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Abstract

The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based
modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template
similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes
a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking
applications. The results showed that structural areas corresponding to the cutoff values ,12 Å across the interface
inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for
the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for
lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for
the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide
guidelines for the docking approaches, including high-throughput applications to modeled structures.
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Introduction

Computational methods for structural modeling of protein-

protein interactions (PPI) are important as a source of structural

information on protein complexes that complements experimentally

determined structures, and as a way to understand the mechanisms

of protein association. The computational approaches to prediction

of the structures of protein-protein complexes (protein docking) rely

on the experimentally derived characterization of protein-protein

interfaces, such as high degree of steric complementarity,

physicochemical properties, residue propensities, etc [1]. However,

traditionally, they have not directly utilized experimentally

determined structures as modeling templates [2]. The increasing

availability of the co-crystallized protein-protein complexes makes

such template-based modeling/docking possible [3–9].

The template-based docking is complementary to the free

docking [6]. Its relative value will naturally grow with more

protein-protein templates/complexes determined experimentally.

Protein-protein template-based approaches based on sequence

similarity currently can account for ,20% of known PPI [10,11].

Threading techniques provide another valuable tool for PPI

modeling [5]. At the same time, structure alignment techniques

are important for the detection of remote target-template

similarities [12]. Such an alignment may be performed between

the whole target and template structures, or between the whole

target and the templates interfaces. The latter approach assumes

that the structural similarity may be more easily detected at the

binding site, rather than for the whole protein (where it may not

exist at all). Both approaches have their advantages, based on the

observed relationships between local vs. global similarities in

interacting proteins, which is the subject of our current studies

(Kundrotas et al., in preparation).

Methodology described in this report is based on the structure

alignment of the interfaces. A number of studies focus on distinct

geometric and physicochemical properties of protein-protein

interfaces [13–17]. Methods for binding site identification and

comparison [18] are based on search for the surface clefts [17,19],

surface matching algorithms [6,20–22] and structure and/or

sequence patterns [19,23–30]. Structural interface conservation

was used to predict PPI [31–33], binding sites [33–35], and

druggable hot spots [36]. An important development in this field is

the procedures and analysis tools explicitly related to modeled

structures of limited accuracy [19,24,37–40].

The success of the approach by definition hinges on the way the

interface is defined in terms of its structural content. A number of

definitions of the interfaces are most often based on the change in

solvent accessible surface area upon binding or on various types of

distance cutoffs across the interface. Varying definitions significantly

influence the size and the composition of the interfaces, thus having

a major effect on the interface alignment. This paper provides in-

depth account of a systematic study (briefly mentioned in our short

advance report [6]) to find the optimal definition/size of the

interfaces for the structure alignment-based docking applications.

Results and Discussion

Libraries of interface fragments
Defining interfaces for structural alignment based on the

residues in direct physical contact only may lead to wrong results

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e31349



due to the loss of significant structural details at the interface. On

the other hand, large distance cutoffs may impair ability to find

local structural similarity at the interface due to the presence of

large non-interface parts (in the extreme case, the entire protein

structure). Thus, selection of the cutoff distance for the interface

definition in the context of the structural alignment can be

considered as optimization.

In this study, we adopted the interface definition based on the

distance between any atoms across the interface. To find the

optimal distance, we generated five interface libraries with

different values of the distance: 6 Å, 8 Å, 10 Å, 12 Å and 16 Å

(see Methods). Figure 1 shows an example of interface fragments in

1bp3 complex corresponding to different cutoff distances. One can

clearly see the gradual appearance of the secondary structure

elements as the cutoff value increases. The interface of the first

protein in the complex (blue ribbons in Figure 1) largely consists of

two a-helixes (residues G161–S184 and H18–Y28) interacting

with b-sheet (b-strands W272-V279 and D291–V297) and loop

fragments (residues Y240–M248, K385-W391, L202–I209 and

P329–E366) from the second protein (red ribbons in Figure 1).

However, the fragment from the 6 Å library (Figure 1A) contains

only a short fragment (residues D171–I179) of one of the a-helixes

and the b-sheet structure of the second component is indiscernible

with only short fragments (S270-T274 and E292-Y294) visible.

Such representation is clearly inadequate for the successful

structural alignment that involves secondary structure elements.

The fragment from the 8 Å library (Figure 1B) has longer a-helix

(D171-R183) in the first protein and visible b-sheet-like structure

in the second component, but the second a-helix of the first

protein still remains obscure. The fragment from the 10 Å library

(Figure 1C) already shows one full a-helix in the first protein and

the complete b-sheet structure in the second protein. Yet, the

second a-helix from the first protein (residues Q22-D26) is only

partially visible. Only the fragment from the 12 Å library reveals

the complete structural details of the interface (Figure 1D). Further

increase of the distance leads to inclusion of significant non-

interface parts of protein structure (the effect already seen in

Figure 1C and 1D). Similar trend was observed in other interface

library entries.

Structural alignment with interfaces
The modeling procedure aligns separate structures of unbound

target proteins (‘receptor’ and ‘ligand’ defined as the larger and the

smaller proteins in the complex) with the library of co-crystallized

interfaces. The Ca-only alignment was performed by TM-align

[41] (see Methods). The Ca alignment reduces the effect of

conformational changes upon binding, thus enabling proper

overlap of the unbound and bound fragments.

Structural deficiencies in the fragments from smaller cutoff

libraries are reflected in the lower TM-scores [41,42] (see

Methods) for the alignments between such fragments and the

target structures, thus substantially reducing the rank of the correct

models. For example, 1bp3 complex (interface shown in Figure 1)

is structurally homologous to a target complex 3 hhr (TM-scores

0.8 and 0.7 for structural alignments of entire 1bp3 and 3 hhr

receptors and ligands, respectively, with corresponding sequence

identities 31% and 66%). However, the 1bp3 interface fragment

from the 6 Å library did not generate any models for the 3 hhr

target due to TM-scores that were below statistical significance

threshold (0.15 and 0.2 for the receptors and ligands, correspond-

ingly). On the other hand, models generated using 1bp3 fragments

from the 8 Å, 10 Å, 12 Å and 16 Å libraries had root mean square

deviation between ligand interface Ca atoms in the model and in

the native complex (i-RMSD) 4.18 Å, 4.22 Å, 4.22 Å and 4.3 Å

correspondingly. However, the 8 Å library model was ranked 42

among all 8 Å library models generated for this target, whereas

model ranked 1 had i-RMSD = 38.0 Å. Only models built using

interface libraries with adequate structural details (10 Å, 12 Å and

16 Å libraries) were ranked 1 by the TM-score. Interestingly,

similar trend holds even for highly similar proteins. For example,

1eay template complex is very similar to the target complex 1a0o

(TM-scores 0.8 and 0.9 for structural alignments of the entire 1a0o

and 1eay receptors and ligands, respectively, with corresponding

sequence identities 96% and 100%). However, 1eay interface

fragment from the 6 Å library could not generate statistically

significant alignments for the 1a0o target (TM-scores 0.35 and

0.07). Models generated using the 1eay fragments from 8 Å, 10 Å,

12 Å and 16 Å libraries had i-RMSD = 1.5 Å, 1.7 Å, 2.0 Å and

2.2 Å, respectively. However, 8 Å and 10 Å libraries models were

ranked 818 and 35 respectively, whereas the 12 Å and 16 Å

library models were ranked 5 and 1. Thus, 12 Å and 16 Å libraries

provided correct models for the 1a0o target within top 10

predictions. The i-RMSD values for the 12 Å and 16 Å libraries

models were similar to RMSD between the entire structures of

bound 1eay and unbound 1a0o complexes (2.2 Å).

Relatively poor ranking of models from the small cutoff libraries

was because the small fragments lacking well-defined secondary

structure elements can be aligned to a random place in the target

structure (thus generating models with high TM-score but large i-

RMSD). At the same time, alignment of such fragment of a bound

protein to the unbound target interface may have significantly

lower TM-score. This is especially true if there is a significant

conformational change between bound and unbound structures. As

shown in Figure 1, the distance of 12 Å and above provides full

structural details of the interfaces. Thus, it reduces the possibility of

the ‘‘good’’ random alignment and enhances the TM-score of the

correct alignment by increasing parts of well-aligned interface areas.

Modeling success rates for different interface libraries
To validate the docking, we used the DOCKGROUND benchmark

set, for which both monomers have both bound and unbound

Figure 1. Example of interface fragments corresponding to
different cutoff values. Fragments of 1bp3 complex were extracted
using interface cutoffs: (A) 6 Å, (B) 8 Å, (C) 10 Å, and (D) 12 Å. Ligand (the
smaller protein in the complex) is in blue and Receptor (the larger protein
in the complex) is in red.
doi:10.1371/journal.pone.0031349.g001
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structures available [43]. The quality of the resulting models was

accessed by root mean square deviation between ligand interface

Ca atoms in the model and in the native complex (i-RMSD), based

on the optimal alignment of the receptor structures (see Methods

for details).

