atlas we generated, as well as three human fetal brain reference 

datasets24,44,45. TTYH1 followed a cell type-specific, temporally regulated expression 

pattern consistent across species and brain regions. Expressed prenatally in RGCs, TTYH1 
switched postnatally mainly to the astro-ependymal lineage in both human and mouse (Fig. 

6a and Extended Data Fig. 6a,b). Cell populations expressing TTYH1 uniquely have the 

potential for C19MC overexpression when harboring the TTYH1-C19MC fusion. Therefore, 

the precise expression pattern of TTYH1 throughout the brain nominates prenatal radial glia 

cells as the cell of origin of ETMRs.

Jessa et al. Page 7

Nat Genet. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Unexpectedly, ETMR bulk tumors mapped to a range of populations from the neuronal 

lineage when using ssGSEA projection (Fig. 3b) and deconvolution analysis (Extended Data 

Fig. 6c). Profiling three human tumor samples at the single cell/single nuclei level revealed 

the source of this heterogeneity (Fig. 6b–d and Extended Data Fig. 6d–h). Malignant cells 

(marked by a gain of chromosome 2; Fig. 5e,f) displayed a very defined cellular hierarchy 

along the neuronal lineage, with a small proportion of cells committing to the glial lineage, 

although maintaining a progenitor phenotype (cluster 9, VIM+, high ssGSEA score for RGC 

signatures). Pseudo-time reconstruction delineated a transcriptional gradient (Extended Data 

Fig. 6d) confirmed by the expression of canonical markers (Fig. 6b) and by ssGSEA 

projections (Extended Data Fig. 6e). On one end of this gradient, tumor cells displayed a 

progenitor-like phenotype (VIM+, NES+), which progressed towards a migrating (DCX+, 

cluster 3) and then to a more mature (GAD2+, GRIA2+, clusters 4, 8, 12) neuronal 

phenotype. We next reconstructed active gene regulatory networks34. In agreement with a 

complete recapitulation of the neuronal lineage within each tumor sample, RGC-specific 

regulons were active in the progenitor-like tumor compartment, while the neuron-like 

compartment shared regulatory modules with normal differentiated neurons (Fig. 6c,d).

The RGC-like tumor compartment expressed C19MC, driven by the promoter of the fused 

copy of TTYH1, which was silenced in the minority of malignant cells that were able to 

escape and progress in differentiation (Extended Data Fig. 6f). This compartment also 

displayed signatures related to the oncogenic process, with increased activation of 

proliferation-related pathways and high MYC signal (Fig. 6e). In sum, these findings 

support a model in which prenatal, neurogenic RGCs undergo oncogenic transformation, 

resulting in their abnormal persistence in the developing brain. In this tumor type, the 

progenitor-like cells are only able to progress to a limited extent along their programmed 

differentiation path (Fig. 6f), explaining the histology of these tumors, which resemble 

undifferentiated neural tubes.

Group 2a/b ATRTs originate outside the neuroectoderm

In contrast to ETMRs, WNT medulloblastomas, and pHGGs, ATRT bulk tumors mapped 

with low scores to a range of RGCs and mesodermal cell types (Fig. 3b and Extended Data 

Fig. 7a). The RGC match was driven by non-lineage specific genes (Extended Data Fig. 

7b,c), suggesting that these tumors do not mirror any particular lineage within our atlas. 

Given the occurrence of some ATRTs in the cerebellum, we also mapped bulk tumors to 

developing cerebellar cell populations38 (E10-P14) (Extended Data Fig. 4). This analysis 

yielded similar results: ATRTs did not collectively resemble any specific cerebellar cell type. 

We thus expanded our reference beyond the developing neuroectoderm. We obtained a 

single-cell atlas of mouse gastrulation and early embryogenesis46 (E6.5-E8.5), covering the 

developmental window where inactivation of Smarcb1 led to intracranial tumors in ATRT 

mouse models47 (Fig. 7a). Gene signatures for the three ATRT subgroups4,21 (Group 1/SHH, 

Group 2a/TYR and Group 2b/MYC) had very distinct expression patterns in this dataset, 

with Group 2b genes21 (and, to a lesser extent, Group 2a) clearly silent in the 

neuroectodermal related structures, supporting our hypothesis of a non-neuroectodermal 

origin (Fig. 7b). Group 1 genes21, in contrast, while highly enriched in mesodermal 
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populations, were also detected in the neuroectoderm, spinal cord and forebrain/midbrain, 

and thus a neuroectodermal origin cannot be ruled out for this subtype.

To eliminate the confounding effects of tissue composition, we profiled five patient samples 

by sc/snRNA-seq (Fig. 7c,d and Extended Data Fig. 7d–g). Tumors were composed of a 

VIM+, malignant population expressing genes upregulated in the corresponding ATRT 

subtype4,21. Once again, malignant cells did not match any specific cell type in our atlas. 

Importantly, we detected a major vascular and immune infiltration component in tumors, 

corroborating the match to pericyte and mesoderm signatures observed for some bulk tumors 

(Extended Data Fig. 4). We observed distinct populations of microglia and immune cells 

including cytotoxic T-cells (CD8A+/CD8B+), natural killer cells (CD161/KLRB1+), and a 

small cluster of B cells (CD79A+), consistent with data indicating high immune infiltration 

in ATRTs48. Our results suggest that Group 1 ATRTs may arise from an earlier progenitor 

(prior to E12.5). In turn, Group 2a/b ATRTs, two genetically homogeneous but molecularly 

diverse subtypes, likely originate outside the neuroectodermal populations surveyed here. 

These data potentially explain why mouse models using neuronal drivers did not lead to 

ATRT formation, and only the inducible loss of Smarcb1 during a narrow embryonal 

window using a ubiquitous driver generated CNS but also extra-CNS tumors47.

A glial-committed progenitor in pontine H3K27M HGG

Neural precursor cells (NPCs) can be transformed by the driver H3K27M when combined 

with other mutations in vitro49, and in vivo only when introduced prenatally50. H3K27M 

HGGs have been proposed to consist of proliferating OPC-like cells that eventually progress 

towards an astrocyte-like or oligodendrocyte-like state51,52. We recently reported the super-

enhancer landscape and core TF circuitry of H3K27M pHGG53. In our atlas, the top two 

core TFs detected in H3K27M HGGs, IRX2 and PAX3, are specifically expressed in the 

pons (Fig. 8a), consistent with the spatial occurrence of this mutation. By ssGSEA 

projections, bulk H3K27M pontine HGG transcriptomes predominantly matched human 

astrocyte and OPC signatures (Fig. 3b and Extended Data Fig. 8a,b).

To assess whether H3K27M mutation directly impacts cellular differentiation potential, we 

introduced frameshift mutations in the H3F3A-mutant allele (encoding H3.3) in the tumor-

derived primary cell line DIPGXIII using CRISPR/Cas9, which abolished mutant protein 

expression (described in Harutyunyan et al.54, Krug et al.53, and Extended Data Fig. 8c). 

Cells were maintained in stem cell media promoting neural stem cell self-renewal, or serum-

containing differentiation media for two weeks, and gene expression was then assessed by 

RNA-seq. PCA based on ssGSEA projections (Fig. 8b) or gene expression (Extended Data 

Fig. 8d) showed that the differentiation protocol induced important transcriptional changes 

(PC1, 81% variance explained), which largely differed between H3.3K27M and H3.3K27M-

KO cells (PC2, 14% variance explained). In differentiation media, cells adopted a less-

proliferating, astrocyte-like state (Fig. 8c), consistent with the cellular match observed for 

bulk tumors. Importantly, cells progressed further along the astrocytic lineage after removal 

of H3.3K27M mutation (Fig. 8c and Extended Data Fig. 8e–i). Some H3.3K27M cells 

acquired diffuse GFAP expression upon differentiation. Knockout lines, in turn, expressed 

low GFAP amounts in stem cell media and greatly upregulated expression in differentiation 
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media, in which GFAP formed the stereotypical cytoskeletal filaments found in mature 

astrocytes (Extended Data Fig. 8h). In sum, these results, together with data obtained on 

chromatin marks affected by this mutation53,54, indicate that a pontine glial-committed 

neural progenitor is at the root of H3.3K27M-mutant HGG and that this mutation prevents 

complete differentiation along glial lineages.

Discussion

Childhood brain tumors have a spatio-temporal distribution that mirrors cellular waves of 

brain development, and several of their known drivers have developmental roles. A major 

challenge in understanding, modeling, and treating these tumors has been the absence of a 

comprehensive blueprint of normal brain development and the lack of knowledge regarding 

their cell of origin. Modeling studies often involve labor-intensive scanning of 

developmental windows and cell types permissive to the driver mutations47,50,55. These 

limitations severely impact accurate modeling and the development of rational frameworks 

for therapeutic interventions, as molecular dependencies of specific progenitors’ states are 

unknown or under-appreciated. Our work addresses these gaps. We provide the first 

transcriptomic blueprint for the developing pons and expand recent data on forebrain 

development27–29. Our census uncovers progenitors and differentiation pathways unique to 

the pons, distinct from previously surveyed neural cell types33. Importantly, focusing our 

reference atlas on two main regions where pediatric tumors arise enabled us to characterize 

putative cells of origin and identify impaired development as a common mechanism at the 

origin of several brain tumor types.

Indeed, in WNT medulloblastoma, the absence of bona fide, fully differentiated cells in the 

scRNA-seq tumor data, together with the univocal match to a pontine pre-cerebellar cell 

population of the LRL-derived MFN lineage, suggest a strong differentiation block in this 

medulloblastoma subgroup. In ETMRs, the very young age at diagnosis, exquisite 

similarities with the fetal brain, and activation of pathways that can be precisely timed 

(TTYH1, DNMT3B) argue for a prenatal oncogenic event. Profiling cortical neurogenesis 

allowed us to capture how ETMRs arise in early neural progenitors and a large proportion of 

cells remain in this state, unable to fully differentiate. Tumor samples recapitulate the 

complete neuronal lineage, but C19MC expression specifically persists in the progenitor-like 

cells, which maintain the tumor supply (Extended Data Fig. 6f). In H3K27M pontine pHGG, 

our data support an origin within a glial-committed neural progenitor. Last, we show that 

Group2a/b ATRTs likely originate from cells outside of the neuroectoderm. This may 

explain the extra-CNS occurrence of rhabdoid tumors, including in mouse models47. Further 

studies of additional time points and developmental compartments not profiled here will be 

needed to elucidate the cell of origin of this entity.

Understanding the molecular mechanism underlying impaired differentiation, and the timing 

of the oncogenic event, which in many cases seems to be prenatal, can provide important 

clues for reversing its effects. Indeed, we show that removal of the oncogenic H3K27M 

mutation in pHGG tumor-derived cell lines directly promotes progression of differentiation 

along the glial lineage, despite the many associated genetic alterations (including TP53 
mutations and/or MYC amplification) identified in these lines. This underlines the direct 
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effect of H3K27M on the differentiation potential of pontine neural progenitors. It also 

shows that the effects of a differentiation blockade may be reversed, which can apply beyond 

pHGGs. The dependencies of each tumor cell of origin, necessary during development but 

not required after birth, could be targeted if better understood. To this effect, we provide a 

framework for modeling tumors and a more accurate read-out for therapeutic efficacy, as 

proliferation rates or migration potential, which have been generally used in the design of 

therapeutic interventions, are less relevant in these brain tumors. In summary, our data reveal 

a common theme across subtypes of pediatric brain tumors where genetic alterations impact 

restricted developmental windows during the differentiation of neural lineages, retaining 

cells in a self-renewing, progenitor-like phenotype. The possibility that tumors arise in more 

terminal cell types and undergo dedifferentiation is remote and will require additional in 
vivo lineage tracing experiments to be formally excluded. A deep understanding of the 

biology, timing and transitional states of the developmental hierarchies at the root of 

childhood brain tumors may allow for the rational design of pre-clinical models, an essential 

step towards improved tumor diagnostics and novel therapeutics.

Methods

Tissue handling and dissociation

Protocols for this study involving human samples were approved by the following: Research 

Ethics Board, McGill University and Affiliated Hospitals Research Institutes; Research 

Ethics Board, Hospital for Sick Children; Ethics Review Board, Douglas Mental Health 

University Institute; Comité d’éthique de la recherche du CIUSSS de l’Estrie – CHUS, 

Université de Sherbrooke. Animal protocols were approved by the following: Animal 

Compliance Office, McGill University and Affiliated Hospitals Research Institutes; Animal 

Care Committee of The Centre for Phenogenomics, Joseph and Wolf Lebovic Centre. We 

have complied with all relevant ethical regulations. Informed consent was obtained from 

human research participants.

Mouse embryonic and postnatal brain structures were dissected from the gestational time 

points E12.5 and E15.5 and from postnatal time points P0, P3 and P6. In the case of the 

brainstem, an incision was made between the midbrain and hindbrain boundary, as well as 

between the medullary hindbrain and spinal cord, in order to isolate rhombomeres 1 to 11 

with the exception of the cerebellar structure that was removed. The mouse forebrain was 

isolated by a coronal slice as illustrated in Extended Data Figure 1b, generated using 

embryonic forceps. All mouse dissections were performed under a Leica stereoscope with a 

pair of Moria ultra fine forceps (Fine Science Tools), in a PBS solution. The tissue was 

transferred into ice-cold Leibovitz’s medium, followed by single cell dissociation with the 

Papain Dissociation System (Worthington Biochemical Corporation, NJ).

Fresh human brainstem tissue was obtained from two elective non-medically motivated 

pregnancy terminations at 17 and 19 post-conception weeks, with no evidence of 

developmental abnormalities. Brain cells were individualized using the Worthington Papain 

Dissociation System (Worthington Biochemical Corporation, NJ) and cryopreserved for later 

use. See Supplementary Note, section 1 for an analysis of cell type specific biases 

introduced by cryopreservation.
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Fresh tumors collected after surgery were enzymatically digested and mechanically 

dissociated using the papain version of the Brain Tumor Dissociation Kit (Miltenyi Biotech) 

or a collagenase-based dissociation method as previously reported56 (Supplementary Table 

6). PBS used to wash and resuspend the cell pellets was supplemented with 1% BSA (0.05% 

BSA in the case of collagenase-based dissociation). Red blood cells were lysed by 

ammonium chloride treatment for 5 min on ice. After counting the cells and verifying their 

viability with Trypan Blue (>60%), dissociated cells (10,000) were processed for library 

preparation, or cryopreserved in Cryostor CS10 (StemCell Technologies) for later use 

(Supplementary Table 6). For samples with low viability (<60%), dissociated cells were first 

enriched for live cells using the Dead Cell Removal kit (Miltenyi Biotech).

scRNA-seq library preparation

The concentration of the single cell suspension was assessed with a Trypan blue count. 

Approximately 10,000 cells per sample were loaded on the Chromium Single Cell 3’ (10X 

Genomics) system. GEM-RT, DynaBeads cleanup, PCR amplification and SPRIselect beads 

cleanup were performed using Chromium Single Cell 3’ Gel Bead kit. Indexed single cell 

libraries were generated using the Chromium Single Cell 3’ Library kit and the Chromium 

i7 Multiplex kit. Size, quality, concentration and purity of the cDNAs and the corresponding 

10x library was evaluated by the Agilent 2100 Bioanalyzer system. The 10x libraries were 

sequenced in the Illumina 2500 sequencing platform.

snRNA-seq library preparation

Nuclei were prepared as previously described57. Frozen tissue (5–50 mg) was dounced in 

Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.05% NP-40). Wash 

and resuspension buffer (PBS, 5% BSA, 1 U/ml Rnase Inhibitor, 0.25% glycerol) was then 

added and nuclei were passed through a 30-μm cell strainer to remove clumps, centrifuged 

and resuspended in 1 ml of wash buffer. 25% iodixianol solution was prepared by mixing 

resuspended nuclei with 1 ml of Optiprep 50% (Optiprep + Solution B : 150 mM KCl, 5 

mM MgCl2, 20 mM Tricine, pH7.8, v/v), layered on 29% Optiprep cushion and centrifuged 

at 10,000g for 30 min at 4 °C. The nuclei pellet was finally carefully resuspended in wash 

buffer to reach a concentration of 1,500 nuclei/μl. As nuclei capture appears to be about 30% 

less efficient than for cells57, we aimed to capture 14,000 nuclei per sample. The Chromium 

single cell 3’ (10X Genomics) protocol was strictly followed to prepare libraries.

RNA-seq library preparation

The RNeasy mini kit (Qiagen) was used to extract total RNA from cell pellets according to 

instructions from the manufacturer. Library preparation was performed with ribosomal RNA 

(rRNA) depletion according to instructions from the manufacturer (Epicentre or Ribo-Zero 

Gold kit, Illumina), with the exception of WNT medulloblastoma samples, where a stranded, 

poly(A)+ enriched library preparation protocol was followed as described58. Paired-end 

sequencing was performed on the Illumina HiSeq 2000, 2500 and 4000 platforms.
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Cell culture

Tumor-derived cell lines cultured as glioma stem cells were maintained in Neucult NS-A 

proliferation media (StemCell Technologies) supplemented with bFGF (10 ng/mL) 

(StemCell Technologies), rhEGF (20 ng/mL) (StemCell Technologies) and heparin 

(0.0002%) (StemCell Technologies) on plates coated in poly-L-ornithine (0.01%) (Sigma) 

and laminin (0.01 mg/mL) (Sigma). Lines were cultured to become differentiated glioma 

cells by adaptation to media of DMEM (4.5 g/L glucose, with L-glutamine, sodium pyruvate 

and phenol red) (Wisent) supplemented with 10% fetal bovine serum (Wisent) for two 

weeks, while maintained on poly-L-ornithine and laminin coated plates. All lines tested 

negative for mycoplasma contamination, checked monthly using the MycoAlert 

Mycoplasma Detection Kit (Lonza). Tumor-derived cell lines were confirmed to match 

original samples by STR fingerprinting. We thank Michelle Monje for kindly sharing 

primary tumor cell lines established from patients with high-grade glioma.

Immunofluorescence

Cells were plated in Nunc Lab-Tek II Chamber slide system (8-well) (ThermoFischer 

Scientific). Slides were fixed with 4% paraformaldehyde in 2% bovine serum albumin 

(BSA) for 15 min at room temperature, followed by washing three times with PBS. Cells 

were permeabilized by 0.05% Triton X-100, 2% BSA, 5% normal goat serum (NGS) in PBS 

followed by 3 PBS washes. Slides were blocked with 2% BSA, 5% NGS in PBS for 1 hour, 

followed by overnight incubation with anti-GFAP rabbit monoclonal antibody (Cell 

Signalling #12389) at 1:200 dilution in blocking solution. Cells were washed 3 times with 

PBS and incubated for 1 hour with 1:500 dilution of Goat anti-rabbit IgG cross-adsorbed 

secondary antibody, Alexa Fluor 488 (ThermoFischer Scientific) in blocking solution. Slides 

were washed 3 times in PBS and Prolong Gold antifade reagent with DAPI (Invitrogen) was 

applied. Slides were photographed with Zeiss LSM780 Laser Scanning Confocal 

Microscope at 20X and 63X magnification.

Western blotting

Histone lysates were extracted using the Histone Extraction Kit (Abcam). Lysate protein 

concentration was determined with the Bradford assay reagent (Bio-Rad). Three micrograms 

of histone was separated on NuPAGE Bis-Tris 10% gels (ThermoFischer Scientific) and 

wet-transferred to a PVDF membrane (GE Healthcare). Membrane blocking was performed 

with 5% skim milk in Tris-buffered saline (50 mM Tris, 150 mM NaCl, 0.1% Tween 20, pH 

7.4) (TBST) for 1 hour. Membranes were incubated overnight with primary antibody in 1% 

skim milk in TBST. Membranes were washed 3 times in TBST, and the secondary antibody 

(ECL anti-rabbit IgG Horseradish Peroxidase linked whole antibody) (GE Healthcare) was 

applied for 1 hour in 1% skim milk in TBST. Membranes were washed 3 times and the 

signal was resolved with Amersham ECL Prime Western Blotting Detection Reagent (GE 

Healthcare) and imaged on a ChemiDoc MP Imaging System (Bio-Rad). The antibodies and 

their concentrations are listed in the Life Sciences Reporting Summary.
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Bulk RNA-seq data analysis

Initial processing and quality control—Adaptor sequences and the first four 

nucleotides of each read were removed from the read sets using Trimmomatic59 (v0.32). 

Reads were scanned from the 5’ end and truncated when the average quality of a 4-

nucleotide sliding window fell below a threshold (phred33<30). Short reads after trimming 

(<30 bp) were discarded. Quality control metrics were obtained using FASTQC (v0.11.2), 

samtools60 (v0.1.19) and BEDtools61 (v2.17.0). High quality reads were aligned to the 

reference genome hg19 (GRCh37) with STAR62 (v2.3.0e), using default parameters. 

Multimapping reads (MAPQ<1) were discarded from downstream analyses.

Gene expression analysis—Gene expression levels were estimated by quantifying reads 

uniquely mapped to exonic regions defined by the ensGene annotation set from Ensembl 

(GRCh37; n = 60,234 genes) using featureCounts63 (v1.4.4). Normalization (mean-of-

ratios), variance-stabilized transformations of the data, as well as differential expression 

analysis, were performed using DESeq264. Unless otherwise stated, all reported P-values 

have been adjusted for multiple testing using the Benjamini-Hochberg procedure. Global 

changes in expression levels were evaluated by hierarchical clustering of samples and 

principal component analysis (PCA) using normalized expression data coupled with 

variance-stabilized transformation64.

Analysis of scRNA-seq

Initial processing and quality control of sequencing data—Cell Ranger (10x 

Genomics) was used with default parameters to demultiplex and align sequencing reads, to 

distinguish cells from background, and to obtain gene read counts per cell. Alignment was 

performed using the hg19 reference genome build coupled with the Ensembl transcriptome 

version 75. In the case of ETMR samples, a genomic annotation for the C19MC cluster 

(chr19:54161588–54269814), absent in Ensembl annotations, was added to the reference. 

Intronic counts were included in the case of snRNA-seq samples. Cells were filtered based 

on the following quality control metrics (Supplementary Table 6): mitochondrial content 

(indicative of cell damage), number of genes and number of UMIs, using the R package 

Seurat, version 2.330,31. Thresholds for each sample were set based on the distribution of 

each metric within the sample, which varies with sequencing coverage and number of cells 

captured. In cases where a high mitochondrial content or low number of cells were observed 

in tumor samples (e.g. WNT-MB-3, ATRT2), interpretation of data was strictly restricted to 

validation of results obtained in higher quality samples; for analyses sensitive to these 

parameters (e.g. CNA calling, see Supplementary Note, section 3), a more stringent 

threshold was used to retain only a small subset of high quality cells from these samples. 

Cells with an outlier gene to UMI count ratio were filtered out as suspected multiplets. 

Libraries were scaled to 10,000 UMIs per cell and natural log normalized. These scaled log-

transformed counts were used for differential expression analyses, computing correlations of 

gene expression, and assessing expression of specific genes and gene sets.

Identification of cell populations and their gene signatures—To allow for 

different degrees of granularity in our study, cells that passed quality control were analyzed 

at different levels, by pooling cells (i) from each brain structure (forebrain or pons), (ii) from 
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each individual sample, or (iii) from defined subsets of cells. Human samples (fetal 

brainstems and tumors) were analyzed individually and never combined. Briefly, for each 

level, data were subjected to the following steps: normalization, selection of variant genes, 

regression of unwanted sources of variation, dimensionality reduction, clustering, 

assignment of cluster labels, extraction of gene signatures, and post-clustering quality 

control. Low quality clusters were filtered out. Clusters that showed internal structure 

unresolved by the initial clustering approach (e.g. embryonic progenitor populations) were 

extracted, re-embedded and re-clustered. Each one of these steps is detailed in the 

Supplementary Note, section 2.

For clusters not robustly defined (i.e. not robust to changing algorithm parameters, showing 

poor cluster validity metrics and not showing clear separation in the tSNE representation), a 

discrete clustering approach may not be optimal to represent the underlying cell population 

structure, which is better modeled as a mixture of cells linked by transitions along a 

continuum. In these cases, we isolated these cells and performed trajectory analysis to 

delineate differentiation states (see below).

Identification of active transcription factors (TF) and their regulatory modules
—Active TFs and their gene targets in the dataset were inferred using SCENIC34. The 

SCENIC workflow implements the following steps. First, sets of genes (modules) co-

expressed with TFs are identified. Second, modules for each TF are pruned based on motif 

support near the transcription start sites. Specifically, modules are retained if the TF motif is 

enriched among its targets, and target genes without direct motif support are removed. Third, 

the activity of the regulons is scored and binarized with AUCell34, which effectively 

determines whether the genes in each regulon are enriched in each cell using the distribution 

of regulon activity across all cells in the dataset. Finally, to compute regulon activity in 

clusters, we averaged the regulon activity across cells in each cluster. The input list of TFs 

was downloaded from the AnimalTFDB3.065 database. Inferred regulons and their activity 

across clusters in the mouse dataset are reported in Supplementary Table 3a,b.

Pseudotemporal ordering and trajectory reconstruction—The trajectory of cells 

within each lineage was inferred using the R package Monocle335,36,66 v2.8.0. Specific 

clusters included in each lineage are indicated in Supplementary Table 2a. Dimensionality 

reduction was performed using the Discriminative Dimensionality Reduction with Trees 

algorithm36, with the effect of the number of genes expressed and the mitochondrial 

percentage removed. The most variant genes were used to order cells along the tree. Cells 

were assigned a pseudotime according to their distance from the root state, which was 

manually selected. To display the relationship between cells in pseudotime, a minimum 

spanning tree was generated.

Identification of TFs differentially expressed across pseudotime—Genes 

differentially expressed across pseudotime were identified with Monocle, which models 

gene expression as a smooth, nonlinear function of pseudotime and then tests gene 

expression changes along this pseudotime. For branched lineages (astro-ependymal; pontine 

embryonic progenitors), genes differentially expressed between branches of a trajectory 

were identified using the branched expression analysis modeling (BEAM) algorithm36. This 
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algorithm uses vector generalized linear models with splines to fit the non-linear gene 

expression dynamics as a function of pseudotime. The models for two branches are then 

compared with a likelihood ratio test for branch-dependent expression. TFs among the 

differentially expressed genes were identified using the AnimalTFDB3.065 database. 

Transcription factors with a q-value < 0.01 are represented in heatmaps and reported in 

Supplementary Table 3. Heatmaps were constructed based on expression levels of DE 

transcription factors across pseudotime (binned into 100 equal units of pseudotime), 

clustered by unsupervised hierarchical clustering using the Ward2 algorithm. Columns in 

heatmaps correspond to units of pseudotime.

Analysis of single-cell and single-nuclei tumor profiles—Analyses for 

characterization of copy number aberrations (CNA), pathway activation, cell cycle state and 

expression of tumor-specific gene sets are described in detail in Supplementary Note.

