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POU class 2 homeobox associating factor 1 (POU2AF1) participates in abdominal 
aortic aneurysm enlargement based on integrated bioinformatics analysis
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ABSTRACT
Abdominal aortic aneurysm (AAA) is life-threatening, its natural course is progressively sac 
expansion and rupture. Elegant studies have been conducted to investigate the molecular 
markers associated with AAA growth and expansion, this topic however, still needs to be further 
elucidated. This study aimed to identify potential genes for AAA growth and expansion based on 
comprehensive bioinformatics approaches. Firstly, 29 up-regulated genes were identified through 
DEGs analysis between large AAA and small AAA in GSE57691. Secondly, signed WGCNA analysis 
was conducted based on GSE57691 and the green module was found to exhibit the topmost 
correlation with large AAA as well as AAA, 133 WGCNA hub genes were further identified. Merged 
gene set including 29 up-regulated DEGs and 858 green module genes was subjected to 
constructing a PPI network where 195 PPI hub genes were identified. Subsequently, 4 crucial 
genes including POU2AF1, FCRLA, CD79B, HLA-DOB were recognized by Venn plot. In addition, by 
using GSE7084 and GSE98278 for verification, POU2AF1 showed potential diagnostic value 
between AAA and normal groups, and exhibited a significant higher expression level in large 
AAA samples compared with small AAA samples. Furthermore, immunohistochemistry results 
indicated up-regulation of POU2AF1 in large AAA samples than small AAA samples, which implies 
POU2AF1 may be a key regulator in AAA enlargement and growth. In summary, this study 
indicates that POU2AF1 has great predictive value for the expansion of AAA, and may contribute 
to the further exploration of pathogenesis and progression of AAA.
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Introduction:

Abdominal aortic aneurysm (AAA) refers to the 
local dilatation and impairment of the infrarenal 
abdominal aorta with an aortic diameter ≥30 mm 
or an enlargement of more than 50%[1]. The nat-
ural course of AAA has been demonstrated as 
aneurysm sac expansion and growth which leads 
to aneurysm rupture eventually [2]. As reported, 
ruptured aneurysm is accompanied by a very high 
mortality rate which is estimated to account for 
150,000–200,000 casualties every year globally [3]. 
Current clinical strategies for managing AAA 
include open surgery and endovascular aneurysm 
repair (EVAR) [4,5]. In the past two decades, sig-
nificant advancements have been made in the 

treatment of AAA with EVAR [4,5]. Despite 
lower perioperative comorbidity and mortality 
rate, the early survival benefit of EVAR was not 
sustained for the long term because of insufficient 
durability and higher re-intervention rate [6]. On 
the other hand, due to inadequate acknowledg-
ment of the pathogenesis of AAA, there is cur-
rently no effective medical therapies to block the 
initiation or limit the growth of aneurysmal sac 
[3,7]. Based on the studies of various animal mod-
els and human samples, AAA is believed to be 
caused by a combination of genetic and environ-
mental factors that trigger immune-mediated cas-
cades in the aorta [3,8]. Previous studies have 
demonstrated various genetic markers and mole-
cular pathways involving in the AAA expansion 
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and progression [9]. However, given the complex-
ity of the pathogenesis and irreversible expansion 
of AAA, the underlying molecular mechanisms 
and biological processes contributing to aneurysm 
growth remain to be further elucidated.

With the rapid development of high-throughput 
sequencing and microarray technologies, a new 
chapter of understanding the potential molecular 
mechanisms of AAA has been provided. Previous 
bioinformatics analyses based on microarray data 
have revealed differentially expressed genes 
(DEGs), microRNAs and LncRNAs, which may 
participate in the molecular basis of AAA initia-
tion and progression [10,11]. However, extracting 
biologically meaningful information from high- 
throughout data is still a huge challenge. The 
emergence of network biology has provided deeper 
understanding of complex biological systems, and 
related networks are increasingly used in bioinfor-
matics, such as weighted gene co-expression net-
work analysis (WGCNA) which can detect highly 
related gene clusters [12]. In most cases, WGCNA 
was conducted to construct an unsigned co- 
expression network which ignoring the direction 
of interconnected nodes. In order to characterize 
the network biology more precisely, a signed 
WGCNA network was applied in present 
study [13].

The aim of this study was to explore the under-
lying key genes and mechanisms related to the 
expansion and progression of AAA. Therefore, 
the present study mainly applied signed WGCNA 
network, DEG analysis and protein-protein inter-
action network (PPI) to determine crucial genes 
related with AAA enlargement. Then, we further 
performed data validation by microarray datasets 
and immunohistochemistry experiments. Our 
findings presented new insights into the key reg-
ulator contributing to AAA enlargement and pro-
gression, which would provide potential 
therapeutic targets for clinical application.

Materials and methods:

Study design and microarray data acquisition

We downloaded the raw dataset GSE57691 [14] 
from Gene Expression Omnibus Database [15] 
(GEO: https://www.ncbi.nlm.nih.gov/geo/) on the 

National Center for Biotechnology Information 
(NCBI). The original dataset contains 68 samples, 
including 20 small AAA samples (aortic diameter: 
average 53.4 ± 2 mm), 29 large AAA samples 
(aortic diameter: average 68.4 ± 14.3 mm), 9 
AOD samples (aortic diameter: average 
19.6 ± 2.6 mm) and 10 normal donor samples 
(aortic diameter: average 25.7 ± 1.2 mm), which 
was performed based on GPL10558 Illumina 
HumanHT-12 V4.0 Expression Beadchip platform. 
Meanwhile, the raw data of GSE7084 [16] and 
GSE98278 [17] were downloaded for further data 
validation.

Data preprocessing and quality assessment

An automatic pipeline including background cor-
rection, log2 transformation and quantile normal-
ization was conducted by using lumi [18] package 
in R software [19]. We re-annotated all microarray 
probes in GSE57691 with packages AnnotationDbi 
[20] and illuminaHumanv4.db [21] in R software 
[19] (version 3.6.1). The average expression value 
was used when multiple probes corresponded to 
the same gene. Data quality evaluation was imple-
mented by employing boxplots throughout the 
preprocessing steps.

Identification of differentially expressed genes 
between large AAA and small AAA

The limma [22] package in R software [19] was 
utilized for DEGs analysis between large AAA 
group and small AAA group in GSE57691. The 
false discovery rate (FDR) was calculated for mul-
tiple testing correction using the Benjamini and 
Hochberg method [23]. Up-regulated DEGs in 
large AAA were screened under the threshold of 
fold change > 1.5 and FDR < 0.05.

Signed WGCNA network construction and 
identification of hub genes

We applied the WGCNA package in R19 to con-
struct the signed WGCNA network [24]. The 
WGCNA algorithm can cluster genes with similar 
expression patterns into specific modules and cor-
relate modules with interested clinical traits, which 
is widely used for mining the expression patterns 
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of genes. The process of gene clustering and mod-
ule allocating can be described as below. Firstly, 
samples were clustered to exclude outliers based 
on the average linkage hierarchical clustering 
method. An appropriate soft threshold power β 
was then selected by the pickSoftThreshold func-
tion to ensure a scale-free network [25]. After that, 
the similarity matrix based on Pearson’s correla-
tion for all pairs of genes was raised by the soft 
threshold power β into a signed adjacency matrix. 
The adjacency matrix could be further trans-
formed into a topological overlap matrix (TOM) 
followed by the corresponding dissimilarity matrix 
(1-TOM) calculation. Then, the signed scale free 
co-expression network was constructed using the 
average linkage hierarchical clustering method 
with minModuleSize = 300, deepSplit = 2. 
Module eigengene (ME) was defined as the prin-
cipal component of a particular module, which 
summarizes all genes for a given module into 
a single characteristic expression profile. To make 
modules have more capacity, modules were further 
merged with ME cutheight = 0.2. Pearson’s corre-
lations between MEs and clinical traits were able 
to be calculated and used to determine interested 
significant modules. Specifically, module with the 
highest positive correlation with large AAA was 
selected as significant module. After that, gene 
significance (GS: correlation between a given 
gene and a certain clinical trait) and module mem-
bership (MM: correlation between a given gene 
and a certain module eigengene) were calculated. 
Genes in the significant module identified from 
WGCNA analysis were further established and 
identified as WGCNA hub genes with the criteria 
of MM > 0.8 and GS > 0.2.

