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Phase separation is a physiological process occurring spontaneously when single-phase 
molecular complexes separate in two phases, a concentrated phase and a more diluted 
one. Eukaryotic cells employ phase transition strategies to promote the formation of 
intracellular territories not delimited by membranes with increased local RNA concentration, 
such as nucleolus, paraspeckles, P granules, Cajal bodies, P-bodies, and stress granules. 
These organelles contain both proteins and coding and non-coding RNAs and play 
important roles in different steps of the regulation of gene expression and in cellular 
signaling. Recently, it has been shown that most human RNA-binding proteins (RBPs) 
contain at least one low-complexity domain, called prion-like domain (PrLD), because 
proteins harboring them display aggregation properties like prion proteins. PrLDs support 
RBP function and contribute to liquid–liquid phase transitions that drive ribonucleoprotein 
granule assembly, but also render RBPs prone to misfolding by promoting the formation 
of pathological aggregates that lead to toxicity in specific cell types. Protein–protein and 
protein-RNA interactions within the separated phase can enhance the transition of RBPs 
into solid aberrant aggregates, thus causing diseases. In this review, we highlight the role 
of phase transition in human disease such as amyotrophic lateral sclerosis (ALS), 
frontotemporal dementia (FTD), and in cancer. Moreover, we discuss novel therapeutic 
strategies focused to control phase transitions by preventing the conversion into aberrant 
aggregates. In this regard, the stimulation of chaperone machinery to disassemble 
membrane-less organelles, the induction of pathways that could inhibit aberrant phase 
separation, and the development of antisense oligonucleotides (ASOs) to knockdown 
RNAs could be evaluated as novel therapeutic strategies for the treatment of those human 
diseases characterized by aberrant phase transition aggregates.

Keywords: RNA-binding proteins, phase separation, RNA therapeutics, neurodegenerative disease,  
low-complexity domain

INTRODUCTION

Eukaryotic cells are characterized by morphologically distinct compartments displaying multiple 
roles in biological processes. The complementary use of light- and electron-microscopic 
imaging techniques has allowed to shape eukaryotic subdomains highlighting the presence 
of membrane-less organelles (MLOs), including paraspeckles, nuclear speckles, Cajal bodies, 
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FIGURE 1 | Schematic representation of membrane-less organelles (MLOs). Eukaryotic cells contain different MLOs formed by liquid–liquid phase separation.  
(A) Representation of liquid–liquid phase separation. In order to promote interaction between macromolecules and to obtain a chemical equilibrium, high energy is 
required with a correspondent reduction of entropy. In this condition, proteins (in blue) and RNA (in red) are prone to undergo liquid–liquid phase separation. In 
particular, the increase in energy and the reduction in entropy lead to a decrease in macromolecule solubility and an increase in protein-RNA interactions. The result 
is a higher concentrated phase, that promotes the formation of membrane-less organelles (MLOs). (B) Representation of membrane-less organelles (MLOs).  
The MLOs form sub-compartments both in the nucleus and in the cytoplasm. Nucleus is characterized by the presence of nucleoli (in red) that are involved in the 
ribosome biogenesis; paraspeckles (in purple), whose formation is promoted by the lncRNA NEAT1, that interacts with several RBPs, including FUS, in the core, 
and TDP-43 in the shell; Cajal bodies (in green) that are involved in the snRNP biogenesis; and super-enhancers (in yellow) that are clusters of master transcription 
factors and transcriptional co-activators involved in gene expression. In the cytoplasm, eukaryotic cells harbor P-bodies (in blue), involved in the control of  
mRNA translation and mRNA storage, and stress granules (in orange) whose formation, upon stress condition, requires the interaction between  
RNA (in grey) and proteins.
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stress granules (SGs), and processing bodies (P-bodies), in 
addition to the classical membrane-enclosed organelles (such 
as nuclei, mitochondria, endoplasmic reticulum, and Golgi 
apparatus) (Matera, 1999). These MLO compartments shape 
similarly, with analogous build up characteristics, but they 
differ in composition and sub-cellular localization. Indeed, 
the MLOs form sub-compartments both in the nucleus and 
in the cytosol (Figure 1), and contain nucleic acids and 
proteins necessary to accomplish their function, thus providing 
a spatiotemporal control of biological activities (Shin and 
Brangwynne, 2017). For this reason, these compartments must 
remain separated from cytoplasm and nucleus (Banani et  al., 
2017). The multiple components that concentrate within these 
subdomains render them a suitable interface for various cellular 
processes, such as transcription, RNA processing, mRNA 
transport, RNP assembly, ribosome biogenesis, translational 
repression, mRNA degradation, and intracellular signaling 
(Banani et  al., 2017).

Several efforts have been devoted to understand the process 
of MLO formation and how phase separation is involved in 
promoting their assembly (Hyman et  al., 2014). The relevance 
of these MLOs is demonstrated by the fact that changes in 
their organization are associated with disease phenotypes (Aguzzi 
and Altmeyer, 2016). Growing evidences suggest that these 
organelles are involved in the pathogenesis of neurodegenerative 
diseases, such as amyotrophic lateral sclerosis (ALS) and 
frontotemporal dementia (FTD) (Murakami et al., 2015; Rhoads 
et  al., 2018), as well as in cancer (Aguzzi and Altmeyer, 2016; 
Bouchard et  al., 2018).

This review explores individual MLOs, with emphasis on 
how they contribute to biological functions and how their 
dysregulation promotes the development of human disease. In 
this regard, we describe possible therapeutic strategies to monitor 
the correct formation of these compartments, and therapeutic 
approaches to selectively destroy aberrant MLOs.

PHASE SEPARATION: MECHANISM, 
COMPARTMENTS, AND  
BIOLOGICAL FUNCTIONS

Phase separation is a physiological process by which 
macromolecules separate in a dense phase and in a dilute 
phase within cells, thus allowing the formation of distinct 
chemical environments (Shin and Brangwynne, 2017). In order 
to promote interaction between macromolecules, rather than 
between macromolecules and solvent, and to obtain a chemical 
equilibrium among the compartments just formed, high energy 
is required (Johansson et  al., 1998), with a correspondent 
reduction of entropy (Figure 1A). The result is a higher 
concentrated phase, where the proteins and DNA/RNA 
cluster ~ 10–100-fold more (Li et  al., 2012), and a lower 
concentrated phase (Banani et al., 2017). In the phase separation 
process, macromolecule solubility is decreased (Alberti, 2017). 
Liquid–liquid phase separation (LLPS) occurs spontaneously 
in eukaryotic cells when a critical concentration or temperature 
threshold is exceeded, thus forming sub-compartments in a 

reversible fashion (Hyman et  al., 2014; Shin and Brangwynne, 
2017). The assembled MLOs must remain separated by the 
surrounding environment, both in the nucleus and in the 
cytoplasm. These organelles in turn support the transport of 
molecules in and out themselves, thus allowing chemical reactions 
inward (Hyman et  al., 2014).

To obtain liquid–liquid demixing, several conditions are 
required, such as electrostatic and hydrophobic interactions, 
achieved by the presence of low-complexity sequences, and 
intrinsically disordered protein regions (IDRs) (Nott et  al., 
2015), that are involved in protein–protein (Lee et  al., 2015), 
and protein-RNA interactions (Allain et  al., 2000). RNA can 
initiate by itself phase separation via protein-RNA (Molliex 
et  al., 2015) and RNA–RNA interactions (Jain and Vale, 2017; 
Van Treeck et  al., 2018) and serves as a molecular seed that 
triggers liquid demixing (Molliex et  al., 2015).

Eukaryotic cells harbor MLOs both in the nucleus and in 
the cytoplasm. The first MLO identified was the P granule 
of Caenorhabditis elegans embryos, involved in cytoplasmic 
polar partitioning (Strome and Wood, 1983). P granules have 
been defined as a liquid-like compartment. Indeed, they display 
a spherical morphology due to surface tension. They can fuse 
together with other P granules and be  deformed by flows, 
then rapidly rearranging (Brangwynne et  al., 2009). P granules 
contain mRNAs and RNA helicases and play a key role in 
the post-transcriptional regulation of mRNA in the germ cells 
(Voronina et  al., 2011).

In the cytoplasm, eukaryotic cells can form processing 
bodies (P-bodies) and stress granules (Figure 1B). P-bodies 
are cytoplasmic ribonucleoprotein (RNP) granules (Franks 
and Lykke-Andersen, 2008). Fluorescence microscopy has 
shown that proteins and RNAs shuttle between cytoplasm 
and P-bodies and fuse, showing liquid-like properties (Kedersha 
et  al., 2005). These RNP granules play a role in post-
transcriptional regulation, by controlling mRNA translation 
and degradation (Parker and Sheth, 2007). Indeed, their 
assembly depends on the loading of mRNAs into polysomes. 
When mRNAs are associated with ribosomes, P-bodies decrease 
in abundance and size (Sheth and Parker, 2003; Teixeira et al., 
2005); whereas when mRNAs dissociate from ribosomes, as 
a result of translation inhibition, P-bodies increase in dimensions 
(Teixeira et al., 2005; Koritzinsky et al., 2006). Indeed, mRNA 
decay can occur also in absence of P-bodies (Eulalio et  al., 
2007), thus assuming that P-bodies act by segregating mRNAs 
rather than degrading them (Parker and Sheth, 2007).

In addition to P-bodies, cytoplasm of eukaryotic cells 
harbors other types of RNA granules, such as stress granules 
(SGs) (Collier and Schlesinger, 1986; Arrigo et  al., 1988). 
Fluorescence microscopy (Jain et al., 2016) and electron-dense 
regions’ micrographs (Souquere et  al., 2009) revealed that 
SGs have a highly concentrated core made up by proteins 
and mRNA, and a surrounding structure which is less dense 
and more dynamic (Protter and Parker, 2016). Phase separation 
is extremely sensitive to changes in chemical conditions, thus 
playing an important role in stress adaptation. In fact, stress 
is a transient phenomenon and SGs are transient structures 
rapidly disassembling upon removal of the stress condition. 
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For instance, after removal of the adverse condition, SGs 
disassemble, protein synthesis is reactivated after the translation 
inhibition induced by the stress, and RBPs can either go 
back to the nucleus or remain in the cytoplasm to carry out 
their functions (Gilks et  al., 2004; Panas et  al., 2016).

The formation of these bodies occurs when stress conditions 
block translation initiation, by phosphorylating eIF2α or 
inactivating eIF4A (Mokas et  al., 2009). In general, this block 
induces sudden increase in non-polysomal mRNAs, masked 
by translating ribosome, that is free to interact with RBPs, 
such as TIA-1,TIA-R, and G3BP (Kedersha et al., 1999; Tourrière 
et al., 2003). These proteins interact with other proteins through 
specific domains, thus promoting SG formation (Protter and 
Parker, 2016). Phase transition can be  promoted and largely 
affected by post-translational modifications of SG-associated 
protein, such as methylation, phosphorylation, and glycosylation, 
that alter protein–protein interaction (Tourrière et  al., 2003; 
Ohn et  al., 2008; Nott et  al., 2015).

In general, SGs help cells to respond to adverse conditions, 
such as oxidative stress, heat shock, and DNA damage (Kedersha 
and Anderson, 2007; White and Lloyd, 2012). Upon DNA 
damage, Moutaoufik and colleagues observed that UV-induced 
SGs were smaller and less numerous than the SGs induced 
by other stressors, such as arsenite or heat treatment (Moutaoufik 
et  al., 2014). The cellular response to UVC irradiation involves 
several steps that allow cells to identify the damage and to 
repair the DNA. These processes include the surveillance of 
genome integrity, the recognition of damaged DNA, the activation 
of the DNA repair program, including cell signaling events 
and cell cycle arrest, thus allowing cells to repair the DNA 
before resuming proliferation (Polo and Jackson, 2011). Indeed, 
it has been shown that upon UV-induced DNA damage, SG 
assembly occurs in a cell cycle-dependent fashion (Pothof et al., 
2009), with cyclin A-positive S phase cells and γH2AX-positive 
cells negative for SG-specific staining (Pothof et  al., 2009). 
These studies demonstrate that SG formation occurs only in 
a time window of G2-M transition or after exit from mitosis. 
In fact, as cells prepare for cell division, most MLOs disassemble 
and then start to reassemble during the late stages of cytokinesis 
(Andrade et  al., 1993; Hernandez-Verdun et  al., 2002; Fox 
et al., 2005; Aizer et al., 2013). In particular, the kinase activity 
of DYRK3 plays an essential role during mitosis to prevent 
the formation of aberrant LLPS condensates composed by 
nuclear and cytoplasmic proteins and RNA, by keeping the 
condensation threshold of its substrates high (Rai et  al., 2018).

During stress, fluctuations in cytosolic pH can promote 
widespread condensate formation and a core group of nucleating 
RBPs is sufficient to initiate formation of the stress granule. 
For instance, in budding yeast, cells can enter into a quiescent 
state upon removal of nutrients that causes a shift in the 
cytosolic pH from 7.4 down to ~6.0. This increase in proton 
concentration triggers a phase transition; as soon as conditions 
improve, yeast fluidize the cytoplasm by using proton pumps 
and neutralizing the pH, thus restoring normal conditions 
(Munder et  al., 2016).

Collectively, phase separation offers a suitable architecture to 
regulate and compartmentalize biochemical processes inside cells.

Several MLOs form within the cell nucleus (Figure 1B). 
A typical example of MLO with liquid-like properties is the 
nucleolus that forms around ribosomal DNA loci in the cell 
nucleus (Shaw and Jordan, 1995; Brangwynne et  al., 2011). 
Nucleoli are RNA-protein compartments displaying a key role 
in the ribosome biogenesis (Andersen et  al., 2002). Taking 
advantage of the electron microscopy, it has been shown that 
this process occurs in three distinct sub-regions of the nucleolus, 
formed as a result of LLPS (Boisvert et al., 2007). The transcription 
of rDNA starts in the fibrillar centers sub-region, that is enriched 
in RNA polymerase I  (RNAPI). Then, this process continues 
in the dense fibrillar components sub-region, where also 
processing and modification of pre-rRNA transcripts occur. 
The assembly of the ribosome is accomplished in the granular 
components, enriched in proteins (Boisvert et  al., 2007). This 
organization into sub-compartments resembling a multi-layer 
structure has been found also in other liquid-like MLOs in 
the cell nucleus, including paraspeckles (Feric et  al., 2016).

Paraspeckles are nuclear bodies involved in the control of 
gene expression and DNA repair, and characterized by the 
presence of RBPs, including the Drosophila behavior/human 
splicing (DBHS) family of splicing proteins (the paraspeckle 
protein 1 PSPC1, RBM14, and NONO), FUS and TDP-43 
proteins (Fox et al., 2002). It has been shown that the formation 
of paraspeckles is driven by RNA, in particular by the long 
non-coding RNA (lncRNA) NEAT1 (Souquere et  al., 2010). 
Knockdown of NEAT1 leads to the disintegration of paraspeckles 
(Clemson et  al., 2009). Indeed, paraspeckles form their core 
around the central part of NEAT1, whereas the surrounding 
structures (the shell and the patch) form around its 5′ and 
3′ ends (Souquere et al., 2010). Interestingly, it has been shown 
that FUS localizes in the core, whereas TDP-43 concentrates 
in the shell (Hennig et  al., 2015). This different localization 
reflects distinct roles displayed by the two RBPs in paraspeckles 
formation. In Fus−/− mice, Neat1 accumulated at its transcription 
sites but did not form the core-shell structure; moreover, it 
was found diffused throughout the nucleoplasm (West et  al., 
2016). Interestingly, in Fus−/− mice, the core group proteins 
SFPQ, NONO, and PSPC1 accumulated at the Neat1 transcription 
sites, indicating that FUS protein was not essential for their 
association with Neat1. On the contrary, the patch protein 
BRG1 and RBM14 were not enriched at Neat1 transcription 
sites, indicating an essential role for FUS in stabilizing the 
interaction of these proteins with nascent Neat1 transcripts 
(West et al., 2016). On the other hand, TDP-43 downregulation 
induced the accumulation of NEAT1 transcripts and the formation 
of paraspeckles (Shelkovnikova et al., 2018). This accumulation 
was probably due to the protective role displayed by paraspeckles 
against defective miRNA pathway, caused by TDP-43 depletion 
(Shelkovnikova et  al., 2018).

