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Abstract: The advent of the swarm makes it feasible to dynamically monitor a wide area for maritime
applications. The crucial problems of underwater swarm monitoring are communication and
behavior coordination. To tackle these problems, we propose a wide area monitoring strategy
that searches for static targets of interest simultaneously. Traditionally, an underwater robot adopts
either acoustic communication or optical communication. However, the former is low in bandwidth
and the latter is short in communication range. Our strategy coordinates underwater robots through
indirect communication, which is inspired by social insects that exchange information by pheromone.
The indirect communication is established with the help of a set of underwater communication nodes.
We adopt a virtual pheromone-based controller and provide a set of rules to integrate the area of
interest into the pheromone. Based on the information in the virtual pheromone, behavior laws are
developed to guide the swarm to monitor and search with nearby information. In addition, a robot can
improve its performance when using additional far-away pheromone information. The monitoring
strategy is further improved by adopting a swarm evolution scheme which automatically adjusts the
visiting period. Experimental results show that our strategy is superior to the random strategy in
most cases.

Keywords: swarm robotics; underwater robot; virtual pheromone; marine monitoring; target search

1. Introduction

The development of the science and technology of robots makes it feasible to produce large
quantities of robots with low cost. Organizing these robots to work together has become a hot topic in
the research community and recent years have witnessed rapid progress in robot swarms. Nature is
one of the best sources for swarm intelligence, and many communication mechanisms have been
developed based on nature and animal behavior [1–3]. Social insects usually adopt two communication
schemes, i.e., direct communication and indirect communication. Insects can exchange information via
direct communication. For example, bees can indicate the positions of nectar source through waggle
dance [4]. On the other hand, some insects adopt indirect communication by secreting pheromone into
the environment and other insects can get the message by sensing the pheromone.
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By communicating with each other, swarm robots can work more efficiently than a single robot.
In addition, a swarm shows advantages in terms of robustness, scalability, and flexibility. The number
of an Unmanned Aerial Vehicle (UAV) swarm has reached hundreds or even thousands [5,6], and
the UAV swarm has been widely used in light shows [5,6], military applications [7] and area
surveillance [8]. Unmanned Ground Vehicle (UGV) groups have been applied to transport objects
in ports [9], sort parcels [10] and perform in various shows. For example, a spectacular show in the
Pyeongchang Winter Olympics was performed by a UGV swarm [11].

Compared with UAV and UGV swarms, the development of an underwater robot swarm
encounters a bottleneck, i.e., the lack of proper communication methods, especially for swarms
consisting of a large number of underwater robots that travel in an extensive area. For UAVs and
UGVs, they can communicate via radio, which can transmit large volumes of data in a short time.
Because of attenuation, it is challenging to adopt radio communication in an underwater environment.
Available underwater peer-to-peer wireless communications are mainly carried out through acoustic
and optical waves. However, the acoustic communication is low in bandwidth and is bothered by
multipath propagation, frequency and temporal fading, while the optical communication is short in
range. The lack of a proper direct communication method makes it difficult to organize underwater
swarms with a large number of robots. As a result, current underwater multi-robot systems usually
contain a limited number of robots [12]. In [13], the swarm consists of a larger amount of robots, but it
fails to cover an extensive region due to the limitation of adopted optical communication.

In order to efficiently accomplish assigned tasks, