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Simple Summary: Cholangiocarcinoma (CCA) is a heterogenous and aggressive malignancy of
the intra- and extrahepatic biliary tract, marked by a steeply rising incidence on a global scale.
While surgery remains the only curative treatment option, most patients present with advanced
or unresectable disease, and are, therefore, treated with systemic therapy, albeit with limited ben-
efit. Biomarkers obtained from either the patients’ serum or tumor tissue might facilitate therapy
guidance by selecting patients who would benefit the most from surgical and adjuvant treatment
strategies, as well as by identifying those with higher risk of disease recurrence. Furthermore, several
genetic aberrations in CCA have been linked with improved response upon targeted therapies, thus
highlighting their role as predictive biomarkers. In this review we provide an overview of currently
known prognostic and predictive biomarkers and discuss their role in CCA.

Abstract: Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes
a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract
epithelium. A rising mortality from CCA has been reported worldwide during the last decade,
despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate
from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western
world. Clinicopathological characteristics such as lymph node status and poor differentiation remain
the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers
as an adjunct to traditional staging systems may not only facilitate the selection of patients who
would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be
helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor
recurrence. The purpose of this review is to provide an overview of currently known molecular
prognostic and predictive markers and their role in CCA.

Keywords: cholangiocarcinoma; biliary tract cancer; biomarker; prognosis; predictive; targeted therapy

1. Introduction

Cholangiocarcinoma (CCA) is a highly aggressive malignancy and the second most
common primary liver tumor, accounting for three percent of all gastrointestinal malignan-
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cies [1]. The classification is based upon the anatomical site of origin, thus differentiating
between intrahepatic (iCCA), perihilar (pCCA) (also called Klatskin tumor), and distal
(dCCA) cholangiocarcinoma, with dCCA and pCCA being summarized as extrahepatic
cholangiocarcinomas (eCCA). The most common entities are dCCA and pCCA, accounting
for about 30% and 50% of all CCAs, respectively. In contrast, iCC represents only about
10% of all CCAs [2]. The anatomical boundary defining eCCA is the cystic duct, with
dCCA arising distal and pCCA proximal of the junction of the cystic duct, comprising
the right and left hepatic ducts up to the second order biliary branches. Tumors located
above the second order bile ducts are termed iCCA [1,3,4]. Different types of CCA do not
only differ in their etiology, pathophysiology, and treatment, but also possess unique bio-
logical and pathological features, providing the opportunity for individualized prognosis
determination and targeted therapies.

Many CCA cases are sporadic, arising in the absence of known risk factors such as
chronic biliary inflammation (e.g., in primary sclerosing cholangitis—PSC), cholestasis,
hepatobiliary parasitic infections (liver flukes like Clonorchis sinensis and Opisthorchis viver-
rini), and liver cirrhosis (Figure 1) [1]. Furthermore, emerging evidence over the past years
has suggested an important role of the gut microbiome on development of CCA, especially
in patients with inflammatory bowel disease and PSC [5]. Epigenetic and environmental
factors seem to have a significant impact on the development the disease, since there is
a great difference in prevalence of CCA between Southeast Asia (e.g., 85 per 100,000 in
Northeast Thailand) and the Western hemisphere (<6 per 100,000 population). Symp-
toms of CCA are usually vague and arise late in already-advanced disease, resulting in
median survival of less than two years from the timepoint of diagnosis. So far, surgery
remains the only curative treatment option, with a 5-year survival rate ranging between
25 and 50% after surgical resection [6–11]. Due to high risk of recurrence, especially in
patients with lymph node metastasis, tumor-positive resection borders, and low-grade
CCA, adjuvant chemotherapy is recommended by current guidelines [12–14]. Patients with
metastatic or inoperable disease are treated with systemic chemotherapy, albeit with dismal
benefit [7,15–17]. Advancements in organ preservation and poor survival outcomes fol-
lowing surgical resection have promoted consideration of liver transplantation (LT) as a
curative approach for patients suffering from pCCA and iCCA [18,19]. In fact, LT in patients
adhering to the so-called Mayo clinic protocol, compromising neoadjuvant chemoradiation
in patients with unresectable pCCA, size <3 cm and without extrahepatic or lymph node
metastasis, offered promising results [20]. A French multicenter randomized, intent-to-treat
study (NCT02232932) comparing the 5-year survival following capecitabine-based chemora-
diotherapy with subsequent LT to standard liver resection in patients suffering pCCA is
ongoing [21]. In contrast to pCCA, iCCA is a contraindication in most centers worldwide
due to historically poor outcome. However, recent data suggest LT as an effective treatment
in highly selected patients with localized and early iCCA or patients with disease stability
after neoadjuvant chemotherapy [11]. Results from a multicenter, single-arm, prospective
study (NCT02878473) evaluating the 5-year survival in patients with single iCC ≤ 2 cm in
size, liver cirrhosis, and CA 19-9 ≤ 100 ng/mL, undergoing LT are eagerly awaited. While
the number of patients suffering from CCA continues to rise, the need for novel diagnostic
strategies and therapeutic options has become of utmost clinical importance. As such, the
identification of preoperatively available molecular markers of prognosis as an adjunct to
traditional staging systems has emerged as a promising strategy to select patients who may
benefit the most from surgical and adjuvant therapy. Furthermore, the identification of
predictive markers might result in precise and effective systemic treatment.
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Figure 1. Anatomical classification of cholangiocarcinoma. CCA is anatomically divided into intra-
hepatic (iCCA), perihillar (pCCA) and distal (dCCA) cholangiocarcinoma, with pCCA and dCCA
being summarized as extrahepatic cholangiocarcinoma (eCCA). Different CCA subtypes possess
distinct molecular aberrations and differ in terms of their etiology, while certain risk factors and
genetic mutations are not subtype-specific. The most common risk factors and prevailing genetic
alterations are presented. HBV: Hepatitis B virus; HCV: Hepatitis C virus; PSC: Primary sclerosing
cholangitis; IDH1/2: Isocitrate dehydrogenase 1/2; FGFR2: Fibroblast growth factor receptor 2; BAP1:
BRCA1 associated protein 1; KRAS: Kirsten rat sarcoma virus; TP53: Tumor suppressor protein 53;
ARID1A: AT-rich interactive domain-containing protein 1A; PRKACA: Protein kinase cAMP-activated
catalytic subunit alpha; PRKACB: Protein kinase cAMP-activated catalytic subunit beta; ERBB2:
Erb-B2 receptor tyrosine kinase 2; SMAD4: Mothers against decapentaplegic homolog 4.

