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Coronavirus disease 2019 (COVID-19) has evolved into an established global pandemic.
Metabolomic studies in COVID-19 patients is worth exploring for further available
screening methods. In our study, we recruited a study cohort of 350 subjects
comprising 248 COVID-19 patients (161 non-severe cases, 60 asymptomatic cases,
and 27 severe cases) and 102 healthy controls (HCs), and herein present data with
respect to their demographic features, urinary metabolome, immunological indices, and
follow-up health status. We found that COVID-19 resulted in alterations of 39 urinary,
mainly microbial, metabolites. Using random forest analysis, a simplified marker panel
including three microbial metabolites (oxoglutaric acid, indoxyl, and phenylacetamide) was
constructed (AUC=0.963, 95% CI, 0.930-0.983), which exhibited higher diagnostic
performance than immune feature-based panels between COVID-19 and HC groups
(P<0.0001). Meanwhile, we observed that urine metabolic markers enabled discriminating
asymptomatic patients (ASY) from HCs (AUC = 0.981, 95% CI, 0.946-0.996), and
predicting the incidence of high-risk sequalae in COVID-19 individuals (AUC=0.931,
95% CI, 0.877-0.966). Co-expression network analysis showed that 13 urinary
microbial metabolites (e.g., oxoglutaric acid) were significantly correlated with
alterations of CD4+, CD3+, and CD8+ T-cells, as well as IFN-g, IL-2 and IL-4 levels,
suggesting close interactions between microbial metabolites and host immune
dysregulation in COVID-19. Taken together, our findings indicate that urinary
metabolites may have promising potential for screening of COVID-19 in different
application scenarios, and provide a new entry point to understand the microbial
metabolites and related immune dysfunction in COVID-19.

Keywords: COVID-19, urinary microbial metabolites, immune dysfunction, diagnostic performance, high-risk
sequelae COVID-19, high-risk sequelae
org March 2022 | Volume 13 | Article 8417391

https://www.frontiersin.org/articles/10.3389/fimmu.2022.841739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841739/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841739/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yaokaichen@hotmail.com
mailto:jwu@hospital.cqmu.edu.cn
https://doi.org/10.3389/fimmu.2022.841739
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.841739
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.841739&domain=pdf&date_stamp=2022-03-29


GRAPHICAL ABSTRACT | We characterise the alterations and functions of urinary microbiome-associated metabolites, and highlight the reciprocal interaction of
urinary metabolomics, immune dysregulation, and physical and psychiatric sequelae in different severity of COVID-19 patients.

Jing et al. Urinary Microbial Metabolites in COVID-19
INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has been
designated as a global pandemic, and a public health emergency
of international concern (1). With worldwide implementation of
SARS-CoV-2 RNA detection, mandatory lockdowns, and
vaccines against COVID-19 (2), the COVID-19 outbreaks in
some countries have been gradually alleviated. However, due to
the currently poor understanding of the underlying pathogenic
mechanisms of SARS-CoV-2 infection (3), unavailability of
sensitive detection technologies in developing countries (4),
and evolution of variant SARS-CoV-2 strains, the international
community remains in a struggle to control the COVID-19
pandemic which may long-term co-exist with humans.
Frontiers in Immunology | www.frontiersin.org 2
Emerging evidence has shown significant microbial dysbiosis
in COVID-19 infection (5, 6). For example, Ren et.al., observed
that the butyrate-producing bacterial genera, Porphyromonas
and Fusobacterium, are significantly depleted in COVID-19
patients, accompanied by altered lipidomic metabolism (7). 
Furthermore, SARS-CoV-2 infection is associated with
significant changes of T-cells and cytokines, which could
compromise host immune homeostasis and stability of the
microbial communities residing in the human gut (8).
Particularly, some ubiquitous fungi, such as Aspergillus, have
the potential to cause a variety of pulmonary and respiratory
symptoms following COVID-19 (5). Microbial dysbiosis may
also be a sequela of COVID-19. Yeoh et.al., demonstrated that
gut microbiota composition in recovered patients remained
significantly altered compared with non-COVID-19 individuals
March 2022 | Volume 13 | Article 841739
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(9). Recent studies have reported that COVID-19 survivors are at
an increased risk of physical and psychiatric sequelae (10). The
principal long-term consequences in survivors of COVID-19 are
post-traumatic stress disorder (PTSD) (11), depression (12), and
anosmia/hyposmia (13). As COVID-19 heals, accompanying
sequelae are more likely to be ignored. The large numbers of
patients being discharged from hospital with incomplete
resolution of psychiatric and physical symptoms have the
potential to result in serious and persisting social problems.
Many disease-associated metabolites are excreted in urine, thus
affording urine the ability to reflect metabolic alterations in
disease (14). Compared with other methods, urine testing is
economical, convenient, and non-invasive, and is thus a readily-
available source to detect biomarkers for diagnosis and prognosis
(15). In addition, microbial metabolites in the host’s circulatory
system accumulates in urine, and urinary metabolomic analysis
provides a snapshot of host microbial metabolism in COVID-19.
Given that the microbiome mainly regulates host metabolism
and the immune pathway, it is necessary to simultaneously
characterize how microbiome-associated metabolism and host
immune signatures change, and to further explore their
interactions in relation to physical and psychiatric sequelae at
different severities of COVID-19.

To address the above-mentioned knowledge gaps in the
pathogenesis of COVID-19, in this study, we established a
study cohort of 350 subjects, which included healthy controls
(HCs, n=102) and COVID-19 patients of varying severity
(n=248, 161 non-severe cases, 60 asymptomatic cases, and 27
severe cases). We firstly characterized the variety of urinary
metabolites, T-cell/cytokine levels, and the physical and
psychiatric sequelae of COVID-19, and their reciprocal
interactions at the different disease severities, to reveal how
these disturbed signatures affect host symptoms. Furthermore,
using the random forest model, we also selected potential
biomarkers from the specific urine microbial metabolites and
subsequently constructed three simplified urine marker panels,
which exhibited potential in differentiating COVID-19 cases
from HCs, asymptomatic patients (ASY) from HCs, and in
predicting the incidence of the high-risk sequelae of physical
and psychiatric disorders in recovered COVID-19 patients.
METHODS

Clinical Definitions
A diagnosis of COVID-19 was confirmed by lung CT scan and
RT-PCR assay, and determined by self-report on the baseline
questionnaire of a diagnosis according to Chinese Clinical
Guidance (16).

Clinical classification was defined based on the COVID-19
diagnosis and treatment plan (5th edition) developed by the
National Health Commission of the People’s Republic of China.
RT-PCR of all COVID-19 patients were positive. The groups of
different COVID-19 patients were tested according to the following
guidelines: 1) Asymptomatic infection: SARS-CoV-2 virus nucleic
acid or specific antibody positive but without any respiratory or
Frontiers in Immunology | www.frontiersin.org 3
systematic symptoms; 2) Mild infection: mild symptoms without
pneumonia; 3) Moderate infection: fever or respiratory tract
symptoms with pneumonia; 4) Severe infection (meeting any of
the following criteria): (1) respiratory distress (respiratory rate ≥ 30
times/min), (2) oxygen saturation ≤93% at rest, (3) arterial partial
pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2)
≤300mmHg; 5) Critical infection (fulfill any of the following
three criteria): respiratory failure and requirement for mechanical
ventilation; presence of shock; admission to ICU with other (other
than respiratory) organ failure (17).