Electron microscopy has allowed the identification of other 
MLOs in the nucleus, such as the Cajal body (Gall et  al., 
1999). Cajal bodies show a coiled structure and form on active 
snRNA loci (Frey and Matera, 2001). They share the same 
properties of other MLOs (Handwerger et al., 2003; Kato et al., 
2012). Their assembly is initiated by small nuclear RNAs 
(snRNAs), including small nucleolar RNAs (snoRNAs) and 
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small Cajal body-specific RNAs (scaRNAs), that interact with 
RBPs, which in turn recruit other proteins (Machyna et  al., 
2013). An essential aggregation factor of these structures is 
the protein coilin, which through its multi-modular domains 
gathers RBPs and RNAs, leading to the formation of Cajal 
bodies (Machyna et al., 2014). These bodies maintain structural 
integrity during interphase (Carmo-Fonseca et  al., 1993), and 
are implicated in the small nuclear ribonucleoprotein (snRNP) 
biogenesis, spliceosome formation, telomere maturation, and 
maintenance (Machyna et  al., 2013).

In addition to MLOs, a phase separation model has been 
recently proposed to explain basic mechanisms of the 
transcriptional regulation, such as super-enhancers (Hnisz 
et  al., 2017; Sabari et  al., 2018). Super-enhancers are clusters 
of transcriptional enhancers assembled by simultaneous binding 
of master transcription factors, transcriptional co-activators, 
RNAPII and RNA, that drive the expression of genes involved 
in defining cell identity (Whyte et  al., 2013). Many molecules 
bound at enhancer-regions can undergo reversible chemical 
modifications (e.g., acetylation, phosphorylation, methylation) 
at multiple sites. Upon such modifications, these molecules 
change their interactome, thus promoting changes in the overall 
charge and in the affinities of the interacting molecules, and 
obtaining a high-density assembly of biomolecules at active 
sites (Hnisz et  al., 2017; Sabari et  al., 2018). In this way, 
super-enhancers are susceptible to perturbation and their activity 
is fine-tuned by internal and external cues. During the process 
of tumor pathogenesis, chromosomal translocation or 
overexpression of oncogenic transcription factors favors the 
formation of super-enhancer at sites of oncogenes (Hanahan 
and Weinberg, 2011), thus driving aberrant gene expression 
programs. Phase separation can also be  promoted by proteins 
involved in the proteasome-degradation pathway (Li et  al., 
2014). In the case of the tumor suppressor SPOP (speckle-type 
POZ protein), involved in ubiquitination and proteasomal 
degradation of substrates (Li et  al., 2014), target proteins drive 
SPOP-mediated separation process, and when cancer-associated 
mutations of SPOP gene occur, substrate binding and phase 
separation are displaced (Bouchard et al., 2018). SPOP localizes 
in various nuclear bodies including speckles and DNA-damage 
loci (Nagai et al., 1997; Marzahn et al., 2016). Cancer mutations 
in SPOP negatively regulate the LLPS process between SPOP 
and substrates and prevent their ubiquitination, leading to 
upregulation of these proteins and impaired proteostasis 
(Bouchard et  al., 2018).

Thus, phase transitions in MLOs and at super-enhancers 
allow the accomplishment of gene expression programs both 
in healthy and diseased cellular states.

PHASE SEPARATION PROMOTED  
BY LOW-COMPLEXITY  
RNA-BINDING PROTEINS

A well-defined protein structure is essential to accomplish 
protein functions within the cell. However, many protein portions 
lack a well-defined structure still remaining functional. These 

segments are indicated as intrinsically disordered regions (IDRs) 
and proteins harboring them are named intrinsically disordered 
proteins (IDPs) (Li et al., 2012). Unlike globular proteins, IDPs 
use only a subset of the 20 amino acids, with low content of 
hydrophobic amino acids. To achieve phase separation, the 
exact amino acid sequence of IDPs is not important, while 
the overall composition and charge pattern are extremely 
relevant. Initially considered as passive segments linking 
structured domains, IDRs actively participate in different cellular 
functions, and their activity is fine-tuned by post-translational 
modifications (Iakoucheva et  al., 2004; Collins et  al., 2008).

In order to obtain the separation from nucleoplasm and 
cytoplasm, MLOs contain IDPs harboring low-sequence complexity 
domains (LCDs) (Gilks et  al., 2004; Han et  al., 2012; Kato 
et  al., 2012; Toretsky and Wright, 2014). These domains are 
also present in yeast prion proteins (Alberti et  al., 2009), from 
which the term “prion-like” is derived. Prions are infectious 
protein conformers capable of self-replication (Shorter and 
Lindquist, 2005). Prion-like domains (PrLDs) are a type of LCD 
with a tendency to self-assemble and form aggregates. Their 
ability to form amyloid is dependent on the PrLD rich in glycine 
and uncharged polar amino acids to reduce the solubility of 
the proteins (Alberti et al., 2009). Deletion of the prion domain 
precludes the formation of the prion conformer (Masison et al., 
1997), while the addition of this region to a given protein is 
sufficient to confer prion behavior (Li and Lindquist, 2000). 
Remarkably, mutations in PrLD-containing proteins cause 
devastating protein-misfolding diseases, characterized by the 
formation of solid aggregates (Kim et  al., 2013; Li et  al., 2013; 
Ramaswami et  al., 2013).

Proteins involved in RNA processing display high phase 
separation propensities (Vernon et  al., 2018). Indeed, as 
mentioned above, MLOs contain several RBPs harboring PrLDs. 
Remarkably, of the 240 human proteins harboring predicted 
PrLDs, 72 (30%) are involved in RNA metabolism (March 
et  al., 2016). These proteins are recently emerging in the 
pathology and genetics of human neurodegenerative diseases 
(King et  al., 2012).