Integration of tumor data with the single-cell developmental atlas

Projection of bulk and single-cell transcriptomes onto scRNA-seq atlas—
Human bulk RNA-seq transcriptomes were projected across the developmental populations 

using single sample Gene Set Enrichment Analysis (ssGSEA)37. Briefly, the ssGSEA score 

represents the degree of enrichment of a given gene signature in a sample: gene expression 

estimates for each sample are rank-normalized and empirical cumulative distribution 

functions (ECDF) of genes are computed. The final score integrates the difference between a 

weighted ECDF of genes in the signature and the ECDF of the remaining genes37. The 

GSVA R implementation from Bioconductor, version 1.27.067 provides this functionality 

with parameter method=“ssgsea”. The following additional parameters were used: 

mx.diff=FALSE, rnaseq=TRUE, ssgsea.norm=FALSE, tau=0.75. For mouse signatures, 

human gene orthologs were used, identified using the Ensembl Biomart database, version 

7568.

To identify the specific genes driving the enrichment of a signature in a given tumor type, we 

derived and implemented a “leading edge” analysis, similar to the one developed for 

standard gene set enrichment analysis69. Briefly, for one signature and sample, we defined 

the leading edge gene set as the genes occurring in the rank-normalized gene list at or before 

the point at which the difference between the two ECDFs reaches its maximum. For each 

tumor type, we then extracted genes that were in the leading edge of all samples belonging 

to that type. For each gene, the median rank of expression across samples was computed, 

and we report the 20–25 genes with the smallest median rank, i.e. the highest rank-

normalized expression.

ssGSEA scores for each signature (Supplementary Table 2a) for each bulk sample were 

computed and used as input for PCA, unsupervised clustering, or tSNE visualizations. tSNE 

was performed on the top 50 PCs of the score matrix, with theta = 0.5, 1,000 iterations, and 

perplexity = 15. We performed clustering analysis based on these projections for a range of 

datasets to verify that the scores were able to segregate distinct sample types. The scores 

distinguished, as expected, fetal from adult brain, tumors from cell lines, normal brain from 

tumor-adjacent brain, and different bulk samples from cell lines of diverse origin.

Jessa et al. Page 16

Nat Genet. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Human tumor scRNA-seq data was projected onto the developmental dataset at the level of 

clusters or single cells. At the cluster level, the mean expression of all detected genes was 

computed for each malignant cluster. ssGSEA scores were then computed for each cluster as 

described above.

Deconvolution analysis—CIBERSORT70 was used to perform deconvolution of bulk 

RNA-seq transcriptomes. The input signature matrix consisted of mean gene expression 

profiles for clusters in our developmental atlas. Genes appearing in any cluster’s gene 

signature were used as features. Quantile normalization was disabled, and CIBERSORT was 

run on relative mode with 100 permutations. We tested CIBERSORT in our setting using 

synthetic mixtures of mouse populations at varying proportions, representing different 

degrees of datasets imbalance, and verified that the expected relative ratios were correctly 

predicted.

Code availability

Our R package for analysis and visualization of single-cell RNA-seq data, cytobox, which 

was used to generate the figures presented here, is available on GitHub at https://github.com/

fungenomics/cytobox under a GPL-3.0 license.

Data availability

Bulk and single-cell RNA sequencing data for normal human and patient tumor samples 

have been deposited in the European Genome-Phenome Archive under accession number 

EGAS00001003368. Single-cell RNA sequencing data for normal mouse samples have been 

deposited in NCBI GEO under accession number GSE133531. Bulk RNA sequencing data 

for human tumor derived cell lines have been previously deposited in NCBI GEO and are 

available under accession number GSE117446.

Extended Data
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Extended Data Fig. 1. Overview of the single-cell transcriptomic atlas of the developing brain
a, Overview of the approach. PCW, post-conception weeks. WNT MB, WNT-subtype 

medulloblastoma; ETMR, embryonal tumors with multilayered rosettes; ATRT, atypical 

teratoid/rhabdoid tumors; pHGG, pediatric high-grade gliomas; HGNET, high-grade 

neuroepithelial tumor; LGG, low-grade gliomas. b, Schematics of mouse brain regions 

included in dissections; figures adapted from the Allen Brain Atlas. At E12.5 and E15.5, the 

hindbrain (E12.5) and pons (E15.5) dissections included all of the rhombomere 1 structures 

with the exception of the cerebellar hemisphere, and all of the structures in rhombomeres 2–
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11. The forebrain dissections included parts of the dorsal pallium, central subpallium, 

subpallium, and septopallidal transition area. At P0, P3, and P6, the pons dissections 

included all of the rhombomere 1 structures with the exception of the prepontine hindbrain, 

and all of rhombomeres 2–11 with the exception of the roof plate structures in rhombomeres 

1 to 6. The forebrain dissections included parts of the alar and roof plates of the 

telencephalon (including the dorsal pallium and medial pallium), and parts of the thalamus 

in prosomere 2, the prethalamus in prosomere 3, the preoptic alar plate, and the alar parts of 

the peduncular and terminal hypothalamus (original figures: © 2008 Allen Institute for Brain 

Science. Allen Developing Mouse Brain Atlas. Available from: developingmouse.brain-

map.org). c, tSNE embeddings of individual mouse hindbrain/pons samples, colored by 

cluster. Number of cells in each sample is indicated in parentheses at bottom left; see 

Supplementary Table 2a for description of clusters. d, tSNE embeddings for mouse forebrain 

samples, as in (c). e, Labeled tSNE embedding of the joint mouse forebrain (n = 33,641 

cells; Supplementary Table 2b). f, Proportion of cells from each major cell class in the 

forebrain over the timecourse. g-h, Overview of single-cell human fetal brainstem dataset. g, 
Labeled tSNE plots for each sample. Number of cells in each sample is indicated in 

parentheses at bottom left; see Supplementary Table 2a for description of clusters. h, 
Proportion of cells from each major cell class in human samples.
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Extended Data Fig. 2. Quality control and cell type labeling strategies in scRNAseq atlas of the 
developing brain
a, Distribution of quality control statistics for the E12.5 mouse forebrain. UMIs, unique 

molecular identifiers. Number of cells in each cluster is indicated in parentheses; clusters 

with >100 cells are shown. Violins are colored by cluster identity, and generated as in Figure 

7. b, Illustration of quantification of cell-type specific gene sets (Supplementary Table 1a) to 

assign broad cell class. E12.5 mouse forebrain is shown. Number of cells in each cluster is 

indicated in parentheses. c-d, Gene expression distribution for selected cell type-specific 
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canonical markers (Supplementary Table 1b) in clusters of the joint mouse pons (c) and 

forebrain (d). Number of cells in each cluster is indicated in Supplementary Table 2b–c. 