Construction of protein-protein interaction (PPI) 
network

Proteins encoded by co-expressed genes might gen-
erate tightly interactive biological processes and 
molecular functions. Here, we constructed PPI net-
work for genes from significant module and up- 
regulated DEGs based on Search Tool for Retrieval 
of Interacting Genes/Proteins (STRING: https:// 
string-db.org/) database [26], which is a systematic 
online tool for accessing interrelationships between 
proteins. Then, the derived PPI network was 

visualized and analyzed by MCODE [27] plug-in 
via Cytoscape [28] (version 3.7.2) software. Genes 
in the above PPI network with MCODE_Score > 5 
were screened as PPI hub genes.

Functional and pathway enrichment analysis

The Gene Ontology (GO) is a comprehensive 
resource of computational evolving knowledge in 
regard to the detailed function of gene sets, which 
mainly describes biological process, cellular compo-
nent and molecular function [29]. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) is 
a knowledge base for systematic analysis of molecu-
lar pathways in terms of the networks of genes [30]. 
In this study, all genes from up-regulated DEGs, 
WGCNA hub genes and PPI hub genes were 
uploaded together to the DAVID [31,32] (https:// 
david.ncifcrf.gov/) database to perform GO and 
KEGG enrichment analysis. Enriched terms of GO 
and KEGG pathways were selected with p < 0.05.

Identification of crucial genes for large AAA

The intersection genes among up-regulated DEGs, 
WGCNA hub genes and PPI hub genes were 
screened and identified as crucial genes, which 
might be highly associated with clinical signature.

Data validation

The GEO datasets GSE7084 and GSE98278 were used 
in the data validation process. The original dataset 
GSE7084 contained 8 AAA samples and 7 normal 
donor samples based on Sentrix Human-6 
Expression BeadChip platform. While GSE98278 
contained 15 stable small AAA samples and 7 stable 
large AAA samples based on Illumina HumanHT-12 
V4.0 expression beadchip platform. Firstly, the raw 
data of GSE7084 and GSE98278 were preprocessed 
and normalized by lumi package. Then, GSE7084 was 
used to conduct the ROC curves of crucial genes 
between AAA and normal groups, and the 
GSE98278 was used to verify the expression levels of 
crucial genes between large AAA group and small 
AAA group.
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Acquisition of human tissue samples

The experimental procedures were approved by 
the Ethics Committee of The First Affiliated 
Hospital of China Medical University (approval 
number: 2019–120-2). A total of three human 
normal infrarenal abdominal aortic wall samples 
were obtained from organ donors, and five small 
(diameter<50 mm) and five large 
(diameter>50 mm) AAA wall samples were 
obtained from patients who underwent open sur-
gery for AAA in The First Affiliated Hospital of 
China Medical University from Dec 2019 to 
Jun 2020. Written informed consents were 
obtained. Detailed information of included indivi-
duals were provided in Supplementary Table 1.

Immunohistochemistry staining

For immunohistochemistry staining, sections 
were first deparaffinized and then rehydrated, 
followed by inactivation of endogenous peroxi-
dase with 3% H2O2 at room temperature, heat- 
induced antigen retrieval in an autoclave con-
taining sodium citrate buffer (10 mM, pH 6.0), 
and blocked with normal goat serum for 30 min-
utes at room temperature. Afterward, the sec-
tions were incubated with primary antibody 
overnight at 4°C in a humidified chamber, and 
HRP-conjugated goat anti-rat secondary anti-
body (1:2000, A0192, Beyotime, China) was 
incubated for 1 hour at room temperature. 
Sections were examined with diaminobenzidine 
(DAB) and stained with hematoxylin before 
dehydration and microscopic examination. The 
IHC toolbox plug-in [33] in ImageJ [34] (http:// 
imagej.nih.gov/ij/plugins/ihc-toolbox/) was 
applied to measure the average intensity of the 
positive signal for each section. The primary 
antibody used in the immunohistochemistry 
experiments was anti-POU2AF1 (1:200, sc- 
23,932, Santa Cruz, USA).

Statistical analysis

GraphPad Prism 8.2.1 (GraphPad software, San 
Diego, CA) was used for statistical analysis and 
graphing in data validation. Two-tailed Student’s 
t test or Mann Whitney test was used to perform 

comparison between two groups. p < 0.05 was 
considered to be statistically significant.