Recruited Subjects
A total of 248 SARS-CoV-2-infected patients, including 161 non-
severe patients (including both mild and moderate patients), 60
asymptomatic patients, and 27 severe patients (including severe
and critical patients) (Table 1) were enrolled in this study. The
102 sex and age-matched healthy individuals were used as the
HC group: 40 female, 62 male, the median age was 41.0 years old.
No demographic differences were observed between HC group
and COVID-19 group (sex: P=0.125, Chi-squared test; age:
P=0.952, Student’s t-test). Cross-sectional urine and blood
samples from 248 COVID-19 patients were collected from
Chongqing Public Health Medical Center. Urine and blood
samples were collected from 102 HCs who visited the
Chongqing Public Health Medical Center for regular health
examination. Healthy controls did not take any medications
that could influence the immune system, nor had any illnesses.

Follow-Up Visit
In our study, the follow-up visit was set via telephone by trained
medical staff. If the follow-up appointment was missed, the
patient was given three opportunities to reschedule their visit.
151 participants were enrolled for questionnaire interview over
the telephone at six months after hospital discharge. All follow-
up participants completed a series of questionnaires, including
the Chinese-version general anxiety disorder scale questionnaire
(GAD-7), the patient health questionnaire (PHQ-9), and the
post-traumatic stress disorder (PTSD) questionnaire (The PTSD
Checklist-Civilian Version, PCL-C). Scores were considered to
be in the pathological range when higher than generally accepted
standard cutoff scores were obtained [GAD-7≥10 (18); PHQ-
9≥10 (19); PCL-C≥38 (20)].

Cytokine Measurement and T-Lymphocyte
Subset Measurement
Cytokines were quantified in plasma samples from 151 COVID-
19 patients and 100 HCs. The concentrations of 7 cytokines (IL-
2, IL-4, IL-6, IL-10, TNF-a, IFN-g, and IL-17A) were measured
via human th1/th2 cytokine detection kits (Jiangxi Cellgene
Biotech) in a flow cytometer (GWZX-SYS-HIV-15, BD FACS-
Canto II) following the manufacturer ’s instructions
(Supplementary Data 1). The T-lymphocyte subset functional
and surface markers (CD3+ T-cells, CD4+ T-cells, and CD8+ T-
cells) were tested in blood samples from 227 COVID-19 patients
and 102 HCs. The measurement was conducted in a flow
cytometer (GWZX-SYS-HIV-15, BD FACS-Canto II) with
CD4-FITC/CD8-PE/CD3-PerCP detection kits (Tianjin
March 2022 | Volume 13 | Article 841739
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TABLE 1 | Baseline characteristics of the recruited COVID-19 patients.

Healthy controls (n = 102) All patients (n = 248) Non-severe patients (n = 161) Asymptomatic patients (n = 60) Severe patients (n = 27)

Age group,
years

41.0 (20.0-82.0) 45.0 (2.0-86.0) 46.0 (2.0-86.0) 39.0 (5.0-68.0) 51.0 (34.0-77.0)

Sex
Male 62 (60.8%) 127 (51.2%) 79 (49.1%) 32 (53.3%) 16 (59.3%)
Female 40 (39.2%) 121 (48.8%) 82 (50.9%) 28 (46.7%) 11 (40.7%)
Ethnicity
Han 247 (99.6%) 161 (100.0%) 59 (98.3%) 27 (100%)
Non-Han 1 (0.4%) 0 (0.0%) 1 (1.7%) 0 (0.0%)
Marital status
Married 194 (78.2%) 129 (80.1%) 40 (66.7%) 25 (92.6%)
Divorced 7 (2.8%) 4 (2.5%) 3 (5.0%) 0 (0.0%)
Widowed 4 (1.6%) 1 (0.6%) 2 (3.3%) 1 (3.7%)
Unmarried 43 (17.3%) 27 (16.8%) 15 (25.0%) 1 (3.7%)
Cigarette smoking
Current smoker 36 (14.5%) 23 (14.3%) 10 (16.7%) 3 (11.1%)
Never-smoker 209 (84.3%) 137 (85.1%) 48 (80.0%) 24 (88.9%)
Former smoker 3 (1.2%) 1 (0.6%) 2 (3.3%) 0 (0.0%)
Contact history in the epidemic area
Yes 59 (23.8%) 35 (21.7%) 13 (21.7%) 11 (40.7%)
No 189 (76.2%) 126 (78.3%) 47 (78.3%) 16 (59.3%)
Known contact with an individual with COVID-19 in the past 5 months
Yes 127 (51.2%) 103 (64.0%) 13 (21.7%) 11 (40.7%)
No 121 (48.8%) 58 (36.0%) 47 (78.3%) 16 (59.3%)
Underlying disease
Diabetes
Yes 16 (6.5%) 11 (6.8%) 1 (1.7%) 4 (14.8%)
No 232 (93.5%) 150 (93.2%) 59 (98.3%) 23 (85.2%)
Hypertension
Yes 25 (10.1%) 18 (11.2%) 4 (6.7%) 3 (11.1%)
No 223 (89.9%) 143 (88.8%) 56 (93.3%) 24 (88.9%)
Hyperlipidemia
Yes 3 (1.2%) 1 (0.6%) 2 (3.3%) 0 (0.0%)
No 245 (98.8%) 160 (99.4%) 58 (96.7%) 27 (100.0%)
Bacterial pneumonia
Yes 4 (1.6%) 1 (0.6%) 0 (0.0%) 3 (11.1%)
No 244 (98.4%) 160 (99.4%) 60 (100.0%) 24 (88.9%)
Symptoms
Fever
Yes 103 (41.5%) 80 (49.7%) 2 (3.3%) 21 (77.8%)
No 145 (58.5%) 81 (50.3%) 58 (96.7%) 6 (22.2%)
Asthenia
Yes 40 (16.1%) 24 (14.9%) 2 (3.3%) 14 (51.9%)
No 208 (83.9%) 137 (85.1%) 58 (96.7%) 13 (48.1%)
Cough
Yes 106 (42.7%) 79 (49.1%) 5 (8.3%) 22 (81.5%)
No 142 (57.3%) 82 (50.9%) 55 (91.7%) 5 (18.5%)
Dyspnea
Yes 5 (2.0%) 3 (1.9%) 0 (0.0%) 2 (7.4%)
No 240 (96.8%) 158 (98.1%) 57 (95.0%) 25 (92.6%)
No record 3 (1.2%) 0 (0.0%) 3 (5.0%) 0 (0.0%)
Headache
Yes 19 (7.7%) 14 (8.7%) 0 (0.0%) 5 (18.5%)
No 224 (90.3%) 147 (91.3%) 55 (91.7%) 22 (81.5%)
No record 5 (2.0%) 0 (0.0%) 5 (8.3%) 0 (0.0%)
Nausea
Yes 7 (2.8%) 4 (2.5%) 2 (3.3%) 1 (3.7%)
No 240 (96.8%) 157 (97.5%) 57 (95.0%) 26 (96.3%)
No record 1 (0.4%) 0 (0.0%) 1 (1.7%) 0 (0.0%)
Vomiting
Yes 2 (0.8%) 0 (0.0%) 1 (1.7%) 1 (3.7%)
No 243 (98.0%) 161 (100.0%) 56 (93.3%) 26 (96.3%)
No record 3 (1.2%) 0 (0.0%) 3 (5.0%) 0 (0.0%)
Palpitations

(Continued)
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Quanto Biotech), following the manufacturer’s instructions
(Supplementary Data 2).