2. Biomarkers in CCA

Biomarkers can have either prognostic or predictive value, while certain biomarkers
are known to possess both. Prognostic biomarkers inform about the likelihood of certain
cancer-associated events, e.g., disease-recurrence or progression of disease, and overall
survival. Predictive biomarkers provide information about treatment benefit and are used
to identify individuals who are more likely to have a favorable or unfavorable effect from
a particular therapy compared to individuals without the biomarker [22–24]. The utility
of molecular markers for clinical practice has been assessed by defining their levels of
evidence, ranging from level I as the highest evidence level, obtained from high-powered,
prospective, randomized controlled trials (RCT), to level V, which possess the weakest
evidence and are derived from single clinical cases. Importantly, in order for a novel
biomarker to be implemented into the routine clinical practice, at least level II evidence is
required [25].

Different types of CCA do not only show distinct anatomical and histological features,
but also possess individual molecular profiles and genetic aberrations. In this context,
Nakamura et al. identified a total of 32 significantly altered genes in about 40% of cases by
molecularly characterizing biliary tract cancers from 260 patients [26]. Another research
group analyzed 410 cancer-associated genes in tumor samples of 195 patients and discov-
ered genetic alterations with potential therapeutic implications in 47% these of patients [27].
The spectrum of actionable genomic targets in CCA embraces various kinases (FGFR1,
FGFR2, FGFR3, PIK3CA, ALK, EGFR, ERBB2, BRAF and AKT3), oncogenes (IDH1, IDH2,
CCND1, CCND3 and MDM2) and tumor-suppressor genes (BRCA1 and BRCA2) [26]. The
most common genetic alterations shared between iCCA and eCCA are KRAS mutations
(15%–20%), TP53 mutations (15 %–25%) and AT-rich interactive domain-containing protein
1A (ARID1A) mutations (approx. 20%) [28]. Certain alterations, such as FGFR1/2 fusions
or IDH1 mutations, are unique to iCCA and rarely occur in eCCA. Mutations in BRCA1
associated protein 1 (BAP1) are also enriched in iCCA and present in less than 1% of eCCA.
In contrast, mutations in ERBB2 seem to be exclusive to eCCA [26,29]. An overview of
common signaling pathways involved in the development and progression of CCA is
displayed in Figure 2.
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Figure 2. Signaling pathways in cholangiocarcinoma. Multiple signaling pathways are involved in
the development and progression of CCA. Receptor tyrosine kinases activate the RAS-MAPK path-
way and the PI3K-AKT pathway. IL-6 induces the JAK/STAT signaling pathway. Consequently, these
pathways impact important cellular processes, such as cell proliferation, differentiation, survival,
and angiogenesis. IDH 1/2 mutations lead to the accumulation of the oncometabolite intracellular
2-hydroxyglutarate (2-HG). Adapted from [30]. FGFR2: Fibroblast growth factor receptor 2; EGF: Epi-
dermal growth factor; EGFR: Epidermal growth factor receptor; Her2/neu: Human epidermal growth
factor receptor 2; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth
factor receptor; HGF: Hepatocyte growth factor; MET: C-met-encoded receptor for hepatocyte growth
factor; IL-6: Interleukin-6; JAK: Janus kinase; SOCS3: Suppressor of cytokine signaling 3; STAT3:
Signal transducer and activator of transcription protein; RAS: Rat sarcoma; RAF: Rat fibrosarcoma;
MEK1/2: Mitogen-activated protein kinase kinase; ERK1/2: Extracellular signal-regulated kinase 1/2;
PI3K: Phosphatidylinositol 3 kinase; AKT: Protein kinase B; mTOR: Mammalian target of rapamycin;
α-KG: α-Ketoglutaric acid; 2-HG: 2- hydroxyglutarate; IDH: Isocitrate dehydrogenase; TCA cycle:
Citric acid cycle.

In the following paragraphs, we will provide an overview of the most relevant
biomarkers used for prognosis prediction in patients with CCA. Additionally, currently
known molecular aberrations, which were identified as predictive biomarkers of treatment
response, will be discussed.

3. Prognostic Serum Biomarkers

Prognostic markers in patients with CCA are currently based on clinical factors, such
as tumor extent, existence of metastasis, surgical resection margin or histological tumor
differentiation. Over the last years, various molecular markers of prognosis, obtained
mainly from peripheral blood and tumor tissue, have been proposed for the detection and
prediction of prognosis in CCA (Table 1).

3.1. Serum Proteins

So far, carbohydrate antigen (CA19-9) and carcinoembryonic antigen (CEA) are the
most widely used biomarkers for diagnosis and surveillance of CCA. CA 19-9, a glyco-
protein mainly produced by biliary and pancreatic duct cells, has been associated with
poor prognosis, while preoperatively elevated levels of CA 19-9 proved to be a negative
independent prognostic factor in CCA [31,32]. Furthermore, CA 19-9 decline ≥ 50% under
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chemotherapy with gemcitabine correlated with improved therapy response and increased
survival in patients with advanced CCA [33]. However, the sensitivity and specificity of
this biomarker is 72% and 84%, respectively, thus limiting its diagnostic and prognostic
value [34]. CEA is a commonly used tumor marker in colorectal cancer but has evolved as
a relevant biomarker in CCA as well [35]. In fact, studies have reported high variations in
terms of sensitivity and specificity of CEA in patients with CCA, ranging from approximately
40%–80% and 50%–90%, respectively [33,36–38]. CEA has been identified as an independent
prognostic marker in CCA, especially in combination with CA 19-9 [36,38–42]. Nonethe-
less, the partially low sensitivity and specificity reported should be kept in mind when
using this biomarker for diagnosis and surveillance of CCA. Other promising serum diag-
nostic and prognostic biomarkers include cytokeratin-19 fragment (CYFRA 21-1), matrix
metalloproteinase-7 (MMP-7) and osteopontin. CYFRA 21-1 showed a negative correlation
with one-year outcome in patients with iCCA and gallbladder carcinoma, but no associa-
tion with eCCA was found [43]. Interestingly, CYFRA 21-1 and MMP-7 levels were both
elevated in patients with CCA compared to those with benign biliary disease, emphasizing
their putative diagnostic value [44]. The role of osteopontin, a secreted extracellular matrix
glycophosphoprotein, remains inconclusive. While Loosen et al. showed that serum osteo-
pontin levels are increased in patients with CCA and associated with impaired survival,
another study demonstrated the opposite [45,46]. Although data on these biomarkers seem
promising, further studies are required to validate current findings.

3.2. Inflammatory Biomarkers

Circulating cytokines have been associated with disease progression, tumor stage or
treatment response in numerous malignancies. In the context of CCA, increased levels of
interleukin-6 (IL-6) were found in patients with CCA, compared to healthy individuals,
showing a rather moderate sensitivity (73%) and specificity of 92%. Furthermore, high
expression of IL-6 in serum and tumor tissue, as well as marked expression of interleukin-17
(IL-17) in peritumoral cells negatively correlated with overall survival (OS) and disease-free
survival (DFS) in patients who underwent surgical resection of iCCA [47].

The urokinase plasminogen activator receptor (suPAR) is an inflammatory mediator
and the soluble form of the cell surface receptor uPAR (CD87). suPAR was demonstrated
to be an independent prognostic biomarker in various cancer types. In terms of CCA, in-
creased uPAR expression in tumor tissue and suPAR expression in patients’ serum has been
associated with impaired survival, whereas another study showed a positive correlation
between uPAR expression and lymphatic invasion and metastasis, respectively [48,49].
Furthermore, elevated baseline levels of uPAR were predictive of poor survival in patients
treated with palliative chemotherapy due to inoperable CCA [50].

Since a combination of two prognostic markers may improve the power of prognosis,
the ratio of certain serum proteins with high diagnostic and predictive power was applied
in several cancer types. As such, various ratios of myeloid and lymphatic cells have been
proposed as prognostic markers in CCA. Indeed, the neutrophil-to-lymphocyte ratio, a
well know prognostic factor in gastric and lung cancer, was associated with impaired
survival in patients with resected CCA, as well as in those under chemotherapy due to
advanced disease. Moreover, C-reactive-protein to albumin ratio negatively correlated
with OS and DFS in CCA [51]. The albumin to gamma-glutamyltransferase ratio (AGR)
proved to be an independent prognostic indicator for iCCA following curative resection,
demonstrating improved predictive accuracy compared with the TNM staging alone [52].
Other inflammatory biomarker ratios calculated from peripheral blood measurements are
still under investigation. While relatively simple to determine, these putative outcome-
predicting ratios have not become part of the clinical routine yet.

3.3. Circulating Nucleic Acids

In recent years, circulating nucleic acids, such as cell-free DNA (cfDNA) or RNA,
mostly microRNA (miRNA), have emerged as promising biomarkers for detection and
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prognosis prediction in multiple cancer types due to their abundance and stability in
biofluids. In the case of CCA, the sensitivity and specificity of pooled miRNAs were
calculated at up to 80% and 90%, respectively, in several metanalyses [53–56]. Notably,
miRNA measured in bile samples showed the highest diagnostic efficiency. Increased
serum and plasma levels of miR-21 positively correlated with the TNM stage and poor
survival and decreased after surgical resection of the tumor. Notably, estimation of miR-21
enabled differentiation between patients with CCA and healthy controls, however miR-21
was increased in other malignancies as well, thus limiting its specificity [57]. Further
studies investigating other miRNAs are controversial. While reduced levels of miR-150
were observed in individuals with CCA, another study reported an upregulation of miR-150
in patients suffering iCCA. Remarkably, the combination of reduced miR-150 and increased
CA19-9 seemed to improve the accuracy of CCA diagnosis [58]. Expression of miRNAs
was further investigated in bile samples and correlated with CCA occurrence; however,
their prognostic value remains inconclusive [57].

cfDNA represents a fragment of DNA which is released upon cell apoptosis or necrosis,
a common process in tumorigenesis. The most appealing fact about cfDNA determination
is the ability to screen for overall mutation patterns of the respective malignancy without
the need for obtaining primary tumor tissue. To support these findings, plasma samples
from 31 patients with CCA were screened for oncogenic mutations. The results showed that
the same mutation patterns could be observed in the tumor itself [59]. Hence, cfDNA might
facilitate the detection of specific genomic alterations and subsequently the establishment
of effective, mutation-based therapies.

3.4. Single-Nucleotide Polymorphisms

Single-nucleotide polymorphisms (SNPs) are genetic modifications defined by a sub-
stitution of a single nucleotide at a specific position in the genome. Depending on the
function of the affected genetic region, SNPs have been associated with clinical outcomes
and cancer susceptibility in a large variety of malignancies, making them potential prog-
nostic or therapeutic targets [60–64]. Most recently, a single-center analysis of multiple
genes involved in tumor inflammation and angiogenesis revealed CXCR1 (interleukine-
8-receptor alpha—IL-8RA) +860 C>G heterozygous polymorphism to be an independent
prognostic factor for DFS, cancer-specific survival and OS in patients with pCCA [65].
Further studies have linked SNPs to CCA. The G protein subunit-β 3 (GNB3) 825 C>T
polymorphism was associated with longer OS in patients with eCCA [66]. Other variants,
such as the enhancer of zeste homolog 2 (EZH2), nuclear factor (erythroid-derived 2)-like 2
(NRF2), x-ray repair cross-complementing group (XRCC1), ATP binding cassette subfamily
C member 2 (ABCB2), ATPase Phospholipid Transporting 8B1 (ATP8B1), natural killer cell
receptor G2D (NKG2D), and alpha1-antitrypsin (α1AT) deficiency Z heterozygosity, have
been linked to increased risk of CCA or associated with the outcome of patients with bile
duct tumors [64,67,68]. Nevertheless, biomarker-embedded clinical trials and validation in
independent cohorts of patients are required to confirm these preliminary findings.