Results:

The present study aims to identify the key genes in 
regulating AAA enlargement and progression. For 
this purpose, integrated bioinformatics approaches 
including DEGs analysis, signed WGCNA and PPI 
network analysis were implemented based on 
GSE57691. Results showed POU2AF1, FCRLA, 
CD79B and HLA-DOB were statistical up- 
regulated in large AAA samples compared to 
small AAA samples. Moreover, data validation 
based on GSE57691 and GSE7084 verified these 
four genes were all up-regulated in AAA samples 
compared to normal samples, however, further 
bioinformatics analysis based on GSE57691 and 
GSE98278 showed only POU2AF1 was consistent 
statistically significance in large AAA samples 
compared to small AAA samples. Subsequent 
immunohistochemistry results also confirmed 
that POU2AF1 were highly associated with AAA 
and aneurysm enlargement. Detailed results were 
shown below.

Data preprocessing

The raw data of GSE57691 were downloaded and 
an obvious deviation was identified between sam-
ples in the original dataset, as shown in Figure 1a. 
Background correction, log2 transformation and 
quantile normalization were performed and the 
boxplot was reestablished in Figure 1b, which indi-
cated that the normalized data were eligible for 
further analysis.

Identification of differentially expressed genes 
between large AAA and small AAA

DEGs analysis between large AAA and small AAA 
yielded a total of 42 DEGs, including 29 up- 
regulated genes and 13 down regulated genes. 
The volcano plot and a brief heatmap for DEGs 
analysis were shown in Figure 1c and d, 
respectively.
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Signed WGCNA network construction and 
identification of hub genes

Eight samples were recognized as outliers and 
were excluded from the subsequent analysis 

(Figure 1e). Thus, remaining 60 samples (18 
small AAA samples, 27 large AAA samples, 5 
AOD samples and 10 normal donor samples) 
with clinical information were included for 
WGCNA analysis (Figure 1f). A total of 9521 

Figure 1. Data preprocessing, DEGs identification in GSE57691, and sample selection and determination of soft-thresholding power 
β in the signed WGCNA analysis. (a) Non-normalized data: the boxplot shows an obvious deviation across samples before data 
preprocessing. (b) Normalized data: the boxplot indicates that the normalized data are eligible for subsequent analysis. The gene 
expression level are represented as log2 transformed. (c) The volcano plot of all genes, the red dots represent upregulated genes, 
and the blue dots represent all the downregulated genes. (d) Heatmap of top 100 expression level changed genes. (e) Sample 
clustering to detect outliers. (f) Sample dendrogram and trait heatmap. (g) Analysis of the scale-free fit index (left) and the mean 
connectivity (right) for various soft-thresholding powers. (h) Histogram of connectivity k distribution (left) and checking the scal-free 
topology when soft-thresholding power β = 17.
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genes in the top 50% of variances were included 
in WGCNA. In this study, the power of β = 17 
(R [2]=0.84) was selected as the soft threshold to 
guarantee a scale-free network distribution 
(Figure 1g,h).

A total of 13 distinct modules were identified 
(Figure 2a). To better reveal the biological signif-
icance of the 13 identified modules, we correlated 
the 13 MEs with the traits of interest and tried to 
figure out the most significant correlation. 
According to the module traits heatmap 
(Figure 2b), the green module (858 genes) 
appeared to have strong positive correlation 
with large AAA (r = 0.451, p= 3*10−[4]) as well 
as AAA (r = 0.59, p = 5*10−[7]). In the eigengene 
dendrogram (Figure 2c), the green module was 
clustered with large AAA, which also indicates 
a strong positive relationship between green 

module and large AAA. Consistent with the 
above conclusions, the green module had the 
highest GS in large AAA, which also indicates 
a strong relationship between green module and 
large AAA (Figure 2d).

Furthermore, we identified 133 hub genes with 
GS > 0.2 and MM > 0.8 in green module based on 
the scatter plots of GS and MM for large AAA 
(Figure 2e). Therefore, we would mainly focus on 
133 hub genes in the following processes since 
these genes may indicate clinical signature more 
accurately.

PPI network construction

Here, we constructed PPI network based on the 
union gene set (865 distinct genes) of green mod-
ule and up-regulated DEGs via STRING database. 

Figure 2. Signed WGCNA analysis for determination of modules and hub genes associated with clinical traits of large AAA. (a) 
Dendrogram of all genes in GSE57691 clustered based on the dissimilarity measure (1-TOM). (b) Heatmap of the correlation between 
MEs and clinical traits. (c) Eigengene dendrogram. (d) Distribution of average GS and errors across the modules detected by signed 
WGCNA analysis. (e) Scatter plot of GS and MM for genes in the green module, the green circles represent WGCNA hub genes with 
GS > 0.2 and MM > 0.8. TOM: topological overlap matrix; ME: module eigengene; GS: gene significance; MM: module membership; 
AOD: aortic occlusive disease; AAA: abdominal aortic aneurysm; WGCNA: weighted gene co-expression analysis.
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Eventually, a PPI network with 637 nodes and 
4323 edges was obtained. After analyzed with 
MCODE plug-in, a total of 195 genes were selected 
with the cutoff criteria of MCODE_Score > 5, 
which were recognized as PPI hub genes. The 
interaction network for 195 PPI hub genes were 
illustrated in Figure 3a.

Functional annotation and enrichment analysis

We conducted GO and KEGG functional enrich-
ment analysis in DAVID database. The union gene 
set of up-regulated DEGs (29 genes), WGCNA 
hub genes (133 genes) and PPI hub genes (195 

genes) was subjected as input. As a result for 
biological processes (Figure 3b), three groups of 
genes were significantly enriched in immune sys-
tem and inflammatory activities, including 
immune response, signal transduction, apoptotic 
process, T cell costimulation, adaptive immune 
response, innate immune response, cell adhesion, 
inflammatory response, antigen processing and 
presentation of exogenous peptide antigen via 
MHC class II, B cell receptor signaling pathway, 
positive regulation of T cell proliferation, antigen 
processing and presentation of peptide or polysac-
charide antigen via MHC class II, chemotaxis, 
humoral immune response and chemokine- 
mediated signaling pathway. As for the KEGG 

Figure 3. PPI network construction and functional annotation. (a) PPI network construction based on the union gene set of 29 up- 
regulated genes and 858 green module genes, nodes color represent the level of MCODE_Score. Functional annotation for WGCNA 
hub genes, DEG upregulated genes and PPI hub genes: (b) Top 15 enriched GO_BP terms for three groups of genes. (d) Top 15 
enriched KEGG pathways for three groups of genes; Gene ratio in every group were represented by color. (e) Histogram of gene 
numbers of WGCNA hub genes, DEG upregulated genes and PPI hub genes. (f) Venn plot of intersection gene set among three 
groups of genes. WGCNA: weighted gene co-expression analysis; DEGs: differentially expressed genes; PPI: protein- protein 
interaction; PPI: protein- protein interaction; GO: Gene Ontology; BP: biological process; KEGG: Kyoto Encyclopedia of Genes and 
Genomes.
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pathway enrichment analysis (Figure 3d), three 
groups of genes were mainly associated with cell 
adhesion molecules, cytokine-cytokine receptor 
interaction, chemokine signaling pathway, intest-
inal immune network for IgA production, autoim-
mune thyroid disease, phagosome, graft-versus- 
host disease, allograft rejection, antigen processing 
and presentation and B cell receptor signaling 
pathway.

Identification of crucial genes for large AAA

In this study, we identified 29 up-regulated DEGs 
and 133 WGCNA hub genes highly associated 
with large AAA status. Subsequently, 195 PPI 
hub genes were screened through PPI network 

construction (Figure 3c). In order to manifest the 
genetic characteristics of large AAA more accu-
rately, we defined the intersection genes of these 
three gene sets as crucial genes, which generated 4 
genes include POU2AF1, FCRLA, CD79B and 
HLA-DOB, as illustrated by the Venn diagram 
(Figure 3e). These 4 crucial genes should be highly 
associated with large AAA status which may need 
further validation.

Validation of crucial genes

We used GSE7084 and GSE57691 to conduct the 
ROC analysis for crucial genes in terms of AAA 
status. The area under curve (AUC) and corre-
sponding p-value for each gene was calculated. 

Figure 4. Verification of POU2AF1. (a-d) ROC curves for POU2AF1, FCRLA, CD79B and HLA-DOB of AAA based on GSE57691 and 
GSE7084, respectively. (e-h) Expression levels of POU2AF1, FCRLA, CD79B and HLA-DOB between large AAA and small AAA based on 
GSE57691 and GSE98278, respectively. (i) Representative images of H&E and immunohistochemistry staining for POU2AF1 in the 
aortic walls of normal aorta (left), small AAA (middle) and large AAA (right). (j) Measurements of POU2AF1 per cross-section were 
shown for the three groups of samples. *p < 0.05; Mann Whitney test was used to evaluate the statistical significance of differences.
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As Figure 4a illustrated, POU2AF1 showed signif-
icant diagnostic value both in GSE7084 (AUC: 
0.8929, p < 0.01) and GSE57691 (AUC: 0.7898, 
p < 0.05). Similar results were achieved for 
FCRLA (AUC: 0.9643, p < 0.01 and 0.7837, 
p < 0.01, respectively) (Figure 4b) and HLA-DOB 
(AUC: 0.8671, p < 0.05 and 0.8571, p < 0.001, 
respectively) (Figure 4d). However, CD79B did 
not show significant diagnostic value in GSE7084 
(AUC: 0.6607, p > 0.05) (Figure 4c).

To further verify the expression levels of crucial 
genes between large AAA and small AAA, we used 
GSE98278 and GSE57691 for further analysis. In 
summary, POU2AF1 was significantly up- 
regulated in large AAA samples both in 
GSE98278 (8.077 ± 1.976 vs 6.386 ± 1.580, 
p < 0.05) and GSE57691 (8.787 ± 1.085 vs 
7.848 ± 1.047, p < 0.01) (Figure 4e). However, 
FCRLA, CD79B and HLA-DOB were failed to 
show statistically significant differences between 
large AAA and small AAA in GSE98278 
(Figure 4f-h). Above results indicated that 
POU2AF1 was significant up-regulated in large 
AAA and had a potential diagnostic value in 
AAA, which might act as a novel biomarker in 
the AAA enlargement process.

Next, we verified the expression of POU2AF1 in 
AAA of different diameters using human samples 
by immunohistochemistry experiments (Figure 4i, 
j). The results showed that POU2AF1 was signifi-
cantly up-regulated in large AAA samples than 
small AAA samples, while barely expressed in 
normal aortic tissues.

Discussion:

In this current study, DEGs analysis between large 
AAA and small AAA groups generated 42 DEGs, 
including 29 up-regulated genes and 13 down- 
regulated genes (Figure 1). WGCNA algorithm 
was used to achieve a signed weighed gene co- 
expression network and identify significant gene 
module featuring the highest correlation with large 
AAA. In the results of WGCNA analysis, 13 mod-
ules were detected and the green module (858 
genes) exhibits the topmost relationship with 
large AAA as well as AAA (Figure 2). In the 
green module, a total of 133 WGCNA hub genes 
were further identified based on the GS and MM 

parameters (Figure 2). Merged gene set including 
29 up-regulated DEGs and 858 genes in green 
module was subjected to constructing a PPI net-
work in which 195 PPI hub genes were screened 
with MCODE_Score >5 (Figure 3). In order to 
manifest the gene characteristics of large AAA 
more precisely, 4 crucial genes POU2AF1, 
FCRLA, CD79B, HLA-DOB were recognized by 
converging 29 up-regulated DEGs, 133 WGCNA 
hub genes and 195 PPI hub genes. Among them, 
POU2AF1 showed potential diagnostic value 
between AAA and normal groups and exhibited 
a significant higher expression level in large AAA 
samples compared with small AAA samples 
(Figure 4), which indicates POU2AF1 may serve 
as a key regulator in AAA enlargement and 
growth.

POU class 2 homeobox associating factor 1 
(POU2AF1, also known as OCA-B, OBF-1 and 
BOB-1) is previously recognized as a B lympho-
cytes specific coactivator of octamer-binding tran-
scription factors, OCT1 and OCT2, to regulate 
immunoglobulins expression and additional 
immune related genes [35,36]. It is reported that 
POU2AF1 participates in the immune and inflam-
matory reactions associated with atherosclerosis 
[36,37].However, current evidence about the bio-
logical function of POU2AF1 in AAA is limited. 
Study by IJpma [38] revealed POU2AF1 act as 
a transcription factor in AAA but the underlying 
mechanisms are unknown.

