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Abstract The coronavirus nucleocapsid (IN) protein binds viral
RNA to form the ribonucleocapsid and regulate RNA synthesis.
The interaction of N protein with viral RNA was investigated
using circular dichroism and surface plasmon resonance. N pro-
tein underwent a conformational change upon binding viral RNA
and the data indicated electrostatic interactions were involved in
the binding of the protein to RNA. Kinetic analysis suggested the
amino-terminal region facilitates long-range non-specific interac-
tions between N protein and viral RNA, thus bringing the RNA
into close proximity to N protein allowing specific contacts to
form via a ‘lure’ and ‘lock’ mechanism.

© 2006 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Positive stranded RNA viruses replicate in the cytoplasm of
infected cells and encode viral RNA binding proteins. Coro-
naviruses are no exception and synthesise an RNA binding
protein termed the nucleocapsid (N) protein which is one of
the most abundantly expressed viral proteins in an infected cell
[1]. This protein has multiple functions in the virus life cycle
both in terms of interacting with viral RNA [2-4] and modu-
lating host cell processes [5-10]. The replication of the corona-
virus genome is complex and involves the direct replication of
the genomic RNA (approximately 30 kb in length) and tran-
scription of multiple subgenomic mRNAs via a discontinuous
mechanism [11]. The positive sense genome comprises of a cod-
ing region flanked by untranslated regions. The 5’ end consists
of a short leader sequence and the 3’ end is polyadenylated,
both features are shared by the subgenomic mRNAs. N pro-
tein also associates with components of the viral replicase
(an RNA dependent RNA polymerase) [12] and as such can
be viewed as being crucial in the recruitment of viral RNA
for replication. Certainly, N protein is required for the efficient
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rescue of coronavirus full length clones (e.g. [13-15]) and has
direct roles in the regulation of viral RNA synthesis [16,17].
Kinetic studies utilizing equilibrium reactions and investiga-
tion of dynamic interactions (using surface plasmon resonance
(SPR)) indicated that the N protein has particular affinity for
the transcription regulatory sequence (TRS) [2,18]. This short
nucleotide sequence is found within the viral leader sequence
and also precedes each open reading frame. Mutation of spe-
cific nucleotides within and around the TRS can alter RNA
transcription [19-22].

Based on amino acid sequence comparison N protein can be
divided into three regions [1] and all three regions from differ-
ent coronavirus have been shown to associate with RNA. For
example, the amino-terminal region of infectious bronchitis
virus (IBV) [4], and severe acute respiratory syndrome (SARS)
coronavirus [23] can interact with RNA, but the kinetics of
these interactions remain unknown. Recent studies have
hypothesised that the amino-terminal region of N protein
has the potential to form an electrostatic interaction with
RNA [24] and disruption of this interaction has been proposed
to be a target for anti-viral therapy [23]. Previous data has also
suggested that the structure of murine coronavirus, mouse hep-
atitis virus (MHV) N protein changes upon binding viral RNA
[25].

Although the N protein contains no recognised RNA bind-
ing motifs/domains when compared to cellular or viral coun-
terparts, several insights about possible mechanisms of RNA
binding can be gained from the general interaction of cellular
and viral proteins with RNA. For example, the binding of
UIA spliceosomal protein to Ul hairpin II RNA is suggested
to be a two step process involving both electrostatic inter-
actions and base stacking to mediate binding [26], which has
been proposed to involve a ‘lure’ and ‘lock’ step [27]. The
HIV-1 NCp7 Gag polyprotein cleavage product can promote
strand annealing by inducing electrostatic interactions between
strands [28], and the nucleocapsid (NC) protein binds to RNA
with high affinity (Ky = 94-315nM) via electrostatic interac-
tions [29]. Likewise the binding of southern cowpea mosaic
virus coat protein R domain to viral is mediated by electro-
static interactions and the R domain changed conformation
upon binding RNA [30]. In order to investigate the role of
the amino-terminal region of IBV N protein and full-length
protein in binding viral RNA, SPR and circular dichroism
(CD) were used to determine the strength and specificity of
RNA/protein interactions, and to investigate whether any
structural changes occurred.
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2. Materials and methods

2.1. Construction of expression plasmid

pTriExNI(1-133); Region NI of IBV Beaudette N gene was ampli-
fied by PCR from pIBV322, using forward primer NcoN_F, and re-
verse primer XhoNIR (5-ATA TCG CTC GAG ATC TCT TGT
ACC CTG ATT GG-3’) and inserted into pTriEx1.1 (Novagen), which
allows expression of the protein with a C terminal His-Tag. Full length
N protein was cloned as described previously [2,31].

2.2. Expression and purification of recombinant protein in E. coli

IBV N protein expression plasmids were transformed into
Tuner(DE3)PLacl competent cells (Novagen). 500 ml liquid cultures
were induced with the addition of isopropyl B-p-thiogalactopyrano-
side (IPTG) to a final concentration of 0.5 mM to express protein.
The culture was then grown for a further 5h at 27 °C. Cells were
harvested by centrifugation at 10000xg. Cell pellets were
resuspended in lysis buffer and insoluble debris removed by centrifu-
gation [2]. Cleared cell lysate was passed over Ni**-charged HisBind
Resin (Novagen), unbound proteins removed by washing with five
volumes of buffer containing 60 mM imidazole, 0.5M NaCl and
20 mM Tris—HCI, pH 7.9. Protein was eluted by washing with three
volumes of buffer containing 0.5M NaCl, 20 mM Tris-HCl, pH
7.9 and increasing concentrations of imidazole 100, 150 and
200 mM. A 70 ml chromatography column was packed with Superdex
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75 (Amersham) which allows separation of proteins between 3 and
70 kDa. Protein samples to be purified were dialysed into phos-
phate buffered saline (PBS) and injected onto the column. 100 ml
of buffer was passed through the column and eluted fractions
measured for protein content at 280 nm. Eluted fractions were ana-
lysed for purity by SDS-PAGE. Both the amino-terminal region
and full length N protein eluted from the column as predominately
monomer in agreement with dynamic light scattering analysis of N
protein [2].

2.3. Nuclear magnetic resonance (NMR)

NMR experiments were performed using a Varian Unity Inova spec-
trometer operating at a 'H resonance frequency of 600 MHz. Gradi-
ent-enhanced 'H-'N HSQC spectra were acquired using 128
complex points and 64 scans per increment with spectral widths of
4508 Hz and 1200 Hz in the 'H and '*N dimensions, respectively. Nu-
clear magnetic resonance data were analyzed with the programs NMR-
Pipe and NMRDraw [32].

2.4. SPR

SPR measurements were conducted on a Biacore3000 instrument as
previously described [2], and data fitted to a 1:1 Langmuir model.
Briefly, a biotinylated IBV leader sequence (3LeaderTAS) was immo-
bilised on a streptavidin sensor chip (BIAcore) and varying concentra-
tions of the amino-terminal region or N protein passed over, with a
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Fig. 1. (A) SDS-PAGE of the purification of recombinant amino terminal region of IBV N protein from E. coli. Lane M are molecular weight
markers (indicated to the left) and cell lysate is indicated lane L. The lanes indicated 150 and 200 are fractions eluted from the nickel charged column
with buffer containing 150 mM and 200 mM imidazole, respectively. Lane GF is a fraction of the amino-terminal region obtained by gel filtration.
Proteins were visualised using Coomassie stain. Also shown is a Western blot analysis using polyclonal anti-IBV antibody (Charles River
Corporation) of the latter three lanes. The arrow indicates the amino-terminus. (B) I5N-'H 2D-HSQC spectra of the amino-terminal region obtained

on a Varian Unity Inova Spectrometer at 25 °C.
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flow rate of 30 pl/min. Mass transport analysis experiments were con-
ducted as described previously and no effects were observed. The RNA
was obtained synthetically followed by HPLC purification and its
integrity confirmed using mass spectroscopy.

2.5.CD

CD experiments were performed on a Jasco J715 spectrophotometer.
Protein samples to be analysed were dialysed into 20 mM sodium phos-
phate buffer, pH 7.2. Measurements were taken in the far-UV (190—
260 nm) and the CD signal recorded in a I-mm path-length cell using
a protein concentration of 0.4, 0.6 and 0.8 mg/ml with eight accumula-
tions. RNA was added at a 1:1 molar ratio of protein to RNA.