ATXN1 and ATXN2 were the first RBPs with a putative 
PrLD to be  linked to the pathogenesis of neurodegenerative 
diseases, causing, respectively, the type 1 and type 2 spinocerebellar 
ataxia (Banfi et  al., 1994; Lorenzetti et  al., 1997), a 
neurodegenerative disorder characterized by an expansion of a 
trinucleotide CAG repeat within the coding region of the SCA1 
and SCA2 genes (Banfi et  al., 1994; Lorenzetti et  al., 1997). In 
physiological conditions, ATXN1 is located both in the nucleus 
and in the cytoplasm (Servadio et  al., 1995), and is able to 
shuttle between these two compartments. However, ATXN1 
dynamics is altered by the expansion; in fact, while mutated 
ATXN1 is still able to enter the nucleus, its ability to 
be  transported back into the cytoplasm is dramatically reduced 
(Irwin et al., 2005). On the contrary, ATXN2 is mainly localized 
into the cytoplasm, associated to translating polysomes or into 
stress granules and P-bodies, where it is involved in the regulation 
of translation, mRNA storage, or degradation (Orr, 2012).

Almost 10  years later, the transactive response (TAR) 
DNA-binding protein 43  kDa (TDP-43) was associated with 
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a neurodegenerative disease (Arai et  al., 2006; Neumann 
et  al., 2006). TDP-43 is a RBP containing a PrLD (amino 
acids 277–414, Figure 2), is localized in the cell nucleus, 
but shuttles to the cytoplasm displaying roles in transcriptional 
and post-transcriptional RNA processing (Buratti and Baralle, 
2008, 2010). TDP-43 misfolding has been connected to the 
pathology of ALS and frontotemporal lobar degeneration 
with ubiquitin-positive inclusions (FTLD-U) (Neumann et al., 
2006; Chen-Plotkin et  al., 2010; Da Cruz and Cleveland, 2011). 
In these disorders, TDP-43 displays a cytoplasmic localization 
and forms aggregates; moreover, it is depleted from the 
nucleus of diseased neurons (Chen-Plotkin et  al., 2010;  
Da Cruz and Cleveland, 2011).

The PrLD of FUS harbors amino acids 1–238 (Figure 2). 
Like TDP-43, FUS is mainly localized in the nucleus, but 
shuttles to accomplish functions in transcriptional and post-
transcriptional regulation, RNA processing, and miRNA 
biogenesis (Bertolotti et al., 1996; Zinszner et al., 1997; Paronetto, 
2013; Svetoni et  al., 2016). Mutations in FUS cause familial 
ALS (Kwiatkowski et  al., 2009; Vance et  al., 2009; Da Cruz 
and Cleveland, 2011) and FTLD-U (Neumann et  al., 2009; 
Mackenzie et  al., 2010; Da Cruz and Cleveland, 2011; Drepper 
and Sendtner, 2011; Svetoni et  al., 2016). In these pathologies, 
FUS is localized in cytoplasmic aggregates of the degenerating 
neurons (Mackenzie et  al., 2010). FUS belongs to the FET 
family of RBPs, composed by FUS/TLS, EWS, and TAF15, 
and involved in multiple steps of RNA metabolism (Svetoni 
et al., 2016). FET proteins share a common domain architecture 
(Paronetto, 2013). Upon inhibition of transcription (Zinszner 
et  al., 1997) or DNA damage (Paronetto et  al., 2011), they 
translocate into the nucleoli forming dense nuclease-resistant 
aggregates. In Ewing sarcoma, the replacement of the 
RNA-binding domains of FET proteins with an ETS transcription 
factor due to chromosomal translocations alters their nucleic 
acid-binding affinities and activities, thus causing activation 
of a transcriptional program leading to cancer transformation 
(Paronetto, 2013). As mentioned, in neurodegenerative diseases, 
point mutations in the genes encoding FET proteins affect 
their localization and aggregation propensity, strongly supporting 
the hypothesis that phase transition contributes to the 
development of pathological conditions (Svetoni et  al., 2016).

In 2011, mutations in the gene encoding TAF15 have been 
identified in ALS and FTLD-U patients (Couthouis et al., 2011; 
Neumann et  al., 2011; Ticozzi et  al., 2011). Interestingly, both 
TAF15 and EWS harbor a prominent N-terminal PrLD (amino 
acids 1–149  in TAF15; amino acids 1–280  in EWS; Figure 2) 
enriched in glutamine residues, which might enhance the 
formation of toxic oligomeric structures (Halfmann et al., 2011).

hnRNPA1 and hnRNPA2 are prototypical hnRNPs formed 
by two folded RNA recognition motifs (RRMs) in the N-terminal 
part of the protein and a PrLD in the C-terminal (amino 
acids 185–341 in hnRNPA2; amino acids 186–320 in hnRNPA1; 
Figure 2) (Kim et  al., 2013), involved in the interaction with 
TDP-43 (Buratti et  al., 2005). Missense mutations in the PrLD 
of hnRNPA1 and hnRNPA2 have been identified in ALS patients 
(Kim et  al., 2013). HnRNPA2 and hnRNPA1 are prone to 
fibrillization, which is enhanced by disease-causing mutations 

(Kim et al., 2013). Notably, hnRNPA2B1 and hnRNPA1 mutations 
have been identified in families presenting multisystem 
proteinopathy (MSP) (Benatar et al., 2013; Le Ber et al., 2014), 
a rare complex phenotype which involves perturbation of SG 
dynamics and autophagic protein degradation, affecting muscle, 
brain, and bone (Benatar et al., 2013). MSP phenotype associates 
different disorders, such as frontotemporal lobar degeneration 
(FTLD), Paget disease of bone (PDB), inclusion body myopathy 
(IBM), and ALS (Benatar et  al., 2013).

Aromatic residues play important roles in IDR interactions; 
they mediate short-range, aromatic interactions and promote 
LLPS, whereas hydrophilic residues control the solubility of 
IDRs and counteract LLPS (Kato et  al., 2012; Xiang et  al., 
2015). For instance, tyrosine mutations block recruitment of 
hnRNPA2 and FUS IDRs into phase-separated liquids as well 
as into RNA granules (Kato et  al., 2012; Xiang et  al., 2015). 
The numerous tyrosine residues in FUS contribute to LLPS, 
and their recruitment into LLPS is controlled by phosphorylation 
(Lin et  al., 2017). In fact, phosphorylation enables rapid 
transitions within the IDRs and controls the assembly/disassembly 
of the RNP granules (Lin et  al., 2017).

Electrostatically driven phase separation can be also promoted 
by the interaction of arginine/glycine-rich domains with RNA. 
The RGG/RG repeats, often present in RBPs, usually occur in 
LCD. Compared to sequences from ordered proteins, these IDRs 
typically exhibit high levels of a subset of specific amino acids, 
that promote phase separation on their own. In particular, the 
polyvalent interactions between arginines and RNA achieve the 
phase separation process (Romero et al., 2001). RGG-containing 
regions mediate RNA binding (Kiledjian and Dreyfuss, 1992) 
and can be  methylated by PRMTs (Bedford and Richard, 2005; 
Bedford and Clarke, 2009). Methylation is a post-transcriptional 
modification that negatively influences the capability of RBPs 
to bind RNA. For instance, methylation of the RGG/RG motif 
of FMRP reduces its affinity for RNA (Stetler et  al., 2006) and 
its recruitment on polysomes (Blackwell et al., 2010). Moreover, 
methylarginines within the RG motifs of the RBP Sam68 
negatively influence its affinity for the SH3 domains (Bedford 
et al., 2000). Arginine methylation also decreases the interaction 
of FUS with transportin, thus affecting its nuclear import 
(Dammer et  al., 2012). To this regard, methylation of the  
RGG/RG motifs affects the localization of FUS proteins  
harboring ALS-linked mutations (Tradewell et al., 2012). Notably, 
mutations in the RGG/RG domains of FUS have been  
identified in familial cases of ALS (Kwiatkowski et  al., 2009;  
Hoell et  al., 2011).

The presence of RGG/RG motifs within a given protein 
can be  regulated by alternative splicing choices (Blackwell and 
Ceman, 2011). For instance, isoform 12 of FMR1 excludes 
exons 12 and 14, thus leading to a truncated FMRP isoform 
defective of the RGG domain encoded by exon 15. This FMRP 
isoform displays reduced localization to dendritic RNA granules 
(Mazroui et  al., 2003; Blackwell and Ceman, 2011).

Chromosomal translocations between the EWSR1 gene and 
genes encoding ETS transcription factors can cause aggressive 
pediatric tumors designated as Ewing sarcomas (Araya et al., 2005; 
Paronetto, 2013). The translocations result in chimeric proteins 
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FIGURE 2 | Phase Separation by RBPs. (A) Schematic representation of protein domains of RBPs involved in FTD, ALS, and cancer. ATXN1 and ATXN2 contain 
two predicted prion-like domains (ATXN1: aa197–256; ATXN2: aa1131–1,223; March et al., 2016). The FET proteins FUS, EWS, and TAF15 combine two types of 
low-complexity domain (LCD): prion-like domains (PrLDs) and RGG-rich domains. The two types of LCDs cooperate to drive the dynamic phase separation. FET 
proteins are frequently translocated in human cancers, with the resulting fusion proteins (e.g. EWS-FLI1) lacking either significant parts of the RGG-rich LCD or the 
RNA recognition motif (RRM) but containing the DNA-binding domain (DBD) of an ETS transcription factor (e.g. FLI1). HNRNPA1 and HNRNPA2 combine two RRM 
motifs with a PrLD, together with an RG domain. TDP43 contains two RRM motifs and a PrLD. Protein domains are indicated in different colors (see legend). 
AXH = Ataxin-1 and HMG-box protein domain; Lsm = Like RNA splicing domain Sm1 and Sm2; LsmAD = Like-Sm-associated domain; PAM2 = poly (A)-binding 
protein interacting motif. The location of each protein domain and the association with human pathologies are indicated in (B). SCA1 = spinocerebellar ataxia type 1; 
SCA2 = spinocerebellar ataxia type 2; ALS = Amyotrophic Lateral Sclerosis; FTD = Frontotemporal Dementia.
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harboring the N-terminal activation domain of EWS, comprehending 
the PrLD, fused to the DNA-binding domain of an ETS transcription 
factor, but lacking the C-terminal domain of EWS containing 
the RNA-binding regions (the RGG motifs and the RRM motif; 
Figure 2). Notably, the RGG/RG motifs of EWS display an 
inhibitory activity toward the DNA activation domain, thus 
decreasing its oncogenic potential (Li and Lee, 2000). Interestingly, 
the translocated PrLD deriving from EWS promotes the aggregation 
of EWS-FLI1 in foci (Boulay et al., 2017). The presence of aromatic 
residues affects the aggregation propensity of EWS-FLI1. In fact, 
replacement of the 37 tyrosine residues with serines removes its 
ability to form aggregates, and this tyrosine-replaced variant is 
unable to assemble active enhancers (Boulay et  al., 2017). Since 
RNA helicases are extensively involved in phase separation dynamics 
(Nott et  al., 2015), it is possible that the interaction between 
EWS-FLI1 and the DNA–RNA helicase DHX9 plays an essential 
role in the formation of these aggregates; thus, blocking this 
interaction could be  a strategy to limit EWS-FLI1 oncogenic 
potential (Fidaleo et  al., 2016). Since the ability of the EWS-FLI1 
PrLD to phase separate is closely linked to its oncogenic activity, 
preventing or reverting phase separation properties could have 
therapeutic utility in Ewing sarcoma.

THERAPEUTIC APPROACHES

Phase separation displays a crucial role in neurodegenerative 
disorders. Several proteins involved in neurodegenerative 
diseases are components of MLOs and dysregulation in the 
formation or conservation of these components leads to 
pathological aggregates (Li et  al., 2013; Ramaswami et  al., 
2013). Therefore, the development of novel therapeutic strategies 
to control cellular phase transition could be  instrumental for 
the treatment of those human diseases characterized by aberrant 
aggregates (Figure 3).

In addition to RBPs, several ALS mutations have been 
identified in genes encoding members of the protein quality 
control system (PQC), including chaperones, components of 
the ubiquitin/proteasome, or autophagolysosomal system 
(Robberecht and Philips, 2013; Capponi et  al., 2016; Alberti 
et al., 2017). These systems display a crucial role in the control 
of protein aggregation. Chaperones recognize SGs containing 
misfolded aggregated proteins (Mateju et  al., 2017). When a 
specific chaperone mechanism is compromised, misfolded 
proteins and defective ribosomal products accumulate into SGs, 
thus altering SG dynamics and causing defects in SG disassembly 
(Ganassi et  al., 2016). Ganassi and collaborators identified the 
HSPB8-BAG3-HSP70 chaperone complex as a key regulator 
of SG surveillance. The incidence of aberrant defective ribosomal 
products-containing SGs in normal conditions is very low, 
suggesting that the PQC is highly efficient in preventing aberrant 
SG formation (Ganassi et  al., 2016). On the same line, Mateju 
and collaborators demonstrated that SGs containing 
ALS-associated SOD1 aggregates engage increased number of 
chaperones, including HSP27 and HSP70, suggesting their 
specific enrollment to avoid aberrant SGs (Mateju et al., 2017). 

Treatment with a chemical inhibitor of HSP70 increases the 
number of SGs containing misfolded proteins, suggesting that 
HSP70 hampers the accumulation of misfolded proteins and 
facilitates a rapid disassembly of SGs in the recovery phase 
(Mateju et  al., 2017). Thus, surveillance of SGs by chaperones 
is critical for the maintenance of their normal composition 
and dynamics, and the stimulation of the chaperone machinery 
could be  a useful target to disassemble MLOs. In this context, 
the development of potentiated chaperones could also be  a 
suitable approach to optimize therapeutic efficacy against 
neurodegenerative diseases (Shorter, 2008; Jackrel et  al., 2014; 
Yasuda et  al., 2017). To this regard, Jackrel and collaborators 
were able to potentiate HSP104 variants from yeast (Jackrel 
et  al., 2014; Jackrel and Shorter, 2014). In particular, the 
developed enhanced chaperone was able to revert TDP-43 and 
FUS aggregation, thus suppressing their toxicity and eliminating 
protein aggregates in yeast (Jackrel et  al., 2014; Jackrel and 
Shorter, 2014). Moreover, Yasuda and collaborators demonstrated 
for the first time that engineered HSP104 variants are able to 
dissolve cytoplasmic ALS-linked FUS aggregates in mammalian 
cells (Yasuda et  al., 2017).

Another approach to stimulate the chaperone machinery is 
to develop drugs able to upregulate the expression levels of heat 
shock proteins (HSPs). Arimoclomol (BRX-345) is a hydroxylamine 
derivative that facilitates the formation of chaperone molecules 
by enhancing the expression of heat shock genes (Vigh et  al., 
1997, Kieran et al., 2004). Arimoclomol treatment in SOD1G93A 
mice was shown to upregulate HSP70 and HSP90 expression, 
leading to a significant delay in the progression of the disease 
(Kieran et  al., 2004). Remarkably, a phase II/III randomized, 
double-blind, placebo-controlled clinical trial is currently underway 
in familial SOD1-ALS patients (NCT00706147). Furthermore, 
arimoclomol treatment has been shown to induce a reduction 
in the pathological markers in vitro and amelioration of pathological 
and functional deficits in vivo of the sporadic inclusion body 
myositis (sIBM), a severe myopathy characterized by protein 
dys-homeostasis (Ahmed et  al., 2016).

Since the disruption of the ubiquitin-proteasome-system and 
autophagy are central events in ALS, current research is now 
focusing on the development of drugs able to upregulate the 
signaling pathways involved in PQC (Barmada et  al., 2014). 
For instance, new compounds stimulating autophagy are able 
to improve TDP-43 clearance and localization, thus mitigating 
neurodegeneration (Barmada et  al., 2014). Stimulation of 
autophagy also enhances survival of human-induced pluripotent 
stem cells (iPSC)-derived neurons and astrocytes from patients 
with familial ALS (Barmada et  al., 2014). Furthermore, great 
effort has recently been devoted to improving HSPB8 function 
and to promote the autophagy-mediated removal of misfolded 
mutant SOD1 and TDP-43 fragments from ALS motor neurons. 
To this regard, colchicine treatment enhances the expression 
of HSPB8 and of several autophagy players, while blocking 
TDP-43 accumulation in neurons (Rusmini et al., 2017). Based 
on these premises, a phase II randomized, double-blind, placebo-
controlled, multicenter clinical trial has been activated to test 
the efficacy of colchicine in ALS (NCT03693781).
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Recently, Guo and collaborators showed the relevance of 
nuclear-import receptors (NIRs) in the disaggregation of disease-
linked RBPs with a nuclear localization signal (NLS) (Guo et al., 
2018). The binding of Karyopherin-β2, also named transportin-1, 
to the PY-NLSs is sufficient to revert FUS, TAF15, EWS, hnRNPA1, 
and hnRNPA2 fibrillization, while Importin-α, in complex with 
Karyopherin-β1, reverts TDP-43 fibrillization (Guo et  al., 2018). 
Karyopherin-β2 avoids the aberrant accumulation of RBPs 
containing PY-NLSs into the SGs and re-establishes proper RBP 
nuclear localization and function, thus rescuing the degeneration 
caused by mutated FUS and hnRNPA2 (Guo et al., 2018). Thus, 
NIRs might contribute to the setup of novel therapeutic strategies 
to restore RBP homeostasis and moderate neurodegeneration.

Recent evidences highlight the role of specific kinases in 
the regulation of the dissolution of SGs and other MLOs. For 
instance, during recovery from stressful conditions, the kinase 
activity of DYRK3 is required for SG dissolution and restoration 
of mTORC1 activity (Wippich et al., 2013). DYRK3 binds MLO 
proteins and phosphorylates their LCDs (Wippich et al., 2013), 
thus affecting the electrostatic properties of these domains and 
the condensation threshold of the proteins harboring them 
(Rai et  al., 2018). Importantly, DYRK3 has been shown to act 
as a dissolvase of liquid-unmixed compartments (Rai et  al., 
2018). In fact, upon overexpression, recombinant DYRK3 was 
able to dissolve MLOs both in the nucleus and in the cytoplasm 
in a kinase-activity-dependent fashion (Rai et al., 2018). Similar 
to DYRK3, Casein kinase 2 (CK2) was recently found to cause 
SG disassembly via phosphorylation of the SG nucleating protein 

G3BP1 (Reineke et  al., 2017). Thus, identification of kinases, 
such as DYRK3 and CK2, able to modulate MLO dissolution 
and/or drugs that regulate their functions may represent another 
interesting therapeutic approach (Figure 3).

Finally, a suitable approach to downregulate key regulators 
involved in aberrant phase transitions is the use of antisense 
oligonucleotides (ASOs). ASOs can be used to target pathological 
proteins in different mouse models (Schoch and Miller, 2017). 
In case of essential proteins, ASO-strategy could be engineered 
to target non-essential partners, involved in the regulation of 
phase transition (Boeynaems et  al., 2018). This is the case of 
TDP-43 and ataxin-2. Ataxin-2 is an RBP with multiple roles 
in RNA metabolism, such as regulation of SG assembly (Elden 
et  al., 2010; Kaehler et  al., 2012). Reduction of ataxin-2 by 
ASOs affects SG dynamics and decreases recruitment of TDP-43 
to SGs (Becker et  al., 2017). A single administration of ASOs 
targeting ataxin-2 into the central nervous system is sufficient 
to increase the lifespan and improve motor function of TDP-43 
transgenic mice (Becker et  al., 2017). Since alterations in 
TDP-43 have been found in 97% of ALS cases and about 
50% of FTD cases (Ling et al., 2013), the reduction of ataxin-2 
could be  used as therapeutic strategy for ALS and FTD 
treatment (Wils et  al., 2010).

To conclude, the stimulation of chaperone machinery, the 
induction of pathways triggering PQC, and the development 
of ASOs could be exploited to set up novel therapeutic approaches 
for the treatment of those human diseases characterized by 
aberrant phase transition aggregates.

FIGURE 3 | Schematic representation of stress granule (SG) dynamics. Upon stress condition, SGs assemble; RNA and proteins accumulate in these granules until 
the stress persists. After removal of the stress condition, SGs disassemble, protein synthesis is reactivated after the translation inhibition induced by the stress, and 
RBPs can either go back to the nucleus or remain in the cytoplasm, where they carry out their normal functions. Misfolded proteins can accumulate in SGs, thus 
altering their physical properties. To prevent the accumulation of misfolded proteins, therapeutic strategies, such as chaperones, potentiated chaperones, protein 
kinases (e.g., DYRK3), nuclear import receptors, and ASOs, can be engineered to induce SG disassembly. If the disassembly does not occur, SGs become aberrant 
and can promote the pathogenesis of neurodegenerative disorders. Finally, aberrant SGs can undergo disassembly by chaperones, potentiated chaperones, or 
kinases, and, if not repaired, they undergo degradation by autophagy.
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CONCLUDING REMARKS

Membrane-less subcellular organization plays a pivotal role 
in cellular homeostasis. LCDs, including PrLDs and RGG 
domains, behave as general scaffolds in assisting MLO’s activity 
and mediating the dynamics of RNP granules. Persistence of 
RNP granules caused by either failure of granule removal, 
mutated PrLD-containing RBPs, or granule-associated misfolded 
proteins can lead to pathological protein aggregates, that 
contribute, at least in part, to the pathogenesis of 
neurodegenerative diseases. At the same time, chromosomal 
translocation can promote the formation of aberrant chimeric 
proteins formed by PrLD fused to transcription factors; these 
translocated PrLDs promote phase separation and activate 
transcriptional programs driving transformation (Boulay et al., 
2017). On the other hand, disruption of membrane-less 
organization by mutations in the tumor suppressor SPOP can 
cause solid tumors (Bouchard et  al., 2018).

Given the relevance to human health, determining how LCD 
proteins organize cellular compartments could be  instrumental 
to expand our understanding of compartment formation, thus 

providing significant insight into neurodegenerative pathologies 
and cancer. Recent studies document how pernicious misfolding 
can be reversed by protein disaggregases (Shorter, 2008; Torrente 
and Shorter, 2013; Jackrel and Shorter, 2015), opening the 
path to novel promising therapeutic applications both in cancer 
treatment and in the cure of neurodegenerative disease. Yet, 
the exact MLO dynamics has not been completely unraveled, 
neither in physiological or pathological conditions.
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