The models were generated and evaluated using our five

interface libraries. Results presented in Figure 2 are the success

rates defined as percentage of target complexes for which at least

one model within a certain pool (top 10, top 100, and all models

generated for the target) has i-RMSD#5, 8, and 10 Å. The i-

RMSD#5 Å is comparable with the criteria for discriminating

acceptable-quality models of protein-protein complexes in CAPRI

[44]. Analysis of the docking funnels [45] suggests that the models

with i-RMSD up to 8–10 Å can be locally minimized/refined to

the near native structures.

The data in Figure 2 shows that the success rates for the 10 Å,

12 Å and 16 Å libraries are significantly higher than those for the

6 Å and 8 Å libraries (see discussion above). The 12 Å library

models consistently had high success rates. In the case of relaxed

acceptance criteria for 16 Å library docking, the matches with i-

RMSD#10 Å were in top 10 predictions, whereas models from

the 12 Å library had rank significantly worse than 10. This was the

case for 1he8 docking using 16 Å (model ranked 4 with i-RMSD

6.3 Å) and 12 Å (model ranked 19 with i-RMSD 6.0 Å) template

fragments from 1k8r, and for 2g45 docking using 16 Å templates

fragments from 1nbf (model ranked 4 with i-RMSD 9.5 Å) and

12 Å template fragments from 1tgz (model ranked 74 with i-

RMSD 9.7 Å).

For some targets, the 16 Å library was unable to generate an

acceptable model while the 12 Å library (smaller fragments)

succeeded. An example of such case is shown in Figure 3 where

models for the ligand in 3sic were generated using ligand

fragments from 1oyv. As the figure shows, the structures of 3sic

and 1oyv ligands have dissimilar folds (TM-score for the alignment

of the entire ligand structures is 0.7 with overall sequence identity

66%). The 3sic ligand is trypsin inhibitor with the ‘‘classic’’

binding loop (residues E67-D76, marked 1 in Figure 3D). The

secondary structure elements closest to this loop are a-helix and b-

sheet (marked 2 and 3 in Figure 3D). The 12 Å library fragment

from the 1ovy ligand (red ribbons in Figure 3C) contain an a-

helix-like loop (residues T88-G93), which aligns well with the a-

helix in the 3sic ligand (Figure 3A). The orientation of two other

binding loops in the 1oyv ligand relative to this a-helix-like loop is

similar to the relative orientations of the binding loop and a-helix

in the 3sic ligand, yielding an accurate model for the 3sic target (i-

RMSD 1.1 Å with rank 3). The 1oyv fragment from the 16 Å

library (red ribbons in Figure 3E) contains a significant part of

non-interface b-sheet, which aligns with the b-sheet in the 3sic

ligand (Figure 3B). Since orientations of these b-sheets relative to

the binding site are different for the 3sic and 1oyv ligands, the

resulting model has significantly larger i-RMSD = 7.0 Å. The

model was not acceptable because more than 50% of the

structural alignment contains non-surface residues of the target

protein (this criterion is required to insure that the interface

fragments do not align with the core of proteins producing random

output, see above).

Increase of the distance cutoff defining the interface leads

eventually to inclusion of the entire monomer structures, thus

transforming partial structural alignment into full structure

alignment. The detailed comparison of the partial (interface only)

and the full protein structure alignment is a subject of a separate

study (Kundrotas et al., in preparation). In the context of this

report we would like to mention that the overall success rates there

follow essentially the same trend as shown in Figure 2 for the 12 Å

and 16 Å libraries, i.e. tend to decrease for the full-structure

alignment models, especially with relaxed model acceptance

criteria (larger i-RMSD and less demanding top ranking).

Generally, the partial and the full structural alignments are

applicable to different types of target/template similarity.

General utility of the docking approaches requires applicability

to experimentally determined as well as modeled structures of

monomers of limited accuracy, especially in large-scale (e.g.,

genome-wide) modeling of protein networks. Such approaches

have to be fast (high-throughput) and tolerant to significant

structural inaccuracies of the monomers [46]. Overall, the 12 Å

cutoff appears to be optimal for the relaxed model acceptance

criteria needed for docking of modeled structures. It also provides

faster alignment than the one with larger cutoffs. Thus, it is well

suited for the high-throughput structural modeling of protein-

protein complexes in large PPI networks.