Violins are colored by cluster identity and generated as in Figure 7, with all violins scaled to 

the same width. e, Heatmaps of Spearman correlations of gene expression between clusters 

in the mouse dataset in this study (columns), and representative populations from a 

published atlas of the mouse central nervous system by Zeisel et al, 2018, Cell33 (rows). For 

populations within the Zeisel et al. dataset, a representative cluster was selected from each 

developmental compartment (see Supplementary Note for details). Color annotation on 

columns corresponds to cluster identity. Number of cells in each cluster is indicated in 

Supplementary Table 2a.
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Extended Data Fig. 3. Patterning and differentiation dynamics during forebrain development
a, Re-embedding of mouse forebrain progenitor populations from embryonic time points (n 
= 7,673 cells). Cells are colored by cluster assignment in the re-embedded tSNE space. b, 
tSNE embedding colored by expression of top discriminant gene markers for each cluster, 

identified using a random forest-based approach (Supplementary Note). c, In situ 
hybridization of selected discriminant marker genes, from the Allen Brain Atlas (© 2008 

Allen Institute for Brain Science. Allen Developing Mouse Brain Atlas. Available from: 

developingmouse.brain-map.org) d, Visualization of forebrain cells from E12-P0 by tSNE (n 
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= 25,668 cells). Top row, cell clusters are highlighted by age (left panels), or inferred 

pseudotime for the cortical excitatory neuron trajectory (right). Bottom row: expression of 

representative gene markers. Expression of each gene was normalized to a [0, 1] scale for 

visualization. e, Transcription factor activity along the inferred cortical excitatory neuron 

trajectory (Supplementary Table 3). f-g, Differentiation dynamics in the ventral forebrain 

inhibitory lineage as in (d-e). h, Cells in the joint forebrain atlas, as in Extended Data Figure 

1e, colored by inferred pseudotime of astro-ependymal and oligodendrocyte (n = 1,354 

cells) lineages (n = 4,496 cells). i, Expression of gene markers representative of astro-

ependymal (top) and oligodendrocyte (bottom) differentiation, shown in cells from the 

respective lineages.
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Extended Data Fig. 4. Mapping of bulk transcriptomes onto developmental populations
Best matching signatures using ssGSEA for all samples within each tumor type. For ATRT 

tumors, populations from a recently published timecourse of the developing mouse 

cerebellum38 spanning E10-P14 were also included in the projections; cerebellar signatures 

are denoted by ‘CB’. HGNET-BCOR, high-grade neuroepithelial tumor with BCOR 

alteration; EBT, embryonal brain tumor; HGG-IDH, IDH-mutant high-grade gliomas; HGG-

WT, High-grade gliomas wild-type for histone and IDH1/2 mutations; HF, signature from 

published scRNAseq human fetal brain dataset24 containing human cerebral cortex 

specimens spanning 5–37 PCW. Bars are colored by cluster from which signatures were 

derived.
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Extended Data Fig. 5. Identification of pontine mossy fiber neurons and lower rhombic lip 
precursors, and analysis of WNT medulloblastoma scRNAseq
a, Mossy fiber neuron cluster (n = 198 cells) highlighted in the tSNE embedding of the P0 

mouse pons. b, Left: expression of Olig3, a molecular marker of the lower rhombic lip 

(LRL), the progenitor domain that gives rise to pre-cerebellar neuron populations including 

mossy fiber (MF) and climbing fiber (CF) neurons12,71,72. Right: expression of Atoh1, 

which identifies the MF lineage in the LRL72,73, and is required for their development74. c, 
Violin plots quantifying expression of genes used to determine cluster identity in the MF 
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neuron population (n = 198 cells). Left: Pax6, Zic1 and Olig3, markers of LRL progenitors 

that give rise to MF neurons, identified by lineage tracing and loss of function 

experiments12,72,73,75. Pax6 regulates cell fate allocation in the LRL73, and Zic1 regulates 

MF neuron positioning and projections in the developing pons75. Middle: Atoh1, a marker 

of MF lineage in the LRL72,73,74. Pcsk9, a marker of the pontine nucleus, a prominent 

structure formed exclusively by MF neurons76. Barhl1 is required for the formation of MF 

nuclei, and is expressed in RL-derivatives except for the inferior olivary nucleus (ION, the 

structure formed by CF neurons, and the source of climbing fibers to the cerebellum)77. 

Right: Genes marking the climbing fiber neuron lineage72, which also originates from LRL 

precursors, are absent in the MF population, resolving the cluster identity (Ptf1a, Neurog1/

Ngn1 and Ascl1/Mash1). Foxd3 is a marker of the mature ION78. Brn3a, which marks the 

ION throughout its maturation78, is undetected. Violin plots are generated as in Figure 7. d-
e, PCA of re-clustered pontine progenitors as in Figure 2a, with cluster containing LRL 

precursors highlighted (d) (n = 393 cells), or cells colored by expression of selected gene 

markers for LRL precursors (e). Expression of each gene was normalized to a [0, 1] scale for 

visualization. f, In situ hybridization of selected markers in the E13.5 mouse from the Allen 

Brain Atlas illustrating expression patterns in the LRL. g, Expression of ZIC1, CTNNB1 
and OTX2, mossy fiber neuron marker genes (BARHL1, PCSK9), and climbing fiber neuron 

marker genes (BRN3A, ASCL1) in the tSNE embedding of the WNT-MB-1 patient tumor 

sample (n = 3,975 cells). Expression of each gene was normalized to a [0, 1] scale for 

visualization. Similar expression patterns were observed in the other two patient samples. h, 
Inferred pseudotime reconstruction from the malignant cells, represented in the tSNE 

embedding of the WNT-MB-1 patient tumor sample. i-j, Characterization of two patient 

WNT medulloblastoma scRNAseq samples as in Figure 4. Top left: tSNE and clustering, 

with non-malignant clusters labeled, and number of cells indicated in parentheses. Top right: 

expression of marker genes of malignant tumor clusters. Bottom: cells in malignant tumor 

clusters colored by pseudotime inferred through trajectory analysis.
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Extended Data Fig. 6. Profiling of TTYH1 expression and characterization of patient ETMR 
scRNA-seq and snRNA-seq samples
a, Heatmaps of TTYH1 expression across developing mouse and human brain samples in 

this study. Expression was normalized to a [0, 1] scale within each sample for visualization. 