3.5. Other Biomarkers with Potentially Prognostic Value

Circulating tumor cells (CTC), various metabolites found in bile, blood, or urine, as
well as extracellular vesicles represent some of other biomarkers currently evaluated for
diagnosis and outcome prediction in patients with CCA [69]. While metabolites and extra-
cellular vesicles have been investigated mostly for diagnostic purpose and differentiation
between CCA and other hepatic malignancies or non-malignant biliary diseases, CTC
have shown an association with DFS and OS in numerous malignancies. However, the
number of studies suggesting that CTCs may have an impact on clinical outcome in CCA
are scarce [57].

Taken together, numerous molecular markers of prognosis in CCA with promising
results from clinical studies have been identified over recent years. Before implementation
into clinical routine, larger patient cohorts and biomarker-embedded clinical trials are
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needed. Furthermore, novel technologies enabling the measurement of cf-DNA or miRNAs,
will facilitate the detection of novel biomarkers in the future. Even though determination
of CA19-9 and CEA has certain limitations, they remain the most frequently used and best
evaluated serum biomarkers in CCA.

4. Prognostic Tumor Tissue Biomarkers

Biomarkers from tumor tissue present a valuable source of potential factors for out-
come prediction in terms of both survival and treatment response, or individualized
therapies in patients suffering CCA (Table 2). In fact, CCA was described as a highly
genomic heterogeneous malignancy, with most of the genetic alterations being related to
DNA repair mechanism, chromatin remodeling or cancer cell proliferation and growth [57].
While some mutations are specific to either iCCA or eCCA, others are found in tumor
tissue irrespective of the anatomical localization. The latter include mutations in the KRAS
proto-oncogene (15–22%), TP53 tumor suppressor gene (25–40%), ARID1A chromatin re-
modeling complex (12–18%), and BRCA1/2 (3–5%). Mutations in KRAS and TP53 have
been associated with impaired outcome and tumor recurrence following surgical resection
of CCA, thus highlighting their prognostic value [70]. The role of ARID1A as a prog-
nostic marker remains inconclusive since it has been described as both an oncogene and
tumor-suppressor gene. Inactivation of ARID1A correlated with tumor metastasis and was
common in liver fluke-associated CCA [71]. Another study confirmed the prognostic role of
ARID1A by showing a correlation between low ARID1A expression and impaired outcome
in patients with iCCA [72]. In contrast, increased expression of ARID1A was associated
with a higher risk of mortality and disease recurrence in patients with iCCA [73]. In a large
metanalysis, including 4,126 patients from 73 studies, that analyzed 77 known biomarkers,
EGFR, MUC1, MUC4, fascin, and p27 showed an association with OS of patients suffering
from CCA [74]. Another metanalysis assessed prognostic biomarkers associated with OS in
patients with eCCA in a univariate analysis. While six markers (VEGF, COX-2, GLUT-1, cy-
clin D1, fascin, and Ki-67) correlated with impaired survival, p16, p27, and E-Cadherin had
positive prognostic effects [75]. Moreover, the analysis of 53 patients with surgical tumor
resection due to CCA revealed 39 transcriptomic prognostic biomarkers. Interestingly, all
of them showed a relation with T-cell activation and immune response. For instance, the
expression levels of cytotoxic T-lymphocyte antigen 4 (CTL4) and forkhead box P3 (FOXP3)
correlated with recurrence-free survival [76].

4.1. Cell Surface Molecules

Several cell surface molecules are known to have significant impact on cancer progres-
sion by regulating cell motility and transcellular signaling. As such, expression of CD155,
an immunoglobulin-like transmembrane glycoprotein, was associated with shorter DFS
and OS in patients suffering CCA. Upregulation of CD155 correlated with histological
grading, lymph node metastasis, expression of vascular endothelial growth factor (VEGF),
and microvascular density, and was suggested as an independent prognostic marker for
CCA [77]. High expression of CD44 correlated with significantly shorter OS compared
to low intratumoral expression of CD44 in patients with liver fluke-associated CCA [78].
Furthermore, CD55 and CD97 showed an association with poor histological grading, lymph
node metastasis, venous invasion, and shorter OS, while CD98 was proposed as an inde-
pendent prognostic factor in CCA [79].

4.2. Signaling Molecules

Diverse signaling molecules, mainly cytokines and intracellular signaling molecules,
are directly involved in carcinogenesis and have been associated with patients’ outcome
in multiple cancer types. As such, increased levels of IL-6 in tumor tissue and IL-17 in
peritumoral cells correlated with impaired OS and DFS in patients with iCCA. Furthermore,
multivariate analysis revealed that IL6 and peritumoral IL17 are independent prognostic
factors for DFS, while preoperatively increased levels of IL-6 in serum were associated
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with significantly reduced DFS [47]. Suppressor of cytokine signaling 3 (SOCS3) is an
antagonist of the JAK/STAT pathway, thus playing an integral role in shaping the inflam-
matory environment and tumorigenesis in CCA. The expression of SOCS3 was significantly
downregulated in tumor tissue of patients with CCA, while the upstream regulator tumor
necrosis factor α-induced protein 3 (TNFAIP3 or A20) was increased. Notably, patients with
low intratumoral expression of SOCS3 and high expression of A20 showed a dramatically
reduced OS rate. Moreover, both proteins were associated with lymph node metastasis and
postoperative disease recurrence, thereby suggesting their role as prognostic markers in
CCA [80].

Ring finger protein 43 (RNF43), which has been described as both an oncogene and
tumorsuppressor gene, was downregulated in tumor tissue of patients with iCCA and
correlated with poor prognosis. Furthermore, RNF43 was shown to be an independent
prognostic factor in uni- and multivariate analysis [81].

LIM and SH3 protein 1 (LASP-1) is a focal adhesion protein, known to play a key role
in cell migration, invasion, and proliferation in a wide variety of tumors. Analysis of human
CCA tissue samples revealed that LASP-1 was markedly overexpressed in tumor compared
to healthy tissue. Moreover, expression of LASP-1 positively correlated with tumor size,
poor histological differentiation, lymph node metastasis, advanced TNM stage, and poor
prognosis in CCA patients. In contrast, downregulation of LASP-1 resulted in cancer cell
apoptosis and suppressed cell migration, invasion, and proliferation in vitro [82].

Similarly, the expression of B7-H4, which is a member of the B7 superfamily of
ligands and regulator of T cell-mediated antitumor immune response, was upregulated
in cancer tissue in approximately 50% of cases in a cohort of 137 patients suffering from
CCA and was associated with poor histological differentiation, lymph node metastasis,
staging, reduced OS, and early recurrence of tumor. Additionally, B7-H4 suppressed the
peritumoral infiltration of CD8+ cytotoxic T lymphocytes [83]. Hepatoma-derived growth
factor (HDGF) is another biomarker that has been associated with poor outcome and
tumor progression in patients suffering CCA [84]. High expression of Ki-67, a well-known
proliferation marker, and p73 was associated with shorter OS of pCCA patients, while Ki-67
correlated with tumor stage [85].

Induction of epithelial mesenchymal transition (EMT) results in increased cancer
cell proliferation and metastasis. Indeed, SOX4 transcription factor, a member of the
SOX (SRY-related HMG-box) family, has been shown to promote EMT in vitro, while
SOX4 overexpression in tumor tissue indicated poor prognosis in patients with iCCA [86].
Moreover, elevated serum level of nardilysin (N-arginine dibasic convertase, NRDC), a
soluble cytosolic protein, correlated with increased NRDC mRNA expression in tumor
tissue and EMT-inducing transcription factors, and was associated with shorter OS and
DFS in patients with iCCA [87].

4.3. Mucins

Mucins (MUC) are heavily O-glycosylated proteins, mainly expressed by ductal and
glandular epithelial tissues. Vast production of mucus is frequently found in various
carcinomas and has been described in CCA multiple times. In this context, MUC5AC was
aberrantly expressed in tumor tissue and associated with larger tumor size and advanced
stage in liver fluke-associated CCA [88]. Another study showed an association between
MUC5AC expression in iCCA tissue and lymph node metastasis in patients who underwent
curative-intent hepatectomy. Additionally, increased MUC5AC expression was identified
as an independent prognostic marker of poor survival in patients with iCCA [89].

4.4. Tumor Stroma and Microenvironment

The tumor microenvironment plays a crucial role in shaping the growth, proliferation,
and metastasis of malignant cells. Thus, certain molecules localized in tumoral stroma
might be used as prognostic markers. Indeed, overexpression of epithelial cell adhesion
molecule (EpCAM) in the stroma of ICC proved to be an independent risk factor for OS and
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DFS. Besides expression in iCCA tissue, overexpression of EpCAM in nontumor fibrous
liver tissue correlated with reduced DFS as well [90]. Furthermore, high expression of Lysyl
oxidase-like 2 (LOXL2), a matrix-remodeling enzyme that has already been associated
with metastasis in hepatocellular carcinoma (HCC), in peritumoral stroma proved to be
an independent prognostic factor of worse OS and DFS in patients with iCCA [91]. The
metalloproteinases (MMP) are enzymes that degrade extracellular matrices, thus facilitating
tumor cell progression and metastasis. MMP-9 and MMP-11 were markedly expressed in
CCA tissue, and their expression correlated with decreased OS [92,93]. Tissue expression
of MMP-9 was associated with IL-8 tissue expression, while the latter proved to be an
independent prognostic factor of OS in patients with CCA [94].

4.5. Non-Coding RNA

The emerging role of serum-derived non-coding RNAs as prognostic biomarkers has
been described in the previous section. Similarly, non-coding RNA, mostly microRNA
(miRNA), small interfering RNA (siRNA), and long non-coding RNA (lncRNA), can be
measured in tumor tissue. In this context, different studies reported an overexpression
of lncRNA H19 and lncRNA-PANDRA in CCA tissue, as well as a significant correlation
with tumor progression, TNM staging and OS of patients. Accordingly, in vitro analysis
demonstrated the involvement of both RNAs in cell growth and proliferation, EMT and
anti-apoptosis [95,96]. Hence, lncRNA H19 and PANDRA may serve as poor prognostic
markers for CCA.

Using a custom microarray, the expression levels of three miRNAs, miR-675-5p, miR-
652-3p and miR-338-3p, were identified in CCA tissue and strongly correlated with the
prognosis of patients with iCCA. Risk scores, defined by using regression coefficients
risk, revealed significantly shorter OS and DFS medians in patients with high-risk scores
compared to those with low-risk scores. This three-miRNA signature was marked as
an independent prognostic predictor for iCCA [97]. Upregulation of tissue miR-29a was
suggested as a beneficial prognostic marker for CCA [98].

In conclusion, tumor tissue biomarkers may be of particular value for resected CCA,
as they can have both prognostic (e.g., KRAS, TP53), as well as predictive (e.g., IDH1/2,
FGFR2) implications by predicting the individual patient’s prognosis and response to
targeted therapies. The major drawback remains the necessity of an invasive procedure
for tissue sample collection, especially in patients with primary unresectable disease.
Alternatively, a preliminary study by Ikeno et al. suggested non-invasive assessment
of tumor metabolic activity by 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG-PET) to be associated with impaired survival in patients with iCCA and KRAS
mutations [99]. In comparison, serum biomarkers are less invasive to obtain, thus being
more suitable for diagnosis and monitoring of disease recurrence. The ideal combination of
both biomarker types, as well as sampling timepoints are yet to defined. The detection of
genetic aberrations in CCA tissue renders the development of custom and more effective
therapies possible and will be discussed in the following paragraphs.

5. Predictive Biomarkers of Treatment Response and Novel Therapeutic Strategies

While patients with metastatic or locally advanced non-resectable disease are treated
to with palliative chemotherapy, surgical resection with adjuvant chemotherapy repre-
sents the gold standard in patients with resectable CCA. According to current guidelines,
first-line adjuvant chemotherapy should be conducted with capecitabin, whereas gemc-
itabin/cisplatin is recommended for patients with advanced disease [100–102]. However,
the survival rates in both patient groups remain poor, thus prompting the development
of targeted and more effective therapies (Supplementary Tables S1–S7). CCA is marked
by a high rate of genomic alterations. Even though the most common ones, such as KRAS,
TP53 and ARID1A are not easily druggable, >40% of CCA still bear a targetable genetic
alteration [28].
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5.1. Fibroblast Growth Factor Receptor

Fibroblast growth factor receptor 2 (FGFR2) fusions are unique to iCCA and represent
one of the main druggable targets. Fibroblast growth factor receptor tyrosine kinases
(FGFR) play a key role in activating important signaling pathways, such as RAS-RAF-
MEK-ERK and PI3K-AKT-mTOR cascade, thus regulating cellular growth, survival, and
differentiation [103,104]. Although the prognostic value of FGFR2 remains controversial,
clinical studies evaluating FGFR inhibitors as targeted therapy for patients with advanced
CCA show promising results [103,105–111]. Mazzaferro et al. published in 2019 a mul-
ticenter, phase I/II, open-label study exploring safety and effectivity of derazantinib, a
pan-FGFR inhibitor, in patients with FGFR2 gen fusion-positive iCCA [112]. With an
overall response rate of 20.7% and a disease control rate of 82.8%, derazantinib offered
a promising anti-tumor activity, resulting in initiation of a larger study for this patient
population (NCT03230318) [112]. Based on a promising phase II trial reporting a 14.8%
response rate with a 75.4% disease control rate (NCT02150967; [113–115]), the selective
FGFR1-3 inhibitor infigratinib is currently evaluated in comparison to gemcitabine and
cisplatin in patients with advanced or metastatic CCA and FGFR2 gene fusion in a running
phase III RCT (NCT03773302) [116]. Futibatinib and pemigatinib are further selective
FGFR kinase inhibitors under current investigation in phase III RCT (NCT04093362 [117];
NCT03656536 [118]).

5.2. C-met-Encoded Receptor for Hepatocyte Growth Factor

Another signaling pathway, impacting cell proliferation, motility, and sensitivity to
apoptotic cell death, that may be impaired in CCA, is the c-met-encoded receptor (MET) for
hepatocyte growth factor signaling pathway [105]. MET is a heterodimeric tyrosine kinase
transmembrane protein and receptor of the hepatocyte growth factor [119]. Overexpression
of MET occurs in up to 60% of iCCA, whereas mutations in MET axis can be detected in 7%
of iCCA [105]. In 2013 Pant et al. examined the combination of tivantinib, an inhibitor of
the c-MET tyrosine kinase, and gemcitabine in patients with solid tumors, among them
CCA, showing promising results in terms of antitumor activity [120]. In 2017 the research
group Goyal et al. demonstrated in a phase II study the limited activity and toxicity
of cabozantinib, another multikinase inhibitor targeting MET and vascular endothelial
growth factor receptor 2 (VEGFR2) [121]. Further studies are still ongoing (NCT02496208,
NCT02711553).

5.3. Tyrosine Kinases

Tyrosine kinases are enzymes responsible for the activation of signal transduction cas-
cades through phosphorylation of participative proteins, a step that is inhibited by tyrosine
kinase inhibitors. Representative members of the tyrosine kinase family are HER2/neu,
VEGFR, platelet-derived growth factor receptor (PDGFR), and FGFR2, all playing an impor-
tant role in tumorigenesis, cancer progression, and survival. In this context, recent studies
have highlighted their use as targeted therapies in treatment of CCA [122]. EGFR is a trans-
membrane protein of the ErbB tyrosine kinase receptor family, compromising four distinct
membrane receptors: EGFR (ERBB1), HER2/neu (ERBB2), ERBB3, and ERBB4 [123]. Over-
expression of EGFR and HER2/neu has been detected in up to 30% of iCCA, resulting in
promoted tumor cell proliferation, migration, and angiogenesis [123]. In fact, multivariate
analysis showed that EGFR expression was a significant prognostic factor and risk factor for
tumor recurrence in CCA [124]. Consequently, one could imagine that inhibition of EGFR
tyrosine kinase activity might results in decreased progression of CCA, thus making it a
promising therapeutical approach. Drugs targeting EGFR can be divided in tyrosine kinase
inhibitors, like gefitinib and erlotinib, and monoclonal antibodies, such as cetuximab and
panitumumab [125]. Various HER2/neu and EGFR inhibitors are currently being studied,
either as single-agents, in addition to established chemotherapy or in combination with
other targeted agents, such as the VEGF inhibitor bevacizumab [126–128]. Even though
initial trials investigating the use of anti-EGFR and anti-HER2/neu inhibitors in patients
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with advanced CCA were promising [128,129], data from subsequent phase II RCTs were
disappointing. In fact, neither the application of lapatinib (EGFR and HER2/neu double
inhibitor), panitumumab (anti-EGFR antibody), nor cetuximab (anti-EGFR inhibitor), as
monotherapy or in addition to traditional chemotherapy (gemcitabine and oxaliplatin),
significantly increased the OS or progression free survival (PFS) [130–134]. Interestingly, the
addition of erlotinib, a drug targeting EGFR by tyrosinase kinase inhibition, to chemother-
apy with gemcitabine and oxaliplatin significantly prolonged PFS in a subgroup of patients
suffering from CCA [135]. Furthermore, the combination of erlotinib with the VEGF an-
tibody bevacizumab showed promising results for treatment of advanced biliary cancer
in a multicenter phase II clinical trial [127]. HER2/neu overexpression was found to be
higher in eCCA than in iCC [136]. However, studies investigating the use of HER2/neu
antibodies, such as pertuzumab and trastuzumab, did not provide convincing results in
terms of oncological outcome [137,138]. Additional studies investigating targeted therapies
directed at HER2/neu or the use of multikinase inhibitors are ongoing.

5.4. Angiogenesis

VEGF and its receptors play a pivotal role in tumor angiogenesis. In fact, overexpres-
sion of VEGF has been reported in up to 50% of iCCA and 60% of eCCA [124]. However,
data on antitumorigenic effects of several VEGF inhibitors, such as bevacizumab and
sorafenib, were rather disappointing [139–145]. Recently, the multikinase inhibitor re-
gorafenib showed promising efficiency in two phase II trials [146,147]. Based on these
encouraging results, Demols et al. conducted a multicenter phase II RCT for patients with
nonresectable or metastatic biliary tract cancer and progression on first-line chemotherapy,
revealing a significant improvement of PFS and tumor control in patients treated with
regorafenib [148]. The VEGFR2 inhibitor apatinib is evaluated in an ongoing RCT as well
(NCT03609489).