Overall, the structure-based alignment docking has a higher

success rate on the unbound benchmark sets than the free docking

[6]. Its utility will further grow with increasing availability of the

experimentally determined templates.

Conclusions
A large-scale systematic benchmarking of docking methodology

based on the structural alignment of protein interfaces was

performed to determine the optimal size of the structure in the

alignment. The results showed that structural areas corresponding

to the cutoff values #10 Å across the interface inadequately

represented structural details of the interfaces. The use of such

areas in the modeling significantly reduced docking success rates.

With the increase of the cutoff beyond 12 Å, the success rate for

our dataset of 99 protein complexes did not increase significantly

for higher accuracy models, and decreased for lower-accuracy

models. While larger structural segments (full structures at the

extreme) could provide better alignment for some complexes, the

modeling time for aligning larger fragments increases. The 12 Å

cutoff was optimal in our interface alignment-based docking, and a

likely best choice for the large-scale (e.g., on the scale of the entire

Figure 2. Docking success rates for different interface libraries.
The docking was performed on the DOCKGROUND benchmark set. The
success rate is defined as percentage of target complexes for which at
least one match is in top 10, top 100, and in all matches generated for
the target has i-RMSD#5, 8, and 10 Å. The results are shown for 6, 8, 10,
12, and 16 Å interface libraries (see the text for details).
doi:10.1371/journal.pone.0031349.g002
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genome) applications to protein interaction networks. Such

systems contain only a limited number of experimentally

determined monomer structures and by necessity are populated

by monomer models of limited accuracy obtained by high-

throughput computational techniques. Thus, they require relaxed

docking acceptance criteria where the 12 Å cutoff provides the

best results.

Methods

The interface definition was based on the distance between any

atoms across the interface. The interfaces were obtained from the

set of pairwise complexes generated by the DOCKGROUND resource

(http://dockground.bioinformatics.ku.edu) [43,47] with the fol-

lowing parameters. The X-ray resolution of the structures had to

be ,3 Å, they had to come from at least dimeric biological unit,

and the sequence identity between different complexes had to be

,90%. The selection resulted in 11,932 complexes. The interface

backbone atoms were extracted and stored in libraries of

interfaces. An interface residue was defined as the one having at

least one atom within a certain distance (varied from 6 to 16 Å) of

any atom of the other protein in the complex.

The Ca-only structural alignment of the target proteins with the

co-crystallized interfaces was performed by TM-align [41]. TM-

align was chosen over many other available structural alignment

programs mainly due to its superior ability to align remotely

related proteins (including structural fragments with non-contin-

uous sequences) and its speed that makes it suitable for large-scale

calculations. For comparison, we also carried out structure

alignment for several targets by another popular program SKA

[48] and found no essential differences in the resulting models.

The quality of the alignment was assessed by TM-score [42],

which has values in 0 to 1 range. We modified the original TM-

align code for aligning discontinuous fragments of polypeptide

chains, to limit the summation to the template interface and the

corresponding aligned target residues in the TM-score calculation.

This makes it equivalent to the iTM-score, recently introduced by

Gao and Skolnick [49]. In general, TM-scores ,0.2 indicate no

fold similarity, whereas scores .0.5 point to similar folds [41,42].

Significant alignments were defined according to the criteria: (i)

TM-score of at least one alignment .0.4, (ii) at least 50% of

aligned residues for both receptor and ligand should be on the

protein surface, and (iii) at least 40% of residues in both interface

components should be included in the alignments. Transformation

matrices from each significant alignment were applied to the target

receptor and ligand to generate the models. The docking protocol

for two proteins, involving search through the entire library of

interfaces and generation of a full set of matches (the number

varies according to the availability of templates), takes several

hours on a single core processor.

The pre-generated DOCKGROUND benchmark set [43] contain-

ing 99 protein-protein complexes (27 enzyme-inhibitor, 6

antibody-antigen, 2 cytokine or hormone/receptors, and 64 other

complexes), for which both monomers have both bound and

unbound structures available, was used for validation of the

docking results. Comparison of template-based and template-free

Figure 3. Example of docking based on 12 Å and 16 Å interface libraries. 3sic ligand (gray ribbons in A, B, D) was aligned with fragments of
1oyv ligand (red) extracted using 12 Å (A) and 16 Å (B) interface cutoffs. For comparison, the entire structure of 1oyv ligand is shown with 12 Å (C)
and 16 Å (E) fragments (red). The entire structure of 3sic ligand with the loop participating in binding (blue) is shown in D. Binding loop in 3sic ligand
is marked 1, and a-helix and b-sheet closest to this loop are marked 2 and 3, respectively.
doi:10.1371/journal.pone.0031349.g003
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docking, based on this benchmark set, was reported earlier [6].

Target self-hits were excluded from consideration. Only non-

homologous templates were identified for 26 targets (hard cases for

homology modeling). Quality of the resulting models was accessed

by i-RMSD between ligand interface Ca atoms in the model and

in the native complex after the optimal alignment of the receptors.

The distance threshold for the interface residues in the i-RMSD

calculations was 6 Å. Sequence identities between target and

template were calculated by CLUSTALW [50]. Rank of a model

was based on the sum of the alignment scores (TM-score) for the

target monomers and the template interfaces.

Author Contributions

Analyzed the data: RS PJK IAV. Wrote the paper: PJK IAV. Carried out

the calculations: RS.

References

1. Vakser IA, Kundrotas P (2008) Predicting 3D structures of protein-protein

complexes. Curr Pharm Biotech 9: 57–66.
2. Janin J, Henrick K, Moult J, Ten Eyck L, Sternberg MJE, et al. (2003) CAPRI:

A Critical Assessment of PRedicted Interactions. Proteins 52: 2–9.

3. Russell RB, Alber F, Aloy P, Davis FP, Korkin D, et al. (2004) A structural
perspective on protein–protein interactions. Curr Opin Struct Biol 14: 313–324.

4. Gunther S, May P, Hoppe A, Frommel C, Preissner R (2007) Docking without
docking: ISEARCH - prediction of interactions using known interfaces. Proteins

69: 839–844.
5. Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: An algorithm for the

prediction of protein-protein interactions by multimeric threading. Proteins 49:

350–364.
6. Sinha R, Kundrotas PJ, Vakser IA (2010) Docking by structural similarity at

protein-protein interfaces. Proteins 78: 3235–3241.
7. Korkin D, Davis FP, Alber F, Luong T, Shen M, et al. (2006) Structural

modeling of protein interactions by analogy: Application to PSD-95. PLoS

Comp Biol 2: 1365–1376.
8. Zacharias M (2010) Accounting for conformational changes during protein–

protein docking. Curr Opin, Struct Biol 20: 180–186.
9. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein

interactions by structural matching. Nucleic Acids Research 33: W331–W336.
10. Kundrotas PJ, Alexov E (2006) Predicting 3D structures of transient protein-

protein complexes by homology. Bioch Biophys Acta 1764: 1498–1511.

11. Kundrotas PJ, Lensink MF, Alexov E (2008) Homology-based modeling of 3D
structures of protein-protein complexes using alignments of modified sequence

profiles. Int J Biol Macromol 43: 198–208.
12. Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural

alignment. Curr Opin, Struct Biol 19: 341–348.

13. Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G (2007) The
molecular architecture of protein–protein binding sites. Curr Opin Struct Biol

17: 67–76.
14. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using

surface patches. J Mol Biol 272: 121–132.

15. Tuncbag N, Gursoy A, Guney E, Nussinov R, Keskin O (2008) Architectures
and functional coverage of protein–protein interfaces. J Mol Biol 381: 785–802.

16. Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites.
Proteins 47: 334–343.

17. Nicola G, Vakser IA (2007) A simple shape characteristic of protein-protein
recognition. Bioinformatics 23: 789–792.

18. Zhou HX, Qin S (2007) Interaction-site prediction for protein complexes: A

critical assessment. Bioinformatics 23: 2203–2209.
19. Binkowski TA, Joachimiak A, Liang J (2005) Protein surface analysis for function

annotation in high-throughput structural genomics pipeline. Protein Sci 14:
2972–2981.

20. Keskin O, Nussinov R, Gursoy A (2008) PRISM: Protein-protein interaction

prediction by structural matching. Methods Mol Biol 484: 505–521.
21. La D, Esquivel-Rodriguez J, Venkatraman V, Li B, Sael L, et al. (2009) 3D-

SURFER: Software for high-throughput protein surface comparison and
analysis. Bioinformatics 25: 2843–2844.

22. Konc J, Janezic D (2010) ProBiS algorithm for detection of structurally similar
protein binding sites by local structural alignment. Bioinformatics 26:

1160–1168.

23. Fetrow JS, Siew N, Di Gennaro JA, Martinez-Yamout M, Dyson HJ, et al.
(2001) Genomic-scale comparison of sequence- and structure-based methods of

function prediction: Does structure provide additional insight? Protein Sci 10:
1005–1014.