Urine Sample Preparation
for Metabolomics
All urine samples from COVID-19 patients and HCs were
confirmed to be negative for SARS-CoV-2 by RT-PCR
(Supplementary Data 3). Human urine samples were inactivated
and sterilized at 56°C for 30 min, and processed with some
modifications. 150µl of urine from each human urine sample,
450µl of methanol-chloroform mixture solution (volume ratio of
methanol and chloroform was 1:2) and 10µl of internal standard
solution (0.3mg/ml 2-cl-phe, methanol as solvent) were added and
homogenized via vigorous vortex for 1 min. The suspension was
cooled, placed for 2 h at -20°C, and then centrifuged at 10000 rpm at
4°C, for 10 min. 150µl of the supernatant was collected for UPLC-
Q-TOF/MS and stored at -80°C, until analysis. Equal aliquots of the
supernatant from each metabolite sample (10µl) were pooled
together to make the quality control (QC) samples.

Ultra-Performance Liquid
Chromatography/Time-of-Flight Mass
Spectrometry Analysis
Metabolite samples were analyzed via UPLC-Q-TOF/MS analysis,
carried on a Waters I-Class Acquity UPLC (Waters, UK) coupled
with a Vion IMS QToF (Waters, UK) using a BEH amide column
(100mm × 2.1mm, 1.7µm) (Waters, UK) for HILIC separation.
The mobile phase A was 10mM ammonium formate in water, and
the mobile phase B was acetonitrile and 10mM ammonium
formate in water (volume ratio of acetonitrile and water was
95:5). Metabolites were separated via gradient elution under the
following conditions: 0.0 min, 92% B; 0.5 min, 92% B; 5.0 min,
80% B; 9.0 min, 70% B; 10.0 min, 50% B; 11.0 min, 20% B; 12.0
min, 20% B; 12.5 min, 92% B; 15.0 min, 92% B; The flow rate was
0.4mL/min. A total of 2µl was injected onto the column and the
column was kept at 45°C. The heated electrospray ionization
(HESI) MS was operated in both positive and negative modes.

The instrument parameters were as follows: heater temp, 350°C;
sheath gas flow rate, 50arb; aux gas flow rate, 15arb; spray voltage,
3.2KV (positive mode) and 2.8KV (negative mode); capillary temp,
320°C; S-Lens RF level, 50%; MS1 scan ranges, 67-1000. Full scan
resolution, 70000; MS/MS resolution, 17500.
Frontiers in Immunology | www.frontiersin.org 5
Metabolomic Analysis
Baseline filter, peak identification, integration, retention time
correction, peak alignment, and normalization were performed
by the metabolomics processing software of the instrument,
Progenesis QI (Waters Corporation), using raw data to obtain
a data matrix with retention time, mass-to-charge ratio, and peak
intensity. The accurately identified molecules were further
annotated through the KEGG database for metabolic pathways.
To analyze the biological functions, the online software
MetaboAnalyst 5.0 was utilized. The online database, Ingenuity
Pathway Analysis (IPA), Version 13.0, was used to provide
disease-related information of metabolites.

The normalized metabolites data matrix was imported into
the SIMCA-P+ 14.0 software package (Umetrics, Umea, Sweden)
for unsupervised principal components analysis (PCA), to
observe the overall sample distribution and the stability of the
analysis process. Then, the supervised (orthogonal) partial least
square method, (O) PLS-DA, was used to distinguish overall
metabolic profile differences and to identify metabolite
differences between groups. Variables with variable importance
in projection (VIP) scores greater than 1 were considered
differential variables. To prevent the model overfitting, the
quality of the model was investigated using seven interactive
verification cycles and 200 response sequencing tests. To adjust
the contribution of comorbidities (hypertension and diabetes),
additional statistical analyses were performed excluding the
patients with hypertension or diabetes. The metabolites were
excluded when it became unsignificant in comparison between
non-comorbid patients and HC.

Establishment of the Urine Metabolite
Marker Panel
A random forest classifier (Python’s scikit-learn package) was used
to identify metabolites with potential predictive value, to generate
the classification models, and to evaluate the performance of
predictor panels (21, 22). The receiver operating characteristic
(ROC) curve was obtained (MedCalc V19) for the display of the
constructed models, then the area under the curve (AUC) was used
to designate the ROC effect. Moreover, the screening efficacy of
potential biomarkers for presence in COVID-19 patients was
assessed with the misdiagnosis rate, the missed diagnosis rate,
and the Youden Index (YI) (23). All the screening models were
TABLE 1 | Continued

Healthy controls (n = 102) All patients (n = 248) Non-severe patients (n = 161) Asymptomatic patients (n = 60) Severe patients (n = 27)

Yes 1 (0.4%) 0 (0.0%) 0 (0.0%) 1 (3.7%)
No 244 (98.4%) 161 (100.0%) 57 (95.0%) 26 (96.3%)
No record 3 (1.2%) 0 (0.0%) 3 (5.0%) 0 (0.0%)
Chest tightness
Yes 10 (4.0%) 6 (3.7%) 2 (3.3%) 2 (7.4%)
No 233 (94.0%) 155 (96.3%) 53 (88.3%) 25 (92.6%)
No record 5 (2.0%) 0 (0.0%) 5 (8.3%) 0 (0.0%)
Diarrhea
Yes 17 (6.9%) 15 (9.3%) 0 (0.0%) 2 (7.4%)
No 231 (93.1%) 146 (90.7%) 60 (100.0%) 25 (92.6%)
March 2022 | Vo
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tested using five-fold cross validation as internal validations. To
adjust the contribution of comorbidities (hypertension and
diabetes), additional statistics were performed excluding the
patients with hypertension or diabetes. The metabolites were
excluded when it became unsignificant in comparation between
no-comorbidity patients and HC.

Weighted Gene Co-Expression
Network Analysis
WGCNA was used to identify key phenotype-related urine
metabolic modules based on correlation patterns. WGCNA was
performed using an R software package for WGCNA, along with
official tutorials (https://horvath.genetics.ucla.edu). All urine
metabolites were integrated into a scale-free network topology
using ‘step-by-step network construction’, with default parameters
(24). Associations between COVID-19 phenotypes (disease
subgroup, T-cell levels, cytokines, and follow-up depression/anxiety
symptoms) and modules were calculated with Pearson correlation
coefficients. The modules that significantly (FDR < 0.05, adjusted by
age and sex) associated with at least one COVID-19 phenotype were
identified as potential phenotype-driven modules. The filtered
modules and corresponding phenotypes were included into a co-
occurrence network, and spontaneously clustered using an edge-
weighted, spring-embedded layout.

Statistical Analysis
The difference of the first or second principal component (PC1 or
PC2) in PCA was tested using the Wilcoxon rank-sum test. PCA,
PLS-DA, and OPLS-DA were performed in SIMCA-P+ (V14.0).
The random forest classifier was used to construct and evaluate
the screening marker panel, which was performed on Python with
the scikit-learn package, and graphed with own scripts. The
calculation and comparison of the ROC were done in MedCalc
(V19). The misdiagnosis rate, the missed diagnosis rate, and the
Youden Index were analyzed on R studio (V4.0), with own
scripts. The differences of CD4+% and CD8+% were analyzed
using Student’s t-test for two groups and one-way ANOVA with
Dunnett’s test for three groups, because they met the assumptions
of normality of distribution and homogeneity of variance prior to
analysis. Other T-cells and cytokines were analyzed via the non-
parametric Mann-Whitney U test. The differences of T-cells and
cytokines were analyzed in SPSS (V22.0). WGCNA was
performed in R studio (V4.0) with the ‘WGCNA’ package. The
correlations between metabolomic modules and phenotypes were
checked using the partial correlation, and corrected by age and
sex in SPSS. The FDR correction was conducted in R studio with
own scripts. The networks were constructed and analyzed in
Cytoscape (V3.7). Bar plots and heatmaps were generated using
Graphpad Prism (V9.0).
RESULTS

The Clinical Characteristics of
Recruited Subjects
The main demographic and clinical characteristics of COVID-19
participants are summarized in Table 1. Our primary cohort
Frontiers in Immunology | www.frontiersin.org 6
comprised 248 patients diagnosed with COVID-19, and 102
HCs. The median age of the enrolled participants was 45.0 (2.0-
86.0) years old, with 127 (51.2%) men and 121 (48.8%) women.
59 (23.8%) participants had a contact history in an epidemic
area, and 127 (51.2%) had a known contact with someone with a
confirmed COVID-19 diagnosis in the preceding 5 months. The
most common comorbidity was hypertension (25 patients,
10.1%), followed by diabetes (16 patients, 6.5%), and bacterial
pneumonia (4 patients, 1.6%). Cough (106 patients, 42.7%), fever
(103 patients, 41.5%), and asthenia (40 patients, 16.1%) were
common symptoms at the onset of COVID-19.

The Prevalence of Physical and
Psychiatric Disorders in Discharged
COVID-19 Patients
In this follow-up study, the physical and psychiatric symptoms of
recovered patients with COVID-19 were estimated using the
GAD-7, PHQ-9, and PCL-C questionnaires. As shown in
Table 2, 10.6% of patients (16/151) scored at or above the
clinical cut-off of 38 on the PCL-C, which indicates the
presence of probable PTSD. 4.0% of patients (6/151) and 3.3%
of patients (5/151) in their responses to the PHQ-9 and GAD-7
questionnaires, respectively, were diagnosed as having
depression and generalized anxiety disorder. Intriguingly, no
significant difference was observed in the risk of development of
PTSD, depression, and generalized anxiety disorder among the
three subgroups of severe, non-severe, and asymptomatic
individuals (all p>0.05, Table 2). The most common physical
and psychiatric symptoms in the recovered subjects with
COVID-19 were ‘discrimination’ (43.0%, 65/151), ‘flashback
memories’ (37.7%, 57/151), and ‘avoidance’ (37.1%, 56/151,
Table 2). The proportion of patients with a feeling of
‘discrimination’ from others was 48.4% (46/95) in the non-
severe subgroup, 27.8% (10/36) in the asymptomatic subgroup,
and 45.0% (9/20) in the severe subgroup; the proportion of
patients with ‘flashback memories’ was 38.9% (37/95) in the non-
severe subgroup, 36.1% (13/36) in the asymptomatic subgroup,
and 35.0% (7/20) in the severe subgroup; The proportion of
patients with a feeling of ‘avoidance’ was 41.1% (39/95) in the
non-severe subgroup, 30.6% (11/36) in the asymptomatic
subgroup, and 30.0% (6/20) in the severe subgroup. The most
common clinical symptoms which persisted after hospital
discharge were ‘insomnia’ (31.1%, 47/151), ‘fatigue for no
reason’ (22.5%, 34/151), and ‘memory deterioration’ (15.9%,
24/151, Table 2). These results demonstrate that physical and
psychiatric symptoms should be identified and addressed in the
COVID-19 epidemic era.

The Risk of Physical and Psychiatric
Symptoms Was Higher in the Symptomatic
Than in the Asymptomatic Group
Based on the physical and psychiatric symptoms found in our
follow-up study, we then compared the effects of different disease
severity with risk of development of these disorders, and
screened for high-risk factors. We evaluated whether specific
clinical symptoms of COVID-19 during hospitalization would
March 2022 | Volume 13 | Article 841739
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TABLE 2 | Major follow-up outcomes for the recruited COVID-19 patients.

n-severe Symptomatic vs
asymptomatic

P-value OR (95% Cl) P-value

) 0.08 1.23 (0.54 - 2.81) 0.70

) 0.08 0.82 (0.36 - 1.84) 0.70

) 0.70 1.40 (0.35 - 8.12) 0.76

1.00 2.54 (0.54 - 24.01) 0.36

) 1.00 1.61 (0.32 - 15.88) 0.73

) 0.81 2.37 (1.00 - 6.03) 0.04*

) 0.81 1.10 (0.47 - 2.61) 0.85

0.45 1.46 (0.62 - 3.62) 0.43

) 0.56 0.83 (0.33 - 2.28) 0.66

) 0.56 1.32 (0.46 - 4.32) 0.64

) 0.36 1.04 (0.38 - 3.16) 1.00

) 0.24 5.17 (1.19 - 47.3) 0.02*

0.74 0.77 (0.27 - 2.40) 0.61

) 1.00 1.15 (0.37 - 4.29) 1.00

) 0.52 1.58 (0.47 - 6.86) 0.60

) 0.73 0.87 (0.29 - 2.94) 0.79

) 0.75 2.30 (0.62 - 12.89) 0.29

) 0.19 1.48 (0.44 - 6.46) 0.60

) 0.72 1.65 (0.43 - 9.41) 0.57

) 0.12 1.52 (0.39 - 8.76) 0.76

) 0.12 1.97 (0.41 - 19.03) 0.52

) 0.70 4.43 (0.62 - 194.75) 0.19

) 1.00 0.71 (0.15 - 4.52) 0.70

) 0.60 1.1 (0.20 - 11.36) 1.00

0.59 0.77 (0.12 - 8.48) 0.67

) 0.61 1.79 (0.71 - 4.98) 0.22

) 0.08 1.27 (0.47 - 3.82) 0.82

) 0.13 Undef (2.21 - Undef) 0.0011**

) 0.46 2.54 (0.54 - 24.01) 0.36

) 0.69 1.79 (0.36 - 17.44) 0.73

) 1.00 1.61 (0.32 - 15.88) 0.73

) 0.19 1.44 (0.28 - 14.34) 1.00

) 1.00 0 (0.13 - Undef) 1.00

) 0.44 0 (0.13 - Undef) 1.00
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All patients (n = 151) Non-severe patients (n = 95) Asymptomatic patients (n = 36) Severe patients (n = 20) Severe vs n

OR (95% Cl)

Sex

Women 73 (48.3%) 51 (53.7%) 16 (44.4%) 6 (30.0%) 0.37 (0.11 - 1.14

Men 78 (51.7%) 44 (46.3%) 20 (55.6%) 14 (70.0%) 2.68 (0.88 - 9.27

PTSD (Post-discharge) 16 (10.6%) 10 (10.5%) 3 (8.3%) 3 (15.0%) 1.49 (0.24 - 6.68

PHQ-9 (Post-discharge) 6 (4.0%) 5 (5.3%) 1 (2.8%) 0 (0.0%) 0.7 (0.07 - 3.55

GAD-7 (Post-discharge) 5 (3.3%) 4 (4.2%) 1 (2.8%) 0 (0.0%) 0.51 (0.01 - 4.05

Sequela (psychiatric symptoms)
Discrimination 65 (43.0%) 46 (48.4%) 10 (27.8%) 9 (45.0%) 0.87 (0.29 - 2.56

Flashback memories 57 (37.7%) 37 (38.9%) 13 (36.1%) 7 (35.0%) 0.85 (0.26 - 2.54

Avoidance 56 (37.1%) 39 (41.1%) 11 (30.6%) 6 (30.0%) 0.62 (0.18 - 1.9

Overly defensive 34 (22.5%) 22 (23.2%) 9 (25.0%) 3 (15.0%) 0.59 (0.10 - 2.32

Irritability 30 (19.9%) 21 (22.1%) 6 (16.7%) 3 (15.0%) 0.62 (0.11 - 2.47

Be worried about everything 30 (19.9%) 21 (22.1%) 7 (19.4%) 2 (10.0%) 0.39 (0.04 - 1.87

Apathy 29 (19.2%) 20 (21.1%) 2 (5.6%) 7 (35.0%) 2.01 (0.60 - 6.32

The scene recalls past memories 25 (16.6%) 16 (16.8%) 7 (19.4%) 2 (10.0%) 0.55 (0.06 - 2.7

Anxiety 23 (15.2%) 15 (15.8%) 5 (13.9%) 3 (15.0%) 0.94 (0.16 - 3.89

Fear of uncertainty 23 (15.2%) 17 (17.9%) 4 (11.1%) 2 (10.0table%) 0.51 (0.05 - 2.49

Self-neglect 23 (15.2%) 15 (15.8%) 6 (16.7%) 2 (10.0%) 0.59 (0.06 - 2.94

Attention deficit disorder 23 (15.2%) 16 (16.8%) 3 (8.3%) 4 (20.0%) 1.23 (0.26 - 4.56

Hopelessness 22 (14.6%) 17 (17.9%) 4 (11.1%) 1 (5.0%) 0.24 (0.01 - 1.76

Easily frightened 18 (11.9%) 12 (12.6%) 3 (8.3%) 3 (15.0%) 1.22 (0.20 - 5.23

Down-hearted and blue 17 (11.3%) 14 (14.7%) 3 (8.3%) 0 (0.0%) 0.00 (0.00 - 1.36

Nervous 14 (9.3%) 12 (12.6%) 2 (5.6%) 0 (0.0%) 0.00 (0.00 - 1.65

Fright and panic 14 (9.3%) 10 (10.5%) 1 (2.8%) 3 (15.0%) 1.49 (0.24 - 6.68

Mania 10 (6.6%) 6 (6.3%) 3 (8.3%) 1 (5.0%) 0.78 (0.02 - 7.05

Change of interests 9 (6.0%) 7 (7.4%) 2 (5.6%) 0 (0.0%) 0.00 (0.00 - 3.33

Suicidality or self-mutilation 7 (4.6%) 5 (5.3%) 2 (5.6%) 0 (0.0%) 0.00 (0.00 - 5.3

Sequela (physical symptoms)
Insomnia 47 (31.1%) 31 (32.6%) 8 (22.2%) 8 (40.0%) 1.37 (0.44 - 4.10

Fatigue for no reason 34 (22.5%) 19 (20.0%) 7 (19.4%) 8 (40.0%) 2.64 (0.82 - 8.25

Memory deterioration 24 (15.9%) 17(17.9%) 0 (0.0%) 7 (35.0%) 2.45 (0.72 - 7.87

Hyposmia or hypogeusia 17 (11.3%) 14 (14.7%) 2 (5.6%) 1(5.0%) 0.31 (0.01 - 2.27

Bradykinesia 13 (8.6%) 10 (10.5%) 2 (5.6%) 1 (5.0%) 0.45 (0.01 - 3.52

Limb numbness and weakness 12 (7.9%) 9 (9.5%) 2 (5.6%) 1(5.0%) 0.51 (0.01 - 4.05

Dysorexia 11 (7.3%) 6 (6.3%) 2 (5.6%) 3 (15.0%) 2.59 (0.38 - 13.6

Diminution of vision and hearing 3 (2.0%) 3 (3.2%) 0 (0.0%) 0 (0.0%) 0.00 (0.00 - 11.7

Arthrodynia 3 (2.0%) 2 (2.1%) 0 (0.0%) 1 (5.0%) 2.42 (0.04 - 48.7

Data are n (%), unless otherwise specified. OR, odds ratio; 95% CI, confidence interval; Undef, undefined or incalculable value.
*P < 0.05, **P < 0.01.
Statistically significant results were highlighted in bold.
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Jing et al. Urinary Microbial Metabolites in COVID-19
increase the risk of development or persistence of symptoms
after hospital discharge. Utilizing Fisher’s exact test, we
calculated the risk of 32 physical and psychiatric symptoms in
the symptomatic and the asymptomatic groups, and in severe
and non-severe patients, and assumed that clinical symptoms
during hospitalization would not increase the risk of
Frontiers in Immunology | www.frontiersin.org 8
development of disorders after hospital discharge (Table 2).
The risk of the perception of ‘discrimination’ among
participants within the symptomatic group was higher than
that in the asymptomatic subgroup (OR 2.37, 95% CI 1.00–
6.03, P = 0.04). Compared with the asymptomatic group,
symptomatic patients were more prone to feel ‘apathy’ from
A

D

B

E F

C

FIGURE 1 | Urinary metabolomic profiling of COVID-19 patients and HCs. The PCA (A), PLS-DA (B) and OPLS-DA (C) showing significant differences of overall
metabolomic signatures between COVID-19 patients (red dots) and HCs (blue dots). The projection of COVID-19 patients and HCs were significantly different in the
top two components (P = 1.97E-3 and 2.2E-16, respectively, Kruskal-Wallis rank sum test , **P < 0.01, *** P < 0.001). (D) Using double cut-off (results were
considered statistically significant if P < 0.05 and VIP > 1.0), 40 differential metabolites responsible for discriminating COVID-19 patients and HCs were identified. (E)
The functional assignment of different urine metabolites. 32.5% of differential metabolites (13/40) belonged to gut microbiota associated metabolites, in which we
found 5 tryptophan metabolites. (F) Circos plot showing the shared altered metabolites between COVID-19 and other related diseases. Ingenuity Pathway Analysis
(IPA) 13.0 was used to provide disease-related information of metabolites. (n = 102, HCs; n = 248, COVID-19).
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others (OR 5.17, 95% CI 1.19–47.3, P=0.02). The proportion of
patients with a feeling of ‘apathy’ from others was 35.0% (7/20)
for severe patients, 21.1% (20/95) for non-severe patients, and
5.6% (2/36) for asymptomatic patients. The risk of presenting
with ‘memory deterioration’ was significantly higher in
symptomatic patients than in asymptomatic patients (no
occurrence in asymptomatic patients, OR thus not calculated,
95% CI 2.21–undefined or incalculable value, P=0.0011);
However, no significant difference in risk of ‘memory
deterioration’ was observed for participants among the severe
and the non-severe subgroups (OR 2.45, 95% CI 0.72–7.87,
P=0.13). The proportion of patients with ‘memory
deterioration’ was 35.0% (7/20) in the severe subgroup, 17.9%
(17/95) in the non-severe subgroup, and 0.0% (0/36) in the
asymptomatic subgroup. Briefly, we only observed significant
differences in the risks of ‘discrimination’, ‘apathy’, and ‘memory
deterioration’ between symptomatic and asymptomatic patients,
while there were no significant mathematical differences when
we compared the presence of these risks in the severe and non-
severe subgroups (all P > 0.05, Table 2). Overall, the high-risk
disorders that emerged at different disease severity, especially in
symptomatic patients, indicates that targeted approaches to
management of specific cohorts of COVID-19 patients
are required.
Frontiers in Immunology | www.frontiersin.org 9
COVID-19 Patients Have Significant
Alterations in Urine Metabolism
We profiled urine samples from 102 HCs and 248 COVID-19
patients via UPLC-Q-TOF/MS, for determining metabolic
perturbations associated with SARS-CoV-2 infection
(Supplementary Data 4). A total of 775 metabolites were
identified among all samples. Multivariate statistical
approaches, including PCA, PLS-DA, and OPLS-DA were used
to evaluate overall metabolomic signatures. We found that the
urine metabolic signatures of patients with COVID-19 were
significantly different than those in HCs (Figures 1A–C).
Using the double cut-off method (results were considered
statist ical ly s ignificant if P<0.05 and VIP>1.0) , 39
discriminating metabolites were identified between the two
groups (Supplementary Table 1). As shown in Figure 1D,
there were 13 upregulated and 26 downregulated metabolites
present in the urine of COVID-19 patients relative to HCs. We
annotated the biofunction of these different metabolites through
the KEGG database. Interestingly, a high proportion of
metabolites were uniquely linked with bacterial metabolism in
the intestinal tract (33.3%, 13/39; ko01120, ‘microbiome-
associated metabolism’). In particular, 12.8% (5/39) of
metabolites were from the ‘tryptophan metabolism pathway’
(ko00380) (Figure 1E).
A B

C

FIGURE 2 | Immunological indices profiling and the correlation network with altered metabolites and psychiatric questionnaire scores. (A) The analyses of T-cells in
COVID-19 patients and HCs (n = 102, HCs; n = 227, COVID-19). (B) Cytokine levels in COVID-19 patients and HCs (n = 100, HCs; n = 151, COVID-19). *P < 0.05;
***P < 0.001, Mann-Whitney U test (CD4+%, CD8+%, Student’s t-test). (C) The T-cells, cytokines (orange square), and psychiatric questionnaire scores (pink
diamond) significantly correlated with altered urine metabolites (deep blue and grey blue indicated the microbial metabolites and other metabolites). The color of line
indicates the Pearson correlation coefficient (blue to red, -0.32 to 0.37).
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Based on these differential expressions of urinary metabolites,
we further explored the similarity between SARS-CoV-2
infection and other known diseases. By IPA analyses, we found
that the altered urine metabolites in COVID-19 patients were
mainly enriched in ‘inflammatory response’, ‘neurological
disease’, and ‘organismal injury’ and ‘abnormalities’ disease
catalogs. ‘Inflammation’ and ‘encephalomyelitis’ were the two
markedly enriched diseases (P=7.67E-4, 2.89E-5), suggesting the
Frontiers in Immunology | www.frontiersin.org 10
similar metabolic alterations between COVID-19 and
inflammatory diseases (Figure 1F and Supplementary
Figure 1A). N-acetyl-L-aspartic acid, 2-oxoglutaric acid, and
another eight metabolites were identified as the prevalent
disease-associated metabolites (Supplementary Figure 1B).
Similar to COVID-19, the inflammatory diseases shared
metabolites were also mainly annotated into microbiome-
associated metabolism.
A

C

B

FIGURE 3 | The potential for urinary metabolite markers to discriminate COVID-19 patients with HCs. (A) The ROCs of the urine metabolite markers panel (blue line),
the T-cell panel (blue dashed line) and the cytokine panel (yellow dashed line). (B) Comparison of the AUC of ROCs among the three marker panels. The AUC of the
urine metabolite marker panel (0.963, 95% CI, 0.930-0.983) was significantly higher than that of the other two panels (0.823, 0.799, respectively; MedCalc; ***P <
0.001). (C) Confusion matrix to assess model performance. Using the random forest classifier, the urine metabolite model showed better identification performance,
with a lower misdiagnosis rate (12.75% vs. 58.82% and 39.00%, respectively), missed diagnosis rate (0.81% vs. 7.05% and 13.25%, respectively) and a higher
Youden index (YI) (0.82 vs. 0.34 and 0.48, respectively) compared with the other two models. The color depth (from white to black) of the matrix box indicates the
prediction accuracy. atrue-positive; bfalse-positive; cfalse-negative; dtrue-negative. Misdiagnosis rate (%) = b/(b+d)×100%; Missed diagnosis rate (%) = c/(a+c)×100%;
Youden index (YI) = a/(a+c)+d/(b+d)-1.
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Altered Metabolites Significantly
Associated With Immune Dysregulation
Past studies have demonstrated that COVID-19 infections may
result in a so-called ‘cytokine storm’, with subsequent immune
dysregulation, which may result in rapid progression of COVID-
19, and alteration of metabolism. In our study, we also assessed
T-cells and cytokine levels in our cohort. Consistent with the
results observed in recent past studies, COVID-19 infections in
our cohort exhibited a marked decrease in CD3+ T-cell and
CD8+ T-cell counts, and CD8+ T-cell proportion, compared to
these indices in HCs. However, in comparison to HCs, the
percentage of CD4+ T-cells, the CD3++CD4++CD8+/CD3+
Frontiers in Immunology | www.frontiersin.org 11
ratio, and the CD4+/CD8+ ratio showed progressive increase in
COVID-19 patients (Figure 2A). In addition, cytokines in
COVID-19 patients, including IFN-g, IL-2, and IL-4 were
observed to decrease compared to levels in HCs (Figure 2B).
CD4+ T-cells and CD3+ T-cells are critical for anti-viral defense,
and increase the ability of CD8+ T cells to eliminate the SARS-
CoV-2 virus (25, 26), which is vital for the elimination of infected
cells and for mediating viral clearance. Our data thus highlights
the commonly occurring inflammatory responses and immune
dysregulation in COVID-19 patients.

To explore potential interactions between altered urine
metabolites and inflammatory indices in COVID-19 patients,
C

A B

D E

H I

F G

FIGURE 4 | The metabolomic and immune features related to the severity of COVID-19. (A, B) The PCA showed significantly different metabolomic signatures
between asymptomatic (ASY, n = 60, green dots), symptomatic patients with COVID-19 (SYM, n = 188, red dots) and HCs (n = 102, blue dots). (C) 38 and 41
different metabolites were identified through comparison between ASY/HC (green circle) and ASY/SYM (blue circle), respectively. There were 13 shared altered
metabolites between ASY/HC and ASY/SYM. (D) The ROC of the urine metabolite marker panel for distinguishing ASY from HC (AUC = 0.981, 95% CI, 0.946-
0.996). (E) Confusion matrix to evaluate the urine metabolite classifier. (F, G) Three psychiatric and physical symptoms were highly risky to occur in SYMs after
discharge. Using urinary metabolites, a diagnostic marker panel to predict the occurrence of the unfavorable symptoms was identified (AUC = 0.931, 95% CI, 0.877-
0.966). (H) T-cell analysis of ASY, SYM and HCs. (I) Cytokine levels in ASY, SYM and HCs. *P < 0.05; ***P < 0.001, Mann-Whitney U test (CD4+%, CD8+%, one-
way ANOVA with Dunnett’s test).
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we constructed co-occurrence networks of urine metabolites, T-
cells, cytokine levels and psychiatric sequelae. Overall, immune
markers formed strong co-occurring relationships with urine
microbial metabolites (Figure 2C and Supplementary Data 5).
Within this co-expression network, we found that except for
CD4+ T-cell count, all of the T-cell markers (T-cell count,
percent, ratio) were negatively or positively correlated with ten
urine microbial metabolites in COVID-19. Notably, in all T-cell
markers, we found that the CD8+ T-cell count was the specific
indicator that was highly linked with the most urine metabolites
(23/39). 39.13% (9/23) of CD8+ T-cell related metabolites were
assigned to microbiome-associated metabolism, including seven
positively correlated microbial metabolites (trimethylamine N-
oxide [TMAO], 2-phenylacetamide, indoleacetic acid, indoxyl
sulfate, oxoglutaric acid, n-acetylserotonin, indoxyl) and two
negatively correlated microbial metabolites (sulfate and gluconic
acid). Unsurprisingly, these urine metabolites are also mainly
recognized in inflammatory responses (Supplementary Figure 1).
In addition, IL-4 was positively correlated with oxoglutaric acid
and IL-2 was positively correlated with xanthine; IL-6 was
negatively correlated with 2-phenylacetamide, indoxyl and 2-
hydroxybenzaldehyde. Furthermore, two urine microbial
metabolites (oxoglutaric acid, gluconic acid) were also linked to
psychiatric sequelae (PTSD, GAD-7, PHQ-9).

Urinary Metabolomic Biomarkers Showed
Promising Screening Potential In
SARS-COV-2 Infection
We subsequently evaluated whether urinary metabolites could be
used as potential screening biomarkers for COVID-19. We
employed the 39 discriminating metabolites and quantified their
potential predictive abilities for COVID-19 clinical diagnosis via a
random forest classifier. After iterations and optimizations, we
identified a simplified urinemarker panel (M1) comprising of only
3 microbial metabolites (oxoglutaric acid, indoxyl, and 2-
phenylacetamide), which could efficiently identify and
differentiate COVID-19 from HCs (AUC=0.963, 95% CI, 0.930-
0.983, accuracy=0.957, Figure 3A). Meanwhile, we further
established a T-cell marker panel (including all 7 T-cell indices)
and a cytokine marker panel (including all 7 cytokine indices)
using the same workflow. By comparison of ROCs among the
three panels, we found that M1 exhibited a superior screening
efficacy (AUC=0.963 vs. 0.823 and 0.799, respectively, P<0.0001,
Figures 3A, B) and far smaller marker panel size (3 vs.7 and 7,
respectively, Figure 3C) than the other two immune marker
panels for COVID-19 diagnosis. In addition, we calculated the
confusion matrix and assessment parameters for each marker
panel. Compared with the cytokine panel and the T-cell panel, M1
was characterized by excellent performance (misdiagnosis rate:
12.75% vs. 39.00% and 58.82%, respectively; missed diagnosis rate:
0.81% vs. 13.25% and 7.05%, respectively; Youden Index (YI): 0.82
vs. 0.48 and 0.34, respectively, Figure 3C).

Discrimination of asymptomatic (ASY) patients from HCs is
challenging in epidemic prevention and control. Here, we
evaluated whether urine metabolites can be used as potential
screening biomarkers for ASY patients. We compared the
Frontiers in Immunology | www.frontiersin.org 12
urinary metabolomic signatures of ASY patients with that in
HCs via PCA, and found a significant difference in the second
dimension of the PCA result (P=5.03e-13, Figure 4A). Using the
double cut-off method (P<0.05 and VI>1.0), we first identified 37
different metabolites among ASY patients and HCs
(Supplementary Table 2). Based on these metabolites, a
simplified marker panel (M2) including 3 urinary metabolites
(hypoxanthine, uric acid, dihydro-5-pentyl-2(3H)-furanone)
was constructed, which had the ability to discriminate between
the ASY patients and HCs. Using the random forest classifier,
M2 showed good performance, and the area under the ROC
curve was 0.981 (95% CI, 0.946-0.996, accuracy=0.901,
Figure 4D), the misdiagnosis rate, the missed diagnosis rate,
and the Youden Index was 5.88%, 16.67%, and 0.77, respectively
(Figure 4E and Supplementary Table 3A). Thus, these urinary
metabolic biomarkers demonstrated substantial potential for the
diagnosis of SARS-CoV-2 infection.

Metabolomic and Immune Features
Related to the Severity of COVID-19
We subsequently analyzed the metabolomic and immune
features in the subgroups having different COVID-19 severity.
Through PCA (Figure 4B), it was observed that urinary
metabolomic signatures were significantly different between
symptomatic patients (severe plus non-severe patients, SYM)
and ASY patients. Using similar double cut-off standards as used
above, we identified 41 different urine metabolites
(Supplementary Table 4). Compared with the different
expression of urinary metabolites, we found only 13
metabolites that were common between ASY/HCs and ASY/
SYM, less than the specific differences between the two
subgroups (Figure 4C). Based on T-cell analysis among SYM,
ASY, and HC, we found that CD4+% and CD4+/CD8+ ratio was
significantly increased, and that CD8+% was decreased in both
SYM and ASY (Figure 4H). Nevertheless, as compared with the
ASY group, the absolute counts of CD3+ T-cells, CD4+ T-cells,
and CD8+ T-cells were significantly decreased in SYM
(Figure 4H). Thus, the functional responses of T-cells to the
SARS-CoV-2 virus in COVID-19 patients correlate with disease
severity, and these T-cell reactions in the SYM group were more
pronounced. Moreover, cytokine levels in COVID-19 patients
are also related to disease severity. Cytokine profiling indicates
that the levels of TNF-a and IL-4 in ASY were higher than SYM
(Figure 4I). Overall, our data identified salient features of
immunological dysregulation in COVID-19 patients,
suggesting impaired host T-cell function with SARS-CoV-
2 infection.

Urinary Metabolic Biomarkers
Showed Prognostic Potential for
Psychiatric Symptoms
For the three high-risk physical and psychiatric symptoms
(‘discrimination’, ‘apathy’, and ‘memory deterioration’) that
may occur in COVID-19 patients after hospital discharge, we
attempted to predict the possibility of their future occurrence
through the identification of specific urinary metabolites. We
March 2022 | Volume 13 | Article 841739
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constructed a screening panel (M3), which included 7 urine
metabolites, based on the 41 different metabolites between SYM
and ASY. Using the random forest classifier, M3 was found to
efficiently predict the occurrence of high-risk disorders
(AUC=0.931, 95% CI, 0.877-0.966, accuracy=0.846,
Figures 4F, G and Supplementary Table 3B).
Frontiers in Immunology | www.frontiersin.org 13
Urinary Metabolic Modules Associated
With COVID-19 Symptoms and
Microbial Metabolites
In order to understand the relationship between COVID-19
clinical phenotypes and urine metabolism, we employed
WGCNA, and identified phenotype-associated metabolic
A

C

B

FIGURE 5 | WGCNA of urinary metabolites. (A) The correlation heatmap of urinary metabolic modules and COVID-19 phenotypes, including severity, T-cells,
cytokines, in-hospital symptoms, and discharged symptoms (from top to bottom). The significance of correlation was corrected for the confounders of age and sex,
and adjusted by the false discovery rate (FDR). *P < 0.05; **P < 0.01, Pearson correlation. (B) Metabolites in the phenotype-associated modules were mainly involved
in amino acid, microbial, and nucleotide metabolism. (C) Network of phenotype-driven modules of COVID-19. Driven modules and phenotypes were included and
spontaneously clustered using an edge-weighted spring-embedded layout. Severity and Mgreen were located centrally in the network, surrounded with physical
symptoms, and immune features and their corresponding modules.
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modules. Among the 775 identified urinary metabolites, 460
were clustered into 9 modules and stratified by color; 315
metabolites that did not cluster into any of the modules were
retained in the Mgrey (Supplementary Figure 2). Metabolites
in each module are presented in Supplementary Data 4.
The heatmap in Figure 5A presents 5 metabolic modules that
significantly correlate with 5 COVID-19 phenotypes after FDR-
correction (FDR<0.05, Pearson correlation, Supplementary
Data 6). Three modules (Mgreen positively, Mblack and Mred
negatively) correlated with COVID-19 severity. Three modules
correlated with T-cell and cytokine results: Mgreen positively,
and Mred negatively correlated with CD3+ T-cell and CD4+ T-
cell counts, and Mblue positively correlated with IL-4 levels. In
addition, one module (Mbrown) was identified to positively
correlate with the incidence of mental health symptoms.
Subsequently, we analyzed the components of the 5 modules,
and incorporated these metabolites as well as corresponding
phenotypes into a co-occurrence network. Filtered modules and
phenotypes were included and spontaneously clustered using an
edge-weighted spring-embedded layout (Figure 5C). Severity
and Mgreen spontaneously located centrally in the network,
surrounded by physical symptoms and immune features, and
their corresponding modules, suggesting associations of severity
to other phenotypic and metabolic modules. The KEGG
metabolism annotation of these metabolic modules showed
that the metabolites mainly involved amino acid and microbial
related metabolism (Figure 5B). Mbrown, the only prognostic-
associated metabolic module, provided the most amino acid
and microbial related metabolites (32.2% and 34.9%,
respectively, Figure 5B).
DISCUSSION