5.5. Isocitrate Dehydrogenase-1 and -2

Isocitrate Dehydrogenase 1 or 2 (IDH) catalytic site mutations exclusively occur in
iCCA with a percentage of 18–30% [26,29]. IDH mutations contribute to accumulation
of oncometabolite intracellular 2-hydroxyglutarate (2-HG), which in turn disrupts sev-
eral regulatory cellular pathways that are relevant for epigenetic remodeling and DNA
repair [30,149,150]. Elevated levels of circulating 2-HG have been measured in IDH1/2 mu-
tant CCA patients, suggesting the role of 2-HG as a surrogate biomarker of IDH mutation
status, tumor burden or treatment response [151]. Although there are data proclaiming that
IDH mutations do not have any prognostic or therapeutic significance [2,29,110], recent
results demonstrated IDH as a possible target for specific therapy of iCCA [150]. In this con-
text, AG-120 (ivosidenib) is known to inhibit IDH1, whereas AG-221 (enasidenib) inhibits
IDH2 [105,149]. In 2020, Abou-Alfa et al. published a multicenter phase III RCT including
CCA patients with mutated IDH1 and disease progression upon standard chemotherapy,
who were randomly assigned to ivodesinib or placebo treatment. Treatment with ivosidenib
significantly improved PFS in this population, while effects on overall survival remain
unclear. The optimal use will be explored in future trials [150].

5.6. KRAS

Mutations of KRAS and aberrant activation of KRAS signaling pathways occur in up
to 40% of CCA, with 42% of mutations appearing in eCCA and 22% in iCCA [105,152]. Cur-
rently, KRAS cannot be targeted directly, but rather through inhibition of downstream PI3K-
AKT-mTOR and Raf-MEK-ERK pathways, both known to play an important role in cell
proliferation, growth and angiogenesis. In 2011, Tanios et al. published a multi-institutional
phase II study about the MEK 1/2 inhibitor selumetinib as a treatment for patients suffering
from metastatic biliary cancer and demonstrated selumetinib as a well-tolerated drug in
combination with current treatment strategies [153]. Furthermore, Kim et al. recently
started the first prospective randomized trial on MEK inhibitor trametinib in comparison
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to chemotherapy with 5-fluorouracil or capecitabine in refractory advanced biliary cancer.
However, the study had to be paused because of a lack of clinical activity of trametinib
therapy [152]. The combination of trametinib with dabrafenib, a specific BRAF inhibitor,
resulted in an overall response rate (ORR) of 47% [154]. Another study investigating the
effect of dabrafenib and trametinib in patients with solid tumors is ongoing (NCT02465060).
Recent trials evaluating the combination of two KRAS pathway inhibitors offer some
promising results [109,155].

5.7. Immunotherapy

Inflammation and subsequent activation of the immune system play an important
role in carcinogenesis and development of multiple tumors. As such, tumor cell-mediated
upregulation of immune checkpoint molecules, e.g., programmed cell death protein 1
(PD-1), results in suppressed immune reaction, facilitating the survival and progression
of tumor cells. In fact, the PD-1 antibody pembrolizumab has recently been approved for
treatment of unresectable or metastatic microsatellite instability (MSI) high or deficient solid
tumors. MSI develops upon loss of DNA mismatch repair mechanism, resulting in stronger
immune response and increased expression of PD-1 ligand (PD-L1). While the role of MSI
in CCA remains inconclusive, a phase II trial of pembrolizumab efficacy in MMR-deficient
tumors demonstrated a 100% disease control rate (DCR) with one complete response and
three stable diseases in four patients with CCA [156]. The results of the KEYNOTE-028
phase 1b trial (NCT02054808) revealed the safety and efficacy of pembrolizumab in patients
with PD-L1-positive advanced biliary tract cancer, while results from the KEYNOTE-
158 phase II trial showed a 40.9% ORR in a subset of 22 patients with MSI high CCA
treated by pembrolizumab [157]. Recently the TOPAZ-1 study was able to demonstrate
a clinical meaningful OS benefit by adding durvalumab, a PD-L1 inhibitor, to a standard
chemotherapy consisting of gemcitabine plus cisplatin (Astra-Zeneca press release October
25, 2021). Further phase-III trials (e.g., Keynote-966, NCT04003636) investigating the role of
immunotherapy in CCA are ongoing.

6. Conclusions

Cholangiocarcinoma is an anatomically distinct and genetically heterogeneous tumor,
with rising incidence worldwide, dismal prognosis and highly limited therapy options. The
vast spectrum of genomic alterations differs greatly between each CCA subtype and offers
the opportunity for development of prognostic and predictive biomarkers, as well as novel
therapeutic strategies. Preoperative identification of prognostic biomarkers may help to
identify patients who would profit the most from radical surgical resection, while prevent-
ing the risk of postoperative complications and chemotherapy delay. Furthermore, serum
and tissue biomarkers could help to identify the subgroup of patients with high recurrence
risk, thus necessitating closer follow-up or prolonged chemotherapy regimen. Although
numerous options have been developed over the last years, including miRNAs, lncRNAs,
SNPs and various signaling molecules from both patients’ serum and tumor tissue, CA19-9
and CEA remain the most applied prognostic biomarkers. In either case, palliative or cura-
tive intent, development of custom and patient-directed therapies based on unique genetic
alterations will increase the therapeutic effectiveness and consecutively patients’ survival
rates. So far, emerging targeted therapies with promising effect include FGFR inhibitors
and IDH1/2 inhibitors, as well as immunotherapies. While several other biomarkers and
clinical studies have shown promising results, validation in larger patient cohorts and
international trials is necessary and has already been initiated to a certain extent. Over the
next years, results from multicentric RCTs may fundamentally impact the diagnostic and
therapeutic management of CCA and will hopefully improve patient outcomes.
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Table 1. Serum biomarkers associated with prognosis in CCA.