Number of cells in each cluster is indicated in Supplementary Table 2a. b, Expression of 

TTYH1 in the developing human brain in datasets from three published scRNA-seq studies 

which profiled 11 human cerebral cortex specimens spanning 5–37 PCW24 (left, n = 4,261 

cells); progenitor and neuron cell populations from 12 and 13 PCW human neocortex 

specimens44 (top right, n = 226 cells); and human pluripotent stem-cell derived forebrain 
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organoids45 (bottom right, n = 11,838 cells). RG, radial glia; oRG, outer radial glia; vRG, 

ventricular radial glia; IPC, intermediate progenitor cells; IN, inhibitory neuron; EN, 

excitatory neuron. Boxplots: center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range; points, outliers. c, Deconvolution (CIBERSORT) analysis 

of bulk ETMR samples (n = 14), using a panel of signatures from the cortical neuronal 

lineage. d-f, tSNE embedding of ETMR1 tumor sample (n = 5,427 cells), with cells colored 

by inferred pseudotime trajectory (d), by best matching cell type when tumor cells were 

projected onto the developmental atlas using ssGSEA (e), or by expression of selected 

marker and diagnostic genes (f). Expression of each gene was normalized to a [0, 1] scale 

for visualization. g-h, Characterization of two additional patient ETMR samples profiled 

using single-nuclei RNA-sequencing as in Figure 6. Top left: tSNE embedding with cells 

colored by clustering, and number of cells indicated in parentheses. Bottom left: inferred 

pseudotime. Right: bubble plots of neuronal lineage markers in tumor clusters.
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Extended Data Fig. 7. Characterization and mapping of ATRT patient samples
a, Deconvolution analysis (CIBERSORT) of bulk ATRT patient samples (n = 11), using 

mouse developmental populations. b, Top 25 leading edge genes driving ssGSEA 

enrichment of F-e15 Dorsal RGC signature in bulk ATRT samples (n = 11), and other tumor 

types of focus (ETMR: n =14, WNT-MB: n = 10, HGG: n = 12). Genes which are specific to 

the leading edge of ATRT are indicated with boxes; all other genes appear in the leading 

edge for this signature in other tumors. Boxplots: center line, median; box limits, upper and 

lower quartiles; whiskers, 1.5x interquartile range. c, Best matching developmental 
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populations for bulk tumors by ssGSEA, when the true lineage of origin (glial populations 

for HGG, and neuronal populations for WNT MB and ETMR) is removed, indicating that 

most tumors map non-specifically to RGCs in the absence of the lineage of origin. d-e, 
scRNAseq profiling of two additional patient ATRT samples as in Figure 7. Left: tSNE 

visualization and clustering, with non-malignant clusters labeled, and number of cells 

indicated in parentheses. Right panels: mean expression of inferred ATRT subtype, 

microglia, and cytotoxic T-cell gene signatures, and expression of VIM, represented in tSNE 

embedding (top) and violin plots generated as in Figure 7 (bottom). Expression of each gene 

set was normalized to a [0, 1] scale for visualization in tSNE embeddings. f-g, snRNAseq 

profiling of two additional patient ATRT samples as in (d-e).
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Extended Data Fig. 8. Differentiation potential is impaired in H3K27M cells
a-b, Characterization of the 19 PCW human brainstem astrocytes (n = 258 cells), a 

predominant best match to H3K27M HGG. a, By PCA, the first principal component 

separates the two populations. b, Heatmap of expression of genes most strongly positively 

and negatively correlated with PC1. c, Western blot of K27M-mutant H3 protein and total 

H3 protein confirms presence of mutation and knock-out in each replicate of K27M and KO 

lines respectively. d-g, Analysis of bulk RNAseq data for DIPG cell lines (n = 2 independent 

experiments per condition, biological replicates). d, PCA plot. SCM, stem cell media; DM, 
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differentiation media. e, Volcano plots of differential expression analysis between cells in 

DM vs. SCM for K27M lines (top) and KO lines (bottom). Red color highlights 

differentially expressed genes present in the human brainstem astrocyte 2 gene signature 

(left), and any brainstem or pontine astrocyte gene signature (right). P-values (two-sided 

Wald test) were adjusted using the Benjamini-Hochberg correction. f, Boxplots of log2 fold 

change of expression for genes in selected developmental signatures, between cells in DM 

vs. SCM for K27M lines (red) and KO (blue). Statistical significance was assessed using a 

two-tailed Student’s t-test (p-values: Hindbrain astrocyte: 1.46×10−13; Human astrocyte: 

6.85×10−5; OPC/Oligodendrocyte: 0.14; Excit. Neuron: 0.12; ns: not significant). Boxplots: 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. 

g, Volcano plot of differential expression analysis between K27M and K27M-KO cell lines 

in DM; differential expression analysis was performed as described above. h, Representative 

morphology of GFAP+ cells among cell lines at 60X magnification. Experiment was 

repeated, and images are shown, for n = 2 biologically independent replicates per condition. 

i, Bubbleplot of projection of K27M-KO cell lines onto developmental atlas using ssGSEA, 

shown for the neuroectodermal cell types. The color of the bubbles indicates the change in 

ssGSEA score for each signature between cell lines in SCM and DM, while the size of the 

bubbles indicates the ssGSEA score in DM. Cell types are stratified into two rows based on 

direction of change of the score, upon differentiation. No bubbles are shown for clusters with 

non-specific gene signatures.
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Figure 1 |. Single-cell profiling of the developing mouse pons and forebrain.
a, Molecular taxonomy of all cell populations identified at the individual sample level, 

constructed based on pairwise correlations of gene expression (Spearman). Brain structure, 

time point, and G2/M score are indicated for each cluster. Select transcription factors with 

inferred active regulatory modules (regulons) are shown. The activity of each regulon, z-

scored across clusters, is indicated by size and color of the bubbles, and the number of target 

genes in each regulon is indicated in parentheses. CP, choroid plexus; CH, cortical hem; IPC, 

intermediate progenitor cells; OPC, oligodendrocyte precursor cells; RGC, radial glial cells. 

b, Labeled tSNE embedding of the mouse pons (n = 27,954 cells; see Supplementary Table 

2c). c, Proportion of cells from each major cell class in the pons over the time course.
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Figure 2 |. Patterning and differentiation dynamics during pontine neurogenesis and gliogenesis.
a, PCA of pontine progenitors from embryonic time points (n = 976 cells). Cells are colored 

by cluster assignment. RGC, radial glial cells; LRL, lower rhombic lip. b, Pontine 

progenitors colored by expression of selected canonical gene markers for progenitor-like 

(Vim), proliferating (Top2a), neurogenic (Hes6), or astrocytic (Aldoc) programs, in the PCA 

space as in a. c, Inferred differentiation trajectory36 of pontine progenitors. d, Expression of 

transcription factors associated with fate decisions along the pontine progenitor 

differentiation trajectory (Supplementary Table 3). e,f, tSNE plot of the mouse pons as in 

Figure 1b, with cells in oligodendrocyte (n = 3,800 cells) and astro-ependymal lineages (n = 

6,276 cells) indicated (e), or colored by inferred pseudotime for those lineages (f). g, 
Expression of canonical genes marking oligodendrocyte (top), astrocytic (bottom, Fabp7, 
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Gfap, Aqp4), or ependymal (bottom, Foxj1) differentiation, shown in cells from the 

respective lineages in tSNE embedding as in e and f.
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Figure 3 |. Projection onto developmental lineages stratifies bulk patient samples.
a, tSNE visualization of bulk tumor and normal brain samples based on their ssGSEA 

projections to the developmental atlas segregates tumors by type. ssGSEA scores for the 

complete developmental dataset are used as features. Visualization is shown for normal fetal 

(n = 11) and adult (n = 43) brain, and tumor groups of focus. ETMR, embryonal tumor with 

multilayered rosettes (n = 14); HGG, high-grade glioma (n = 12); WNT MB, WNT-subtype 

medulloblastoma (n = 10); ATRT, atypical teratoid/rhabdoid tumors (n = 14). b, Best 

matching developmental populations for normal brain and tumor types of focus. Additional 

tumors are presented in Extended Data Figure 4. Only tumor samples (excluding cell lines 

and xenografts) are displayed. For select tumors, the cell type exhibiting the dominant match 

is indicated. Bar lengths represent number of samples within each tumor type.
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Figure 4 |. WNT medulloblastomas mirror the lower rhombic lip-derived mossy fiber neurons.
a, Deconvolution analysis (CIBERSORT) of bulk WNT medulloblastoma (MB) patient 

samples (n = 10), using a panel of signatures comprising pontine neurons and refined 

progenitors from the mouse embryonic pons. b, Volcano plot for differential gene expression 

analysis between mossy fiber neurons (n = 198 cells) and all other postnatal pontine neuron 

clusters (n = 939 cells). P-values (two-sided Wilcoxon rank sum test) were adjusted for 

multiple testing using the Bonferroni correction. c, Genes discriminant of mossy fiber 

neurons, identified using a random forest-based approach (Supplementary Note), are ranked 
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by their classification score. d, Top 20 genes contributing to the ssGSEA enrichment of the 

mossy fiber neuron signature in bulk WNT MB transcriptomes (n = 10), identified using a 

leading-edge analysis. Boxplots represent the rank of expression of each gene in bulk 

transcriptomes, and genes are sorted by their median rank of expression. Center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. Genes 

highly specific to mossy fiber neurons as identified in b and c are indicated by a red box. e, 
Boxplots of bulk RNA-seq expression of mossy fiber neuron lineage genes, which are 

significantly upregulated in WNT MB compared to other tumor types shown (WNT MB: n = 

10; ETMR: n = 14; HGG-H3.3K27M: n = 12; HGG-WT: n = 24; ATRT: n = 10). P-values 

(two-sided Wald test) adjusted using the Benjamini-Hochberg correction are indicated in 

parentheses. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range. f, Model of WNT medulloblastoma lineage of origin. mb, midbrain; cb, 

cerebellum; RL, rhombic lip; 4v, fourth ventricle; hb, hindbrain; LRL, lower rhombic lip. 

g,h, Visualization of a patient WNT medulloblastoma scRNA-seq sample (n = 3,875 cells). 

g, tSNE and clustering, with non-malignant clusters labeled by cell type, and malignant 

clusters labeled with numbers. h, Expression of marker genes of malignant tumor clusters. 

Complementary analysis for additional scRNA-seq samples is shown in Extended Data 

Figure 5.
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Figure 5 |. Copy number aberration (CNA) analysis on scRNA-seq tumor samples.
a, UMAP embedding of cells based on copy number signal, colored by community. 

Communities are defined based on copy number signal (n = 16,966 cells; Supplementary 

Note). b, UMAP embedding of cells colored by prominent copy number change. c, Copy 

number profile per community per chromosome. Copy number is called per community 

defined in a, with each community containing cells from one or more patient samples. d, 
UMAP embedding, with cells from each WNT and ATRT tumor sample colored by their 

cluster assignment in the individual sample space, and others in gray. Number of cells is 

indicated for each sample in parentheses. e,f, CNA calling for ETMR1 sample. e, ETMR1 

cells in UMAP space, colored by cluster as in d (left) with similar plots for glia-like 

(middle) or neuron-like (right) tumor cells only. f, Binned copy number signal on 

chromosome 2, colored by segmentation from the HMM-based approach to call copy 

number, shown for communities 5, 7, and 9. Each point represents a genomic bin.
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Figure 6 |. ETMRs fully recapitulate a neuronal lineage.
a, Mean expression of Ttyh1 in the developing mouse brain. RGCs, astrocytes, and 

ependymal cells are shown, with number of cells for each type indicated at the bottom. 

Expression across the complete dataset is presented in Extended Data Figure 6. b-e, scRNA-

seq profiling of an ETMR patient sample (n = 5,427 cells). Additional samples are shown in 

Extended Data Figure 6. b, Gene expression of representative markers from the neuronal 

differentiation path. Expression of each gene was scaled to [0, 1] for visualization. c, tSNE 

and clustering, with non-malignant cluster labeled by cell type and malignant clusters 

labeled with numbers only. d, Heatmap of inferred transcription factor regulon activation in 
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the normal mouse forebrain (left) and clusters of the ETMR patient sample (right). e, 
Heatmap of ssGSEA enrichment of Hallmark biological pathways (rows) in clusters of the 

ETMR patient sample (columns). f, Model of ETMR tumor architecture, recapitulating a 

neuronal differentiation program.
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Figure 7 |. Group 2a/b ATRTs do not match neuroectodermal cell types.
a, UMAP visualization of a published atlas of mouse embryogenesis46 between E6.5-E8.5 

(n = 18,140 cells). Def, definitive; ExE, extra-embryonic; NMP, neuromesodermal 

progenitors. b, ssGSEA scores of ATRT molecular subtype gene signatures (Supplementary 

Table 1a) in the embryogenesis atlas. c, scRNA-seq profiling of a patient ATRT sample: 

tSNE visualization and clustering, with non-malignant tumor clusters labeled by cell type, 

and malignant clusters labeled with numbers only. Number of cells in each cluster is 

indicated at bottom left in parentheses. Additional samples shown in Extended Data Figure 

7. d, Mean expression of ATRT Group 2a/b, microglia, and cytotoxic T-cell gene signatures 

(Supplementary Table 1a), and expression of VIM, represented in the tSNE embedding (top) 

and violin plots (bottom). Violin plots display a kernel density estimate computed on the full 

range of the underlying data without removal of outliers. The tails of the resulting violins are 

trimmed to the range of the data. Violins are scaled to the same area.
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Figure 8 |. Differentiation potential is impaired in H3K27M cells.
a, Heatmap of expression of Irx2 and Pax3, core transcription factors53 in H3K27M HGG, 

in the mouse atlas. Expression was normalized to a [0, 1] scale for visualization. b,c, RNA-

seq from H3.3 K27M pontine HGG primary tumor-derived cell lines and isogenic K27M-

KO lines maintained in stem cell media (SCM) or subjected to a differentiation protocol 

(DM). Experiment was performed for n = 2 biologically independent replicates per 

condition. b, PCA based on ssGSEA projections of bulk transcriptomes onto developmental 

cell populations. c, Change in ssGSEA score after differentiation protocol for each 

individual replicate, for select signatures. All neuroectodermal signatures are shown in 

Extended Data Figure 8.
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