In this study, we recruited a COVID-19 patient cohort with
varying disease severity, and a corresponding cohort of HCs. We
firstly found that altered urinary microbial metabolites were a
hallmark of COVID-19 patients. Based on microbial associated
metabolites, we established simple but efficient urinary
metabolite screening models for different application scenarios:
M1 was able to distinguish COVID-19 from HCs; M2 sensitively
identifies asymptomatic SARS-CoV-2-infected cases; M3 can
predict the risk of development of physical and psychiatric
disorders in recovered COVID-19 patients. We observed that
clinical severity of COVID-19 was also related to physical and
psychiatric sequelae after hospital discharge. We found that
microbial metabolites involved various inflammatory processes
in which the CD8+ T-cell count was the key metabolite-related
indicator. Using WGCNA on urine metabolism, we attempted to
discover the associations between inflammation and host
metabolism in SARS-CoV-2 infection, and found that
microbial tryptophan metabolism may be the key modulating
pathway. These observations demonstrate the promising
potential of urinary metabolites in both screening and the
study of pathogenesis in COVID-19.
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Disease-related molecules in circulation can be released into
urine, making urine a readily-available source to detect
biomarkers for diagnosis and prognosis (27). In recent years,
metabolomics and machine learning has driven the widespread
discovery and use of urine-based biomarkers. Wang et al.,
employed 15 specific urinary metabolites to construct a
diagnostic model for discriminating gestational diabetes
mellitus from healthy populations (28). Gisewhite et al.,
proposed altered urine metabolites as biomarkers to predict the
stage of acute kidney injury (AKI), and of mortality, in cases of
acute kidney injury (29). In our study, we sought to identify
potential urinary biomarkers in COVID-19 patients. Here, we
established a simplified urine marker panel (M1), containing
three urine microbial metabolites, for the screening of COVID-
19. Also, compared with symptomatic patients, asymptomatic
patients have a significantly longer duration of viral shedding,
and exhibit lower levels of virus-specific antibody in the early
infective phase (30). Thus, an appropriate screening strategy to
identify asymptomatic or pre-symptomatically-infected
individual remains important. We further developed an
independent marker panel (M2) for identifying asymptomatic
COVID-19 cases using urine metabolites. Using urine
metabolites to discriminate different severity grades of
COVID-19 showed three main advantages in comparison to
that of other markers: firstly, a significantly higher diagnostic
efficiency; secondly, the non-invasive sample collection method
can increase compliance of the studied population during the
screening process; and finally, the simplified panel size can
significantly reduce costs, and achieve wide application.
Importantly, the urinary markers that we used may be
separated or quantified through relatively simple biochemical
methods, which makes it possible to thus conduct widespread
COVID-19 screening in underdeveloped regions, where PCR-
based testing may be unavailable or other appropriate laboratory
infrastructure for immunological diagnostic studies may
be lacking.

SARS-CoV-2 infection causes a transition from a stable to an
unstable microbial community state, which creates a
microbiome-associated metabolic fingerprint for COVID-19.
Microbial metabolites are released into the urine, resulting in a
readily-available sample source that reflects changes resulting
from systemic pathophysiology. By annotating the source and
function, we found that the altered urinary metabolites were
primarily from microbiome-associated metabolism (33.3%) and
the tryptophan metabolism pathway (12.8%). These findings
suggest that microbiome-associated metabolism changes may
reflect disturbances of microbiota composition in COVID-19
patients. Recently published literature has explained alterations
in microbial metabolism in SARS-CoV-2 infection as a
dysregulation of the gut-brain-lung axis (31). Many researchers
have attempted to construct diagnostic models based on plasma
metabolites and the oral microbiome for COVID-19 diagnosis
(7, 32–34). Because of a possible transmission of SARS-CoV-2 by
the fecal-oral route, urine is safer and more appropriate for
diagnosis than feces.
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Damage to the neuropsychiatric system in COVID-19 is
presumed to be attributable to the occurrence of the cytokine
storm syndrome (CSS) in the central nervous system (CNS) (35).
After symptoms of the acute viral infection are controlled,
chronic inflammation in neurons or glial cells may persist
without efficient intervention (10). The results of the GAD-7,
PHQ-9 and PCL-C questionnaires in our follow-up further
revealed a high risk of physical and psychiatric sequelae in
COVID-19 patients. Some studies have reported that the
urinary metabolome can reflect neurotransmitter metabolism
and CNS inflammation, and also has been shown to be useful in
the diagnosis of mental disorders, including depression, bipolar
disorder, and schizophrenia (36, 37). We observed that three
physical and psychiatric symptoms were calculated to be more
strongly associated with symptomatic cases than with
asymptomatic cases after hospital discharge, which could be
seen as an ideal entry-point for intervention. Thus, we
established a corresponding screening panel (M3) for
predicting physical and psychiatric symptoms based on urinary
metabolites. Using the M3 panel, patients could be advised of,
and psychologically prepared for, potential physical and mental
symptoms prior to hospital discharge, and they would thus be in
a position to receive early interventions, including appropriate
anti-inflammatory drugs (if appropriate) and therapeutic and
preventive psychiatric health counselling.

To the best of our knowledge, we are the first group to employ
a well-characterized large cohort to describe disturbances of the
urinary metabolome in detail, and provide a multilevel
understanding of the role of disturbed urinary microbiome-
associated metabolism in COVID-19 patients. Importantly, our
urine marker panels are relatively easily implementable and
widely generalizable worldwide. However, our study has some
limitations. Firstly, all patient samples were collected at a
designated hospital, and not included patients with variant
strains of SARS-CoV-2. Thus, studies involving COVID-19
patients in different regions with variant SARS-CoV-2 strains
are required to independently confirm the metabolomic changes
and the screening performance of urinary microbial metabolites.
Secondly, none of the participants in this study received any
vaccination against SARS-CoV-2 infection. Thus, the
characteristic changes and the potential functioning of the
urinary metabolome in vaccinated COVID-19 patients remain
unknown. Thirdly, we discovered possible interactions between
different disease severity, urine metabolomics, immune
responses and sequelae of physical and psychiatric in COVID-
19. Further studies focusing on understanding the potential
causal role of these interaction pathways are required. For
example, investigation of whether physical and psychiatric
sequelae can be ameliorated though early intervention against
metabolic disorders, immune dysregulation, and psychiatric
stress in COVID-19 patients during hospitalization. Finally, we
did not go further to reveal the specific underlying mechanisms
related to the altered microbial metabolites in COVID-19, and
therefore, further studies are still required, for example, the
exploration of whether mechanisms of urinary metabolic
changes may be associated with the expression of Angiotensin
Converting Enzyme (ACE)-2 receptors in the urinary tract (38,
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39). We hope our findings and limitations will inspire follow-
up investigations.

In summary, we observed that altered urinary microbiome-
associated metabolites can potentially serve as screening
biomarkers for symptomatic and asymptomatic COVID-19
patients, and may also be used to predict their ongoing risk of
physical and psychiatric sequelae. We proposed that microbial
metabolism may play an important role in modulating host
immune responses, and may potentially influence disease
severity and outcomes in COVID-19. Our findings lay a
foundation for an understanding of the interactions among
COVID-19 disease severity, urine metabolomics, the immune
response, and long-term physical and psychiatric sequelae in
COVID-19 pathogenesis and disease evolution, and expedites
the development of widely available and user-friendly COVID-
19 screening methods in the future.
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