24. Stark A, Shkumatov A, Russell RB (2004) Finding functional sites in structural

genomics proteins. Structure 12: 1405–1412.
25. Pazos F, Sternberg MJE (2004) Automated prediction of protein function and

detection of functional sites from structure. Proc Natl Acad Sci USA 101:
14754–14759.

26. Ofran Y, Rost B (2003) Predicted protein-protein interaction sites from local
sequence information. FEBS Lett 544: 236–239.

27. Wilkins AD, Lua R, Erdin S, Ward RM, Lichtarge O (2010) Sequence and

structure continuity of evolutionary importance improves protein functional site
discovery and annotation. Protein Sci 19: 1296–1311.

28. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, et al. (2003) ConSurf:

Identification of functional regions in proteins by surface-mapping of
phylogenetic information. Bioinformatics 19: 163–164.

29. Rossi A, Marti-Renom MA, Sali A (2006) Localization of binding sites in protein
structures by optimization of a composite scoring function. Protein Sci 15:

2366–2380.

30. Fernandez-Recio J, Totrov M, Skorodumov C, Abagyan R (2005) Optimal

docking area: A new method for predicting protein-protein interaction sites.

Proteins 58: 134–143.

31. Aytuna AS, Gursoy A, Keskin O (2005) Prediction of protein-protein

interactions by combining structure and sequence conservation in protein
interfaces. Bioinformatics 21: 2850–2855.

32. Gursoy A, Tuncbag N, Keskin O (2011) Prediction of protein-protein
interactions: unifying evolution and structure at protein interfaces. Physical

Biology 8.

33. Zhang QC, Petrey D, Norel R, Honig BH (2010) Protein interface conservation
across structure space. Proc Natl Acad Sci U S A 107: 10896–10901.

34. Keskin O, Nussinov R (2007) Similar binding sites and different partners:
Implications to shared proteins in cellular pathways. Structure 15: 341–354.

35. Mitchell EM, Artymiuk PJ, Rice DW, Willett P (1990) Use of Techniques
Derived from Graph-Theory to Compare Secondary Structure Motifs in

Proteins. Journal of Molecular Biology 212: 151–166.

36. Kozakov D, Hall DR, Chuang GY, Cencic R, Brenke R, et al. (2011) Structural
conservation of druggable hot spots in protein-protein interfaces. Proceedings of

the National Academy of Sciences of the United States of America 108:
13528–13533.

37. Arakaki AK, Zhang Y, Skolnick J (2004) Large-scale assessment of the utility of

low-resolution protein structures for biochemical function assignment. Bioinfor-
matics 20: 1087–1096.

38. Kundrotas PJ, Vakser IA (2010) Accuracy of protein-protein binding sites in
high-throughput template-based modeling. PLoS Comp Biol 6: e1000727.

39. Tovchigrechko A, Wells CA, Vakser IA (2002) Docking of protein models.
Protein Sci 11: 1888–1896.

40. Cammer SA, Hoffman BT, Speir JA, Canady MA, Nelson MR, et al. (2003)

Structure-based active site profiles for genome analysis and functional family
subclassification. J Mol Biol 334: 387–401.

41. Zhang Y, Skolnick J (2005) TM-align: A protein structure alignment algorithm
based on the TM-score. Nucl Acid Res 33: 2303–2309.

42. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein
structure template quality. Proteins 57: 702–710.

43. Gao Y, Douguet D, Tovchigrechko A, Vakser IA (2007) DOCKGROUND

system of databases for protein recognition studies: Unbound structures for
docking. Proteins 69: 845–851.

44. Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI
2009. Proteins 78: 3073–3084.

45. Hunjan J, Tovchigrechko A, Gao Y, Vakser IA (2008) The size of the
intermolecular energy funnel in protein-protein interactions. Proteins 72:

344–352.

46. Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in
structural proteomics. Nature 422: 216–225.

47. Douguet D, Chen HC, Tovchigrechko A, Vakser IA (2006) DOCKGROUND
resource for studying protein-protein interfaces. Bioinformatics 22: 2612–2618.

48. Petrey D, Xiang ZX, Tang CL, Xie L, Gimpelev M, et al. (2003) Using multiple

structure alignments, fast model building, and energetic analysis in fold
recognition and homology modeling. Proteins 53: 430–435.

49. Gao M, Skolnick J (2011) New benchmark metrics for protein-protein docking
methods. Proteins-Structure Function and Bioinformatics 79: 1623–1634.

50. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)
Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

Protein Docking by the Interface Similarity

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31349