POU2AF1 has no intrinsic DNA-binding activ-
ity but can specifically recognize and bind to the 
POU domain of OCT1 and OCT2, which plays 
a vital role in B lymphocytes activation and 
maturation and is required for the formation of 
germinal centers [39–42]. Involvement of 
B lymphocytes and associated cytokines and 
immunoglobulins in AAA pathogenesis and devel-
opment have been implicated in previous studies 
[43]. Koch et al. [44]. found a significant higher 
level of B lymphocytes infiltration in the adventitia 
of AAA compared with occlusive aortas and nor-
mal aortas. Further studies confirmed that not 
only B lymphocytes but also lymphoid follicles 
containing B cell aggregated germinal centers in 
the adventitia of AAA wall [45,46]. Ocana et al. 
[47]. identified AAA infiltrating B lymphocytes as 
activated memory cells with homing properties 
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which also give rise to the formation of lymphoid 
structures and germinal centers within AAA wall. 
Numerous studies have also shed light on the 
correlation of B lymphocytes produced immuno-
globulins such as IgG and IgE with AAA [48,49]. 
Moreover, elevated immunoglobulins activate the 
complement cascade through the classical path-
way, the lectin pathway and the alternative path-
way, which was reported to contribute to the 
membrane attack complex and aggravate the aortic 
inflammatory responses [50–53]. Furthermore, 
evidence showed that POU2AF1 accompanied 
OCT2 transcriptionally regulate IL-6 expression 
in B cells during antiviral responses [54], but the 
direct transcriptional regulation of POU2AF1 for 
other B lymphocytes specific cytokines are less 
elucidated and need to be further investigated. In 
this study, we identified POU2AF1 as a crucial 
gene in large AAA compared with small AAA by 
integrated bioinformatics analysis, also, we found 
that B cell signaling pathway was significantly 
enriched in the GO and KEGG analysis, which in 
together suggest that POU2AF1 might function as 
a transcriptional coactivator in modulating 
B lymphocytes related biological processes in 
AAA expansion and growth.

Although POU2AF1 is well acknowledged to be 
expressed and functioned in B lymphocytes devel-
opment, evidence showed that its expression is 
also inducible in T lymphocytes [55]. 
T lymphocytes are heterogeneous which have initi-
ally been classified as CD4+ and CD8 + T lym-
phocytes. The CD4 + T lymphocytes have been 
found to be the predominant cell type in AAA 
[56], which is consist with the T cell associated 
signaling pathways and MHC class II mediated 
antigen processes in our GO and KEGG analysis, 
since CD4 + T lymphocytes recognize antigens 
presented by MHC II class molecules while 
CD8 + T lymphocytes recognize antigens pre-
sented by MHC I class molecules. CD4 + T lym-
phocytes can be further subdivided into Th1, Th2, 
and Th17 and Treg lymphocytes. However, the 
definite roles of different CD4 + T lymphocytes 
subtypes in AAA pathogenesis and expansion are 
conflicting due to the differences in technical mea-
surement, animal models, and the disease state at 
which aneurysm samples are obtained [57]. Hence, 
this study is not going to discuss the underlying 

functions of different CD4 + T lymphocytes sub-
types in AAA initiation and progression. In gen-
eral, it is undisputed that different subtypes of 
CD4 + T lymphocytes participate in the extracel-
lular matrix remodeling and aortic inflammation 
through their diverse profiles of secreted cyto-
kines. Brunner et al. [57,58] reported that 
POU2AF1 directly controlled the IFN-γ and IL-2 
(Th1 cytokines) promoter activities while indir-
ectly interfered Th2 cytokines production, which 
suggests POU2AF1 balanced the Th1 versus Th2 
mediated immunity responses. Yosef et al. [59] 
found that POU2AF1 promotes IL-17 secretion 
during Th17 differentiation, which was further 
proved in another study revealing that POU2AF1 
enhances IL-17 expression through interaction 
with RORγt [60]. Furthermore, other studies 
showed that POU2AF1 is critical for CD4+ mem-
ory T cell formation [61] and can regulate spread-
ing manner of follicular helper T cells over the 
body from local sites during immune responses 
[62]. Taken together, POU2AF1 might contribute 
to AAA initiation and expansion by modulating 
different subtypes of CD4 + T lymphocytes.

Except for the distinct biological function of 
POU2AF1 in regulating B lymphocytes and 
T lymphocytes, respectively, studies have also 
addressed POU2AF1 as a facilitator of B and 
T lymphocytes collaboration during humoral 
immune responses [63]. Karnowski et al. [54] 
found that IL-6 produced by follicular 
B lymphocytes was necessary and important to 
induce IL-21 from CD4 + T lymphocytes. 
Moreover, POU2AF1 might not be restrictively 
expressed in lymphocytes, evidence can be found 
from a recent study that POU2AF1 also functions 
in the human airway epithelium to regulate 
expression of host defense genes [64]. Given that, 
we can not preclude the possibility of POU2AF1 
expression in other AAA related cell types since 
the microarray data in this study was achieved 
from full-thickness tissue sections of aortas.

In addition to certain individual genes, immune 
and inflammatory associated cells and signaling 
pathways also contribute to AAA enlargement 
and progression. In past decades, studies have 
implicated crucial roles of various inflammatory 
cells, including T cells, B cells, macrophages, den-
dritic cells, neutrophils, and mast cells, etc, as well 
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as their intercellular communications and cyto-
kines secretion abilities in AAA initiation and 
progression [65]. Moreover, complex cellular sig-
naling pathways, such as NF-κB [66], TGF-β[67], 
MAPK [68], Notch [69] and IL-6 [70] signaling 
contribute to AAA progression. Results of pathway 
enrichment analysis in our study also highlighted 
the significance of inflammatory cells and their 
intercellular communication signaling pathways, 
such as T cell costimulation, B cell receptor signal-
ing pathway, cell adhesion molecules, cytokine- 
cytokine receptor interaction and chemokine sig-
naling pathway. As mentioned above, POUAF1 
might act as a transcription factor and participate 
in B cell and T cell stimulation as well as their 
related signaling pathways, however, the exact 
underlying mechanisms need to be further 
elucidated.

Several studies have also investigated the key 
genes and related signaling pathways in AAA by 
bioinformatics analysis. Siwei et al. [71]. revealed 
conservative co-expression modules and miRNA- 
genes network in intracranial, abdominal, and 
thoracic aneurysms. Results showed CCR7, TNF 
and CXCR4 related miRNA-genes network were 
preserved in all three kinds of aneurysms, which 
highlighted the common molecular networks 
shared by aneurysmal diseases. Moreover, Kan 
et al. [71]. performed WGCNA analysis and 
found crucial hub-genes associated with AAA pro-
gression. They further predicted potential drug 
candidates to prevent AAA expansion which 
would definitely provide guidance for future phar-
macotherapy of AAA. In another research, Xie 
et al. [72]. showed the expression level of RPL21 
or RPL7A combined with IL6 has significant diag-
nostic value for AAA, which provided new insights 
into the underlying mechanisms of AAA progres-
sion. Zhang et al. [73]. revealed several proteases 
involved in the formation and progression of AAA 
by next-generation sequencing of the whole tran-
scriptome of Angiotensin II-treated ApoE−/− 
mice. Li et al. [74]. comprehensively analyzed pro-
files of infiltrated immune cells in AAA tissues and 
their associated marker genes, which provided 
insights into the underlying mechanisms of AAA 
formation and progression regarding to immune 
infiltration. The current study focused on explor-
ing the up-regulated key genes in AAA 

enlargement and progression, thus, microarray 
datasets with detailed sample diameter informa-
tion were included. Instead of using merely single 
algorithm, we implemented integrated bioinfor-
matics approaches including DEG analysis, signed 
WGCNA analysis and PPI network construction. 
Compared with another study conducting 
WGCNA analysis in AAA [75], we mainly focused 
on exploring the up-regulated key genes and tar-
gets in AAA enlargement, to achieve this purpose, 
we constructed a signed WGCNA network rather 
than commonly conducted unsigned WGCNA 
network.

Although the results of microarray based inte-
grated bioinformatics analysis are instructive, our 
study has several limits. Further studies focusing 
on elaborating the precise cell specificity and 
molecular mechanisms of POU2AF1 in AAA 
initiation and progression are needed. Apart 
from that, bioinformatic databases used in this 
study such as STRING [26] and DAVID [31] 
may be not comprehensive and timely-updated, 
which may cause information bias in our study.

Conclusion:

In conclusion, we identified the pivotal role of 
POU2AF1 in the pathogenesis and expansion of 
AAA by integrated bioinformatics approaches and 
experimental validation. Further investigations are 
recommended to validate and elucidate the 
detailed biological function and molecular 
mechanisms of POU2AF1 in AAA initiation and 
progression.
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