3. Results and discussion

The amino-terminal region (region 1) of IBV N protein
(amino acids 1-133) was cloned and expressed in Tuner
(DE3) E. coli (Novagen) and purified as described previously
[2,31], with the additional step of gel filtration chromatogra-
phy. SDS-PAGE and Western blot analysis (Fig. 1A) demon-
strated that purified IBV proteins were obtained. The
SARS-coronavirus N protein has been reported to be unstable
[33] and also certain regions difficult to purify [34]. To confirm
that the purified IBV amino-terminal protein was folded, a
technique described by Kingston et al. [35] was used. Uni-
formly isotopically labelled protein was expressed in minimal
media containing '*N and 2D-HSQC spectra obtained by solu-
tion state nuclear magnetic resonance (NMR). For a folded
protein that does not aggregate, 'H-'"N HSQC spectra exhibit
dispersed and well-defined peaks for most side chain amide
protons and backbone. The distribution of peaks on the spec-
tra for the amino-terminal region indicated that the protein fit-
ted these criteria indicating that the protein was in a folded
conformation (Fig. 1B).

SPR was used to investigate the interaction of the amino-ter-
minal region with viral RNA. Previously, this system has been
used to determine the RNA binding properties of IBV N pro-
tein to an IBV leader sequence, which contains the TRS, as a
model for the viral genome [2]. Similar binding studies have
utilised the murine coronavirus leader sequence [36,37]. The
viral RNA used in this study consisted of a biotin group at
the 5’ end followed by the 90 nucleotide leader sequence up
to and including the translation initiation codon ([2]).

Biotin-ACUUAAGAUAGAUAUUAAUAUAUAUCUA-
UUACACUAGCCUUGCGCUAGAUUUUUAACUGAAC-
AAUACAGACCUAAAAAGUCUGUUUGAUG (where
predicted stem—loop structures are shown in single and double
underline and the TRS denoted in bold face). Briefly, the bio-
tinylated IBV leader sequence was immobilised on a strepavi-
din sensor chip (BIAcore) and varying concentrations of the
protein passed over. The resultant sensogram (Fig. 2A), ana-
lysed using BIAevaluation software (BIAcore), was different
from that obtained with native N protein [2] (and this study).
The association rate for the binding of the amino-terminal re-
gion to viral RNA was 2.8 x 10* ( 1/Ms), the dissociation rate
was 0.0404 (1/s) with an overall binding affinity to RNA of
1430 nM (> = 7.5). This is in contrast to the high affinity bind-
ing (~1 nM) of N protein to leader RNA observed in a previ-
ous study [2] (and similar to this study). In both cases the
kinetic data fitted to the Langmuir 1:1 binding model indicat-
ing that co-operative binding mediated by protein:protein
interactions did not occur.
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Fig. 2. BIAcore analysis of the amino-terminal region binding to
leader RNA in HBS buffer containing 150 mM (A) and 300 mM (B)
NaCl. Increasing concentrations of the amino-terminal region (7.8,
15.63, 31.25, 62.5 and 125 nM) were injected over the immobilised
target RNA and resulting sensograms shown. The black lines represent
the fitted data obtained using the BIAevaluation software (BIAcore)
incorporating a Langmuir 1:1 binding model. The experiments were
repeated three times in duplicate, and one set of representative data are
presented.

The recently solved crystal structure of the amino-terminal
region of IBV N protein [24] highlighted the presence of a basic
cluster of amino acids, which we hypothesise may form electro-
static interactions with viral RNA. The binding of the amino-
terminal region to leader RNA was analysed using SPR with
increasing concentrations of NaCl, which we predicted would
disrupt electrostatic interactions [38]. The kinetic data obtained
revealed that increasing the NaCl concentration from 150 mM
to 300 mM reduced the association rate of the amino-terminus
to 10.4 (1/Ms) (3% = 1.64), an approximately 2000-fold reduc-
tion (Fig. 2B), whilst 500 mM NaCl abolished binding (data
not shown). This experimental data would support the model
in which electrostatic interactions play a key role in the binding
of the amino-terminus of N protein to RNA.

In order to determine whether native N protein was reliant
on these electrostatic interactions to facilitate high affinity
binding with viral RNA, SPR analysis was extended to the
full length N protein (Fig. 3A), which bound to target RNA
with a binding affinity of 2 nM, with an association rate of
7x10* (1/Ms) and dissociation rate of 1.41x10™* (1/s)
(#* = 10.4). To assess the effects of increased salt in the buffer
the binding kinetics of IBV N for leader RNA were analysed
at 150, 300 and 500 mM NaCl. The resulting sensograms
(Fig. 3B) show that the addition of 300 mM salt decreased
the overall binding affinity of N protein to RNA (11 nM).
Although unlike the amino-terminal region there is a large
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Fig. 3. BIAcore analysis of N protein binding to leader RNA in HBS
buffer containing 150 mM (A) and 300 mM (B) NaCl. Increasing
concentrations of N protein (3.125, 6.25, 12.5, 25, 50 and 100 nM) were
injected over the immobilised target RNA and resulting sensograms
are shown. Black lines represent the fitted data obtained using the
BIAevaluation software (BIAcore) incorporating a Langmuir 1:1
binding model. The experiments were repeated three times in duplicate,
and one set of representative data are presented. (C) Plot of log(kass)
vs. log[NaCl], where points range from 150, 200, 250, 300 and 500 mM
NacCl.

proportion of full length protein retained on the RNA at the
end of the dissociation period (Fig. 3B) (dissociation rate
0.012 1/s). This data suggests that interactions are stronger
between full length N protein and RNA than those of the
amino-terminal region. Therefore, interactions other than
electrostatic, such as hydrogen bonds or base stacking may
stabilise the total protein/RNA complex.

Interestingly, analysis with BIAevaluation revealed that the
association rate of full-length protein for viral RNA increased
with the addition of NaCl to the running buffer, until a
decrease was observed at 500 mM salt. A similar result was ob-
served for the binding of MetJ to the met-box DNA operator
regions [39]. In which the addition of salt to the SPR buffer re-
sulted in an increase, and subsequent decrease at higher salt
concentrations, of association rate. A plot of log of the associ-
ation rate (k,s) versus log[NaCl] (Fig. 3C) has a ‘bell shape’
distribution often observed for a sliding mechanism [40]. This
occurs when the protein “slides” along the nucleic acid in a
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one-dimensional non-sequence specific manner, mediated by
electrostatic attractions, until it meets its target sequence or
structure to which it can bind specifically. In the case of N pro-
tein and viral RNA this target sequence could be the TRS.
Certainly the binding affinity of N protein for a non-viral
RNA is approximately the same as viral RNA when the
non-viral RNA contains a TRS [2].

CD spectroscopy was used to determine whether the struc-
ture of the amino-terminal region of N protein altered during
association with viral RNA, as has been predicted for the
native protein [36] and occurs with other viral RNA binding
proteins. Many common secondary structure motifs, such as
the o-helix, pB-pleated sheet, B-turn and random coil,
have characteristic CD spectra [41]. Therefore, CD allows
the detection of gross protein conformational changes, and
can be utilised to monitor changes in secondary structure
upon ligand binding. Here, it was used to assign secondary
structure to the amino-terminus and full length N protein
and to determine whether these proteins altered upon binding
viral RNA.

CD measurements were taken in the far-UV (180-260 nm)
using initial protein concentrations of 0.4, 0.6 and 0.8 mg/
ml, the resultant sensogram is shown in Fig. 4A. There was
no significant difference in the CD spectra between these con-
centrations and therefore 0.4 mg/ml of the amino-terminal
protein was used in subsequent experiments. This protein
was analysed in the absence and presence of leader RNA with
a molar ratio of 1:1, in six independent experiments (represen-
tative CD spectra is presented in Fig. 4B). Leader RNA alone
was analysed by CD at these wavelengths and no adsorption
was observed (data not shown). Secondary structure content
for each spectra was calculated using DICHROWEB [42]
which utilises a series of algorithms to provide calculated sec-
ondary structure content and allows direct comparison of cal-
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Fig. 4. Far-UV (190-260 nm) CD spectra, taken on a Jasco J715
spectrophotometer with a path length of 0.1 mm, of varying concen-
trations of the amino-terminal region of IBV N protein, 0.4 (black
line), 0.6 (grey line) and 0.8 (black dotted line) mg/ml (A) and at
0.4 mg/ml in the absence (grey dotted line) and presence (black line) of
viral leader RNA (B).
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Table 1
CDDSTR analysis of the amino-terminal region CD data in the absence and presence of viral RNA
a-Helix 3,0-Helix B-Strand Turns Random coil Total
Absence of viral RNA
0 —0.01 0.52 0.2 0.23 0.99
0.02 0 0.51 0.19 0.28 0.99
0.01 0.01 0.45 0.28 0.28 0.97
0.02 0.02 0.49 0.28 0.22 0.99
—0.01 —0.01 0.47 0.24 0.27 0.96
—0.01 0 0.5 0.23 0.26 0.98
0.01 0.00 0.49 + 0.03 0.24 + 0.04 0.26 + 0.03 0.98 + 0.01
Presence of viral RNA
0 0 0.48 0.22 0.23 0.97
—0.01 0.01 0.52 0.22 0.25 0.99
0.01 —0.01 0.5 0.22 0.25 0.97
0 0 0.51 0.23 0.23 0.97
—0.01 0 0.48 0.29 0.2 0.96
0 0 0.45 0.26 0.27 0.98
0.01 0.00 0.49 + 0.03 0.24 + 0.03 0.24 + 0.02 0.97 + 0.01
P 0.32 0.77 1.00 0.87 0.82 0.34

Prefixes denote the type of secondary structure and figures refer to the proportion of a particular structure in the molecule (scored out of one). The
average values and standard deviations of the six experiments are shown in bold face. The Student’s 7-test was used to determine whether there was

any significance (P < 0.05) between the two data sets.

culated structures and experimental data (Table 1). This anal-
ysis of the real time solution structure of the amino-terminal
region of IBV N protein suggested a large proportion of f3-
sheet, turns and random coils, which is in close agreement
with the solid state crystal structure [24]. There was no signif-
icant difference in this solution structure of the amino-termi-
nus with and without viral RNA, suggesting that no gross
conformational change occurs. In contrast, CD analysis of
the binding of the leader RNA to N protein resulted in a con-
formational change of the protein (Fig. 5) indicated by the
change in the CD profile between the presence and absence
of RNA. For example, DICHROWERB revealed that the per-
centage of a-helix changed from 21% to 16% in the presence
of leader RNA. The data suggests changes in the secondary
structure of N protein are required to accommodate the viral
RNA.

Previous equilibrium binding studies have shown that the
amino-terminal region of IBV N protein binds to viral RNA
[4]. However, little is known about the underlying mechanism
and kinetics of this interaction. SPR analysis allowed the mon-
itoring of the formation of complexes in real-time and provided
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Fig. 5. Far-UV (190-260 nm) CD spectra, taken on a Jasco J715
spectrophotometer with a path length of IBV N protein in the absence
(grey dotted line) and presence (black line) of viral leader RNA (B).

simultaneous equilibrium and kinetic information [43]. The dy-
namic nature of protein:RNA interactions may be a key feature
in the regulation of a number of biological mechanisms. The
rate of binding and release may influence processes such as
the ordered assembly of ribonucleoprotein complexes (encaps-
idation of viral RNA), movement of RNA:protein complexes
between sub-cellular compartments and competition for bind-
ing sites. Elucidation of the partial crystal structure of N pro-
tein revealed that conserved basic amino acids in this region
lie within close proximity to form a positively charged cluster
[9,23,24]. The resulting data indicated that electrostatic interac-
tions, most likely between this basic cluster and the negative
phosphodiester backbone of RNA, play a central role in bind-
ing. However, other bonds may important in the stabilisation
of N protein with viral RNA.

Similar to that proposed for U1A protein [26], we hypothe-
sise that the amino-terminal region of N protein forms long-
range non-specific electrostatic interactions with RNA (a ‘lure’
step). This brings the full-length protein within close proximity
to the RNA, and may facilitate sliding, until specific interac-
tions form between viral RNA (perhaps mediated via the
TRS) and N protein (forming a ‘lock’ step). We postulate N
protein may locate its target TRS and other high affinity bind-
ing sites via a sliding mechanism.
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