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Abstract

Background: Ovarian cancer is the second fatal malignancy of the female reproductive system. Based on the
cancer stem cell (CSC) theory, its poor prognosis of ovarian cancer attributed to tumor recurrence caused by
CSCs. A variety of cell surface-specific markers have been employed to identify ovarian cancer stem cells
(OCSCs). In this study, we attempted to explore the common feature in ovarian cancer stem cells sorted by
multiple approaches.

Methods: We collected the gene expression profiles of OCSCs were from 5 public cohorts and employed R
software and Bioconductor packages to establish differently expressed genes (DEGs) between OCSCs and
parental cells. We extracted the integrated DEGs by protein-protein interaction (PPI) network construction and
explored potential treatment by the Cellminer database.

Results: We identified and integrated the DEGs of OCSCs sorted by multiple isolation approaches. Besides, we
identified OCSCs share characteristics in the lipid metabolism and extracellular matrix changes. Moreover, we
obtained 16 co-expressed core genes, such as FOXQ1, MMP7, AQP5, RBM47, ETV4, NPW, SUSD2, SFRP2, IDO1,
ANPEP, CXCR4, SCNN1A, SPP1 and IFI27 (upregulated) and SERPINE1, DUSP1, CD40, and IL6 (downregulated).
Through correlation analysis, we screened out ten potential drugs to target the core genes.

Conclusion: Based on the comprehensive analysis of the genomic datasets with different sorting methods of
OCSCs, we figured out the common driving genes to regulating OCSC and obtained ten new potential
therapies for eliminating ovarian cancer stem cells. Hence, the findings of our study might have potential
clinical significance.
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Background
Ovarian cancer is the second most lethal gynecologic
malignancy in women around the world [1]. Debulking
surgery and platinum-based chemotherapy results in
complete response in 70% of patients, most will relapse
or even succumb to chemoresistance [2]. Significant pro-
gress in maintenance therapy has been seen by combin-
ation with poly (ADP-ribose) polymerase inhibitors,
which have been approved in disease recurrence and a
first-line setting among women with BRCA1/BRCA2
mutations [1]. Tumor recurrence has been attributed to
suboptimal resection and the presence of residual
chemo-resistant OCSCs [2, 3].
Over the years, multiple biomarkers have been iden-

tified exclusively or co-expressed in OCSCs and have
been explored for their unique functions in tumori-
genesis [4]. Several studies have contributed to the
isolation and identification of OCSCs. Spheroids’ for-
mation in cancer stem cell culture has been recog-
nized as the first commonly used approach [5, 6].
With the Hoechst 33342 dye, Side population (SP),
have overexpressed several members of ABC trans-
porters and exhibited some characteristics of CSCs,
are collected [7, 8]. Based on cell surface markers,
CD44, CD117, and CD133 etc., OCSCs have been
successfully identified and isolated [9–11]. The activ-
ity of ALDH1 has been widely used in the identifica-
tion of stem/progenitor cells or CSCs. Cells
expressing high levels of ALDH1 can be identified by
ALDEFLUOR assay and isolated by the ALDH1 anti-
body [10, 12, 13].
CSCs have generally been attributed to the heterogen-

eity of tumors. Stem cell-associated heterogeneity re-
sulted from intrinsic tumor plasticity can be shaped by
the microenvironment [14]. Many abnormal signaling
pathways of CSC play a vital role in its maintenance,
survival and metastasis, including Hedgehog, Notch and
Wnt/β-catenin pathways, carcinogenic cascades such as
PI3K/AKT, TGF-β, EGFR, JAK/STAT or NF-κB as well
as transcriptional regulators such as OCT4, Nanog,
YAP/TAZ and Myc [3]. OCSCs identified by the differ-
ent approach has shown different mechanisms for main-
taining cancer stem-like properties. They may share the
same biomarkers as well as biological characteristics.
This has led to an increasing interest in elucidating the
underlying mechanism of OCSCs identified by different
methods.
In this study, we downloaded five original microarray

datasets, namely, GSE82305 [13], GSE28799 [5],
GSE53759 [15], GSE94358 [16], and GSE33874 [17],
from the GEO database, and these datasets contain a
total of 45 samples, including 21 OCSCs samples and 24
parental cancer cell samples. We used R language soft-
ware to standardize all the datasets and to get DEGs.