Name Occurrence Expression Associated
Prognostic Value Reference

Proteins/Cytokines

CA19-9 CCA (all subtypes) Increased OS [31–34]

CEA mostly iCCA, but also
all CCA subtypes Increased OS [36,38–42]

CYFRA iCCA, gallbladder
cancer Increased OS [43,158]

Osteopontin

CCA (all subtypes) Increased OS [45]

iCCA
Low level of circulating

osteopontin/volume; Decreased
expression in tumor tissue

OS [46]

Urokinase plasminogen
activator receptor (uPAR) CCA (all subtypes) Elevated serum levels; Increased

expression in tumor tissue OS [48]

2-hydroxyglutarate (2-HG) iCCA Elevated serum levels IDH1/2 mutation
status, tumor burden [151]

Nardilysin (NRDC) iCCA Elevated serum levels and mRNA
expression in tumor tissue OS, DFS [87]

IL-6 iCCA Elevated serum levels DFS [47]

Circulating Nucleic Acids

miR-21 CCA (all subtypes) Elevated serum levels OS, clinical staging,
metastasis [159]

miR-192 Liver fluke-associated
CCA Elevated serum levels OS, lymph node

metastasis [160]

miR-106a CCA Decreased serum levels OS, lymph node
metastasis [161]

miR-26a CCA Elevated serum levels
OS, clinical stage,

metastasis,
differentiation status

[162]

Panel (miR-29, miR-122,
miR-155, miR-192 CCA Elevated serum levels OS [56]

Single-Nucleotide Polymorphisms (SNPs)

CXCR1 +860 C>G pCCA Heterozygous polymorphism OS, DFS [65]

G protein subunit-β 3
(GNB3) 825 C>T eCCA Heterozygous polymorphism OS [66]

EZH2 rs887569 TT genotype CCA Homozygous polymorphism OS [163]

NRF2 rs6726395 GG
genotype CCA Homozygous polymorphism OS [164]
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Table 2. Tumor tissue biomarkers associated with prognosis in CCA.

Name Occurrence Expression Associated Prognostic Value Reference

Cell Surface Molecules

CD 155 CCA Increased OS, DFS, histological grading,
lymph node metastasis [77]

CD44 Liver fluke-associated
CCA Increased OS [78]

CD55, CD97 iCCA Increased OS, histological grading, lymph
node metastasis, venous invasion [165]

CD98 CCA Increased OS [166]

Signaling Molecules, Growth Pathways, Angiogenesis

IL-6 iCCA Increased OS, DFS [47]

IL-17 iCCA Increased peritumoral
expression OS, DFS [47]

SOCS3 CCA Low intratumoral
expression

OS, lymph node metastasis,
postoperative disease recurrence [80]

Tumor necrosis factor
α-induced protein 3
(TNFAIP3 or A20)

CCA Increased intratumoral
expression

OS, lymph node metastasis,
postoperative disease recurrence [80]

RNF43 iCCA Low intratumoral
expression OS [81]

LIM and SH3 protein 1
(LASP-1) CCA Increased intratumoral

expression

OS, tumor size, histological
differentiation, lymph node

metastasis, TNM stage
[82]

B7-H4 CCA Increased
OS, histological differentiation,
lymph node metastasis, staging,

early recurrence of tumor
[83]

Hepatoma-derived
growth factor (HDGF) iCCA Increased OS, lymph node metastasis, TNM

stage [84]

Ki-67, p73 pCCA Increased OS, TNM stage [85]

Sex-determining region
Y-box 4 (SOX4) iCCA Increased OS [86]

Sex-determining region
Y-box 9 (SOX9) iCCA Increased OS [86]

KRAS CCA Increased OS [167]

TP53 CCA Increased OS [167]

ARID1A

CCA, mostly
fluke-associated iCCA Decreased OS [71,72]

iCCA Increased OS, recurrence rate [73]

EGFR, MUC1, MUC4,
fascin CCA Increased OS Metanalysis

by [74]

VEGF, COX-2, GLUT-1,
cyclin D1, Ki67 eCCA Increased OS Metanalysis

by [75]

p16, p27, E-cadherin eCCA Increased OS Metanalysis
by [75]

c-MET CCA Increased OS, DFS [168]

DKK1 iCCA, pCCA Increased OS, lymph-node metastasis [169,170]
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Table 2. Cont.

Name Occurrence Expression Associated Prognostic Value Reference

BAP1 CCA

Retained expression OS, DFS

[25,169,170]
Loss of expression

Trend towards improved OS,
histological differentiation,

lymph-node metastasis

PBRM1 CCA Retained expression OS, DFS [29,171]

Mucins

MUC5AC Liver fluke-associated
iCCA, iCCA Increased OS, lymph node metastasis, TNM

stage, tumor size [88,89]

MUC4 CCA Increased OS [172]

MUC16 iCCA Increased OS [173]

Tumor Stroma and Microenvironment

Epithelial cell adhesion
molecule (EpCAM) iCCA Increased expression in

peritumoral stroma OS, DFS [90]

Lysil oxidase-like 2
(LOXL2) iCCA Increased expression in

peritumoral stroma OS, DFS [91]

Matrix
metalloproteinase -9

(MMP-9)
pCCA Increased tissue

expression OS [92]

Matrix
metalloproteinase -11

(MMP-11)
CCA Increased tissue

expression OS [93]

Non-Coding RNA

lncRNA H19 CCA Increased tissue
expression OS, DFS, tumor size, TNM stage [95]

lncRNA-PANDRA CCA Increased tissue
expression

OS, DFS, lymph node metastasis,
TNM stage [96]

Panel (miR-675-5p,
miR-652-3p and

miR-338-3p)
iCCA Overexpression OS, DFS [97]

miR-29a CCA Overexpression
OS, lymph node metastasis,
histological differentiation,

clinical staging
[98]

miR-21 Liver fluke-associated
iCCA Overexpression OS, lymph-node metastasis [174]

miR-92b CCA Overexpression OS [175]

miR-34a eCCA Decreased expression OS, lymph-node metastasis,
clinical stage [176]

miR-181a CCA Overexpression OS [177]

miR-191 iCCA Overexpression OS, DFS [178]

miR-203, miR-373 CCA Decreased expression OS, DFS [178,179]

miR-221 eCCA Overexpression DFS [180]
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