The ‘RobustRankAggreg’ package was subsequently
used to integrate the results and obtain integrated dif-
ferentially expressed genes (DEGs). By function and
pathway analysis, we identified OCSCs share character-
istics in the lipid metabolism and extracellular matrix
changes. Combined with WGCNA and PPI network, we
identified the hub genes of OCSC and obtained 16 co-
expressed core genes, such as FOXQ1, MMP7, AQP5,
RBM47, ETV4, NPW, SUSD2, SFRP2, IDO1, ANPEP,
CXCR4, SCNN1A, SPP1 and IFI27 (upregulated) and
SERPINE1, DUSP1, CD40, and IL6 (downregulated).
Based on the comprehensive analysis of the genomic
datasets with different markers of OCSCs, we figured
out the common driving signal pathways to regulating
OCSCs. Finally, we obtained ten new potential therap-
ies for the elimination of ovarian cancer stem cells.

Methods
Data procession
The gene expression profiles of OCSCs (GSE82305,
GSE28799, GSE53759, GSE94358) were downloaded from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). The dataset information is
shown in Table 1. Data adjustments included data filter-
ing, normalization, and ID transformation. Each dataset
was then normalized using the normalize Between Arrays
function in the R package ‘limma’ (http://www.bioconduc-
tor.org/). The 288 OV RNA-seq transcriptome data were
download from the UCSC Xena (https://xenabrowser.net/
) and were calculated as log2(x + 1) transformed RSEM
normalized counts. The 88 normal ovarian samples were
obtained through the Genotype-Tissue Expression (GTEx)
[18] and were calculated as log2(x + 1) transformed RSEM
normalized counts.

Integration of microarray data
The R package ‘limma’ was used to test DEGs in each
dataset. Genes with an adjusted P-value < 0.05 and |log
fold change (FC)| > 1 were considered DEGs. The DEGs
in the four datasets were integrated using the R package
‘RobustRankAggreg’ (http://www.bioconductor.org/). The
integrated upregulated and downregulated DEG lists were
saved for subsequent analysis.

Weighted gene co-expression network analysis
The variant genes in the GSE33874 dataset were con-
structed to an approximate scalefree fundamental
gene co-expression network using the R package
‘WGCNA’ [19]. Genes with a high correlation were
clustered and the network modules were generated
using the topological overlap measure (TOM). The
color bars correspond to the clusters of genes can be
seen as the gene module. The threshold of the co-
expression module was set as p < 0.05.
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Function and pathway analysis
The gene ontology (GO) annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of the integrated DEGs were per-
formed using the DAVID 6.8 database (https://david.
ncifcrf.gov/). GO terms were classified in three cat-
egories: biological process (BP), cellular component
(CC), and molecular function (MF). The term with
highest −log10qValue was determined the most sig-
nificant enrichment. Q-values below 0.05 (q < 0.05)
were considered significant. The visualization of the
GO and KEGG pathway enrichment analyses was per-
formed using R 3.6.3 software.

Protein-protein interaction (PPI) network construction and
hub gene selection
The PPI network of the integrated DEGs was ana-
lyzed with the STRING database (http://string-db.
org/) and visualized using Cytoscape 3.8.0 software.
The plug-in molecular complex detection of Cytos-
cape was subsequently applied to construct the sub-
network for further analysis. The top 3 cluster, with
the default parameters “false Degree Cutoff = 2”,
“Node Score Cutoff = 0.2”, “K-Core = 2” and “Max.-
Depth from Seed = 100”, was saved and listed in
Table 3. Genes in a significant module of WGCNA
were analyzed, and the top 3 subnets were listed in
Table 2.

Gene expression in immune subtypes
A new immune classification of solid tumors has
identified six immune subtypes (C1-C6) [20]. Our

study population included all OV patients from
TCGA with available information on Immune im-
mune subtypes (N = 234). Gene expression was calcu-
lated as log2(x + 1) transformed RSEM normalized
counts.

The prediction of potential drug based on drug-gene
correlation
DTP NIC-60 z scores and corresponding RNA-seq
composite expression were downloaded from the Cell-
miner database (https://discover.nci.nih.gov/cellminer/
loadDownload.do) [21, 22]. Drug z-score correlated
with gene expression and statistically significant (P <
0.05) were saved and listed in Table 4. The details of
the predicted drug were listed in Table 4. Drug infor-
mation was derived from the Drugbank database
(https://www.drugbank.ca/).

Results
Flow chart for the study design
In this study, we conducted a comprehensive analysis
of common essential genes in OCSCs isolated by def-
erent methods and their critical roles in OV by sev-
eral computational methods. The study design was
illustrated in Fig. 1.

The DEGs among GSE82305, GSE28799, GSE53759 and
GSE94358
The OCSCs datasets GSE82305, GSE28799, GSE53759
and GSE94358 were normalized. The normalization of
GSE82305 was shown in Fig. 2 A and B. The DEGs
were selected using the R package ‘limma’ (adjusted

Table 1 Details of datasets of OCSCs in the GEO

GEO accession Platform Organism Details

GSE82305 GPL10558 Homo sapiens SKOV3 aldefluor(+)/aldefluor(−)

GSE53759 GPL6244 Homo sapiens IGROV-1 spheroids/non-spheroids

GSE28799 GPL570 Homo sapiens OVCAR3 spheroids/adherent

GSE94358 GPL570 Homo sapiens spheroids/adherent

GSE33874 GPL570 Homo sapiens Side population/main population

Table 2 The top 3 subnets of genes in the blue module

Cluster Score (Density*#Nodes) Nodes Edges Node IDs

1 21 21 210 WSB1, SPSB1, RNF14, MYLIP, RNF114, RNF19B, UBE2D1, KLHL21, FBXL7, SMURF2, NEDD4L,
GLMN, UBE2L6, ANAPC4, RNF19A, HERC2, WWP1, KBTBD7, UBE2F, TRIM32, RNF144B

2 14.174 24 163 IL18, CSF2, PTGER3, GNB4, GNG11, ICAM1, OXGR1, ITGAM, CSF3, ACKR3, CCR1, IL6R, CXCL3,
HTR1D, TLR2, C3, IL1R1, CXCL1, SSTR2, ADRA2B, BDKRB1, VCAM1, IL15, CD44

3 11.234 48 264 NR4A1, TRAF1, ATF3, NFKB1, TNFAIP3, CCK, NFKBIA, IKBKB, CD83, TNFRSF10B, SERPINB2, IL6,
ADRB2, AVPR1B, IRAK2, AGTR1, GADD45B, KITLG, P2RY1, HRH1, FOSB, RIPK1, WNT5A, REL,
BTG2, STAM, JUN, RIPK2, STON1, PIK3R3, NR4A2, DUSP1, LGALS3, PACSIN2, VAMP2, CD40,
DNAJC6, ZFP36, TSLP, IRF1, LRP2, PIK3R1, SERPINE1, JUNB, FOSL1, SELE, NECAP2, TFRC
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P < 0.05 and |log fold change (FC)| > 1). The
GSE82305 dataset contained 1474 differentially
expressed genes, including 724 upregulated genes and
750 downregulated genes (Fig. 2 c). The heatmap of
the top 100 genes is shown (Fig. 2 d). The GSE28799
dataset contained 1865 differentially expressed genes,
including 959 upregulated genes and 936 downregu-
lated genes (Fig. S1A-B). The GSE53759 dataset con-
tained 273 differentially expressed genes, including
133 downregulated expression genes and 140 down-
regulated expression genes (Fig. S2A-B). Besides, the
GSE94358 dataset contained 305 differential genes, in-
cluding 50 upregulated genes and 255 downregulated
genes (Fig. S3A-B).

Construction of co-expression networks and identification
of key modules
We employed the WGCNA to analyze the differen-
tially expressed genes between side population (SP)
and main population (MP), which were isolated from
fresh ascites obtained from 10 women with high-
grade serous ovarian adenocarcinoma. The 21,655
genes in 20 samples of the GSE33874 dataset were
used to construct the co-expression module. The
cluster analysis on these samples and the results were
depicted (Fig. S4A). Then, we screened out the soft-
thresholding power (Fig. 3 a). When the power value
was equal to 16, the independence degree was up to
0.9. Therefore, the power value was used to construct

Fig. 1 The flow chart for data collecting and data processing in this study
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the co-expression module, and the results showed
that 18 distinct gene co-expression modules were
identified (Fig. 3 b). We analyzed the correlation be-
tween module eigengene and group traits and found

only one co-expression module significantly correlated
with SP and MP (Fig. 3 c). 1154 genes in the blue
module correlated negative with SP. We performed
PPI network analysis with genes in the blue module.

Fig. 2 Data processing in the GSE82305 dataset. A-B. Normalization of the GSE82305 dataset. C. The volcano plot showed differentially
expressed genes (DEGs) between the two groups of samples in GSE82305. Based on an adjusted P < 0.05 and |log fold change| > 1, the
red spots represent the upregulated genes and the blue spots represent the downregulated genes; the grey spots represent genes with
no significant difference. D. The heatmap of the top 100 DEGs in GSE82305. Orange indicates relative upregulated genes; Blue indicates
the relative downregulated gene; yellow suggests no significant change in gene expression
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Fig. 3 WGCNA for GSE33874. A. Determination of soft-thresholding power in the WGCNA. B. Cluster dendrogram and module assignment for
modules from WGCNA. C. Module-sample association relationships. Each row corresponds to a module, labeled by the same color as in (B). The
correlation coefficient and p-value between the module and the sample or group are shown at the row-column intersection
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The whole network and the top 3 subnets were
depicted (Fig. S4B-C), and its details were listed in
Table 2. Subsequently, these genes in the blue module
were subjected to GO and KEGG analysis. The top
GO term and KEGG pathway in the three subnets
were listed in Table S1.

The integrated DEGs and their function and pathway
analysis
The DEGs of GSE82305, GSE28799, GSE53759, and
GSE94358 datasets were screened using the R package
‘limma’ and sorted according to log FC. The integrated
DEGs were obtained using the R package ‘RobustRan-
kAggreg’ (P < 0.05, |log FC| > 1). The 343 integrated
DEGs, consisting of 111 upregulated genes and 232

downregulated genes, were identified (Table S2). Heat
map showing the top 20 upregulated and 20 downregu-
lated genes in the integrated DEGs (Fig. 4). Moreover,
these upregulated genes and downregulated genes were
subjected to cluster Profiler for GO and KEGG analysis,
respectively. GO term annotation showed that these up-
regulated genes correlated with the regulation of lipid
metabolic process, response to steroid hormone, cellular
ketone metabolic process, cellular response to fatty acid,
regulation of fatty acid oxidation, positive regulation of
fatty acid oxidation (BP) (Fig. 5 a). GO analysis also
showed that these down-regulated genes related to
extracellular structure organization and extracellular
matrix organization (Fig. 5b). We figured out that the
upregulated genes were mainly enriched in lipid

Fig. 4 The heatmap of the representative integrated DEGs. The red square represents upregulated DEGs, the green square represents
downregulated DEGs, and the value in the square represents the log FC value
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metabolism and the downregulated genes were mainly
enriched in extracellular stroma. This indicated that the
extracellular matrix regulated cancer stem cell behavior
and character to some extent. The upregulated inte-
grated DEGs were mainly enriched in the intestinal

immune network for IgA production (Fig. 5c), and
downregulated genes in focal adhesion pathways (Fig.
5d). We performed PPI analysis with integrated DEGs.
The top 3 subnets were depicted (Fig. 6a), and its details
were listed in Table 3.

Fig. 5 GO and KEGG pathway enrichment analyses of the integrated DEGs. A. GO enrichment analysis of the upregulated integrated
DEGs. The top ten BP term with a q-value less than 0.05 were considered as significant and listed. B. GO enrichment analysis of the
downregulated integrated DEGs. The top ten BP term with a q-value less than 0.05 were considered as significant and listed. C. The
upregulated integrated DEGs were significantly enriched in three KEGG pathways. D. The downregulated integrated DEGs were
significantly enriched in five KEGG pathways
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Expression of the integrated DEGs in the ovarian dataset
of TCGA and GTEx
We tested the expression of upregulated integrated DEGs
in TCGA and GTEx. Among them, 26 genes were differ-
entially expressed (Fig. 6b). We selected the 14 genes,

including FOXQ1, MMP7, AQP5, RBM47, ETV4, NPW,
SUSD2, SFRP2, IDO1, ANPEP, CXCR4, SCNN1A, SPP1,
and IFI27, which were both overexpressed in OV and
OCSCs. Further, we used the Venn diagram to select the
shared genes in upregulated integrated DEGs and the

Fig. 6 PPI network construction of the integrated DEGs and SEP selection. A. The PPI network on the left was drawn using Cytoscape, and the interaction
score was set to medium confidence (0.400). The network nodes represent proteins (red: upregulated proteins and blue: down-regulated proteins), and
edges represent protein-protein associations. Three clusters on the right represent the top 3 subnets. B. The gene expression heatmap of the differentially
expressed DEGs in TCGA and GTEx. C. Venn plot showing the intersection of the downregulated DEGs and hub genes in the blue module. D. Violin plot
showing the expression of indicated genes in TCGA and GTEx (by Kruskal-Wallis test, *P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001)
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genes in the blue module. We obtained four common
genes, including SERPINE1, DUSP1, CD40, and IL6 (Fig.
6c), whose expression was similarly low in OV than
healthy ovarian tissue (Fig. 6d). In brief, we derived spe-
cific expression profile (SEP) of OCSCs, which were com-
posed of FOXQ1, MMP7, AQP5, RBM47, ETV4, NPW,
SUSD2, SFRP2, IDO1, ANPEP, CXCR4, SCNN1A, SPP1
and IFI27 (upregulated) and SERPINE1, DUSP1, CD40,
and IL6 (downregulated).

SEP expression in immune subtypes
OCSCs can survive from treatment and can be ex-
empt from immunosurveillance. We explored whether
the OCSCs signature associated with characteristics
contributes to immune escape. A research group had
used characteristic immune-oncologic gene signatures
to cluster TCGA tumor types into six groups (C1-C6)
[20]. The density of specific immune cells and overall
prognosis show wide variations between the different
immune subtypes. Only 4 immune subtypes were
identified in OV, predominantly IFN-gamma Domin-
ant (Immune C2, N = 138) and Lymphocyte Depleted
(Immune C4, N = 53). C2 had the highest M1/M2
macrophage polarization, higher densities of CD8 T
cells, a high proliferation rate, and the highest intra-
tumoral heterogeneity. Therefore, we tested the ex-
pression of SEP of OCSCs in immune subtypes and
found a few upregulated genes had a higher expres-
sion in the C2 and C4 group, which were character-
ized as lymphocyte depleted, may predict the distinct
gene profile of cancer stem cells contributes to im-
mune evasion in ovarian Cancer Patients (Fig. 7).

Drug susceptibility prediction based on SEP of OCSCs
To explore potential molecular-targeted drugs for
OCSCs, we download NCI-60 drug z scores and cor-
responding NCI-60 cell lines RNA-seq/composite ex-
pression from the Cellminer database. The higher cell
lines z scores have, the more sensitive to the corre-
sponding drug they are. For better applications in the
clinic, we employed the US FDA-approved drugs and
drugs in clinical trials. We analyzed the correlation
between drug z score and SEP. We listed four repre-
sentative Pearson’s correlation dot plot (Fig. 8 a). All
targeted genes and relevant predicted drugs (P < 0.05)

were shown in the Sankey diagram (Fig. 8 b). We se-
lected drugs that were correlated with at least four
target genes as a potential therapy regimen. As a re-
sult, we identified ten drugs related to SEP. Detailed
information were shown in Table 4. Thus, we inferred
that these drugs might be repurposed to the OCSCs
with the SEP as drug targets. We extracted drug-
indication from DrugBank (https://www.drugbank.ca/)
and listed applications of the ten medications in
Table 5. For example, Ixabepilone, which was associ-
ated with CD40, CXCR4, IL6, and SERPINE1, were
used in locally advanced breast cancer and metastatic
breast cancer, can potentially be repurposed to treat
OCSCs.

Discussion
Most ovarian cancer patients respond to initial
chemotherapy, but more than 70% of patients will de-
velop tumor recurrence and eventually develop resist-
ance to treatment [2]. Ovarian cancer stem cells are
thought to promote the recurrence of ovarian cancer
and lead to the development of treatment resistance
[23]. There are several methods to isolate ovarian
tumor stem cells. However, the mechanisms of ovar-
ian tumor stem cells obtained by different routes to
promote tumor development are not the same. The
core signaling pathways that regulate ovarian cancer
stem cells remain unclear. There is still lacking in ef-
fective drugs and drug combinations to eliminate
them to improve cancer survival.
In this study, the GSE82305, GSE28799, GSE53759,

and GSE94358 datasets were analyzed, and 343 inte-
grated DEGs were found. As for study GSE33874, we
applied WGCNA analysis and got 18 significant
enriched modules. The blue module was significantly
correlated with SP and MP. The 343 integrated DEGs
were then subjected to gene enrichment analysis. The
upregulated genes were mainly enriched in lipid metab-
olism, and the downregulated genes were enriched pri-
marily in extracellular structure organization. The
KEGG pathway analysis revealed that these downregu-
lated integrated DEGs are mostly enriched in focal ad-
hesion, which is essential in the extracellular matrix
formation. Like the metabolic characteristics of tumor
cells, rapidly proliferating stem cells mainly rely on

Table 3 The top 3 subnet of DEGs

Cluster Score (Density*#Nodes) Nodes Edges Node IDs

1 5.6 16 42 ADRA2A, SST, CAV1, GPR37, PPARG, CCL2, PTGS2, CAMP,
NPW, ADCY7, IDO1, PLAT, SERPINE1, PLAUR, PLAU, CYR61

2 3.143 8 11 COL4A1, VCAN, ITGA5, ANGPTL4, CXCR4, CXCL8, COL11A1, COL5A1

3 3 3 3 BMP4, LFNG, NOTCH2
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aerobic glycolysis to provide energy [14]. In a study,
chemical imaging of a single living cell was performed.
They identified and described lipid unsaturation in
ovarian cancer stem cells for the first time and

suggested to effectively eliminate CSCs by inhibition of
lipid desaturases [24]. OXPHOS pathway and lipid me-
tabolism in cancer stem cells are recognized as targets
for the development of novel anticancer therapies [25].

Fig. 7 Gene expression of SEP in immune subtypes. Distribution of the mRNA levels of levels for indicated genes with the most significant
differences across subtypes in Ovarian cancer (by Kruskal-Wallis test, *P < 0.05, **P < 0.01, ***P < 0.001)
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In our study, we found upregulated genes were
enriched in lipid metabolism, which suggested cellular
event accumulation of lipids and secondary metabolites.
To meet the increasing energetic requirements of CSCs,
the lipid metabolic pathway can flexibly turn to the
other metabolic pathways [26]. CSCs are incredibly reli-
ant on the activity of enzymes involved in lipid metab-
olism, which engaged in CSCs fate decisions, such as
Hippo and Wnt signal pathway [25]. Emerging evidence
suggests that alterations in lipid- and fatty acid-
associated pathways are essential for the maintenance
of CSCs [27, 28]. Some recent evidence has demon-
strated that cancer stem cell maintenance and differen-
tiation is regulated by extracellular matrix mechanics
[29, 30]. Interactions of cells with the extracellular
matrix are crucial for the establishment and mainten-
ance of stem cell [31, 32]. Our results also confirm that
the most significant GO term in subnet3 of the blue
module is response to mechanical stimulus (Table S1).
In our study, we uncovered the changes in lipid metab-
olism and extracellular matrix are universal, independ-
ent of cell types and sorting methods. This
phenomenon addresses the interactions of OCSCs with
environment which result in the modulation of lipid
metabolism, and thereby of OCSCs phenotype.
Studies have shown that tumor stem cells can re-

duce and evade from NK cells by downregulating the

active ligand of NK cells, such as major histocompati-
bility I polypeptide related sequences A (MICA) and
histocompatibility I polypeptide related sequences B
(MICB), so as to escape from immune surveillance
[33]. The cancer stem cells have been identified to
survived within a specialized cellular niche through
the crosstalk with the surrounding microenvironment
[34]. Ovarian carcer was classified into four immune
subtypes (C1-C4) based on the study of Thorsson
et al. C2 and C4 showed poor prognosis, despite C2
had a substantial immune component. Our results
showed the expression of MMP7, RBM47, and
SCNN1A were significantly higher in C2 and C4 than
other immune subtypes. In this regard, the complex
interrelations between cancer stem cells and tumor
immune microenvironment might play an vital role in
MPM tumorigenesis. To identify potential drugs for
OCSCs based on the SEP, we compared drug sensitiv-
ity of US FDA-approved anticancer drugs, which can
be conducive to treatment. We chose ten possible
drugs for OCSCs. These drugs have been used in
other kinds of diseases and are believed to be further
explored in tumor stem cell treatment.
In summary, the purpose of this study was to increase

our understanding of the core signal pathway in OCSCs
through an integrated bioinformatics analysis that aimed
to identify integrated DEGs and the related pathways

Fig. 8 Drug susceptibility prediction based on SEP. A. Representative scatter diagrams show the correlation analysis of gene expression with drug
z score (by Pearson correlation test). Each black point represents an independent sample. The blue line is the linear regression. B. Sankey diagram
showed the relation of targeted genes and predicted drug
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Table 4 The Person correlation of NCI-60 drug z scores and gene expression

Gene Drug cor pvalue

DUSP1 Bafetinib −0.43137 0.000579

ETV4 0.330795 0.009836

IL6 − 0.32127 0.012315

SERPINE1 −0.33833 0.008193

CXCR4 Belinostat 0.29389 0.022658

IL6 −0.26566 0.040218

NPW 0.39625 0.001724

SERPINE1 −0.29077 0.024203

DUSP1 Cobimetinib −0.34957 0.006186

ETV4 0.417929 0.000892

IL6 −0.27774 0.031667

RBM47 0.265132 0.040628

SERPINE1 −0.28517 0.027205

SPP1 0.25733 0.047155

DUSP1 Dabrafenib −0.29456 0.022338

ETV4 0.427569 0.000656

SERPINE1 −0.30432 0.018078

SPP1 0.278976 0.030886

AQP5 Dolastatin 10 0.382727 0.002544

CD40 −0.54851 5.70E-06

DUSP1 −0.45862 0.000228

IL6 −0.30263 0.018759

SERPINE1 −0.35536 0.005332

CD40 Ixabepilone −0.26495 0.04077

CXCR4 0.283105 0.028391

IL6 −0.30615 0.017359

SERPINE1 −0.28757 0.025884

DUSP1 Selumetinib −0.4288 0.00063

ETV4 0.438516 0.000457

FOXQ1 0.285388 0.027085

IL6 −0.29527 0.022002

SERPINE1 −0.3142 0.014492

CD40 Tamoxifen −0.3044 0.018045

DUSP1 −0.39953 0.001564

IL6 −0.46998 0.000151

SERPINE1 −0.48772 7.73E-05

CD40 Vinorelbine −0.48333 9.16E-05

DUSP1 −0.3796 0.002777

IL6 −0.29874 0.02042

SERPINE1 −0.28779 0.025769

CXCR4 Vorinostat 0.421015 0.000809

IL6 −0.26497 0.040755

NPW 0.443309 0.000389

SERPINE1 −0.39319 0.001885
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enriched in OCSCs. Our research also identified SEP
that could serve as biomarkers and therapeutic targets of
OCSCs. However, further research is required to estab-
lish the therapeutic efficiency of the potential drugs.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13048-020-00715-7.

Additional file 1 Figure S1. Data processing in the GSE28799 dataset.
A. The volcano plot showed differentially expressed genes (DEGs)
between the two groups of samples in GSE28799. Based on an adjusted
P < 0.05 and |log fold change| > 1, the red spots represent the
upregulated genes and the blue spots represent the downregulated
genes; the grey spots represent genes with no significant difference. B.
The heatmap of the top 100 DEGs in GSE28799. Orange indicates relative
upregulated genes; Blue indicates the relative downregulated gene;
yellow suggests no significant change in gene expression;

Additional file 2 Figure S2. Data processing in the GSE53759 dataset.
A. The volcano plot showed differentially expressed genes (DEGs)
between the two groups of samples in GSE53759. Based on an adjusted
P < 0.05 and |log fold change| > 1, the red spots represent the
upregulated genes and the blue spots represent the downregulated
genes; the grey spots represent genes with no significant difference. B.
The heatmap of the top 100 DEGs in GSE53759. Orange indicates relative
upregulated genes; Blue indicates the relative downregulated gene;
yellow suggests no significant change in gene expression.

Additional file 3 Figure S3. Data processing in the GSE94358 dataset.
A. The volcano plot showed differentially expressed genes (DEGs)
between the two groups of samples in GSE94358. Based on an adjusted
P < 0.05 and |log fold change| > 1, the red spots represent the
upregulated genes and the blue spots represent the downregulated
genes; the grey spots represent genes with no significant difference. B.
The heatmap of the top 100 DEGs in GSE94358. Orange indicates relative
upregulated genes; Blue indicates the relative downregulated gene;
yellow suggests no significant change in gene expression.

Additional file 4 Figure S4. PPI networks analysis of the blue module.
A. Cluster dendrogram of 20 samples in GSE33874. B. PPI networks of
genes in the blue module. C. The top 3 subnets of network in (B).

Additional file 5 Table S1.

Additional file 6 Table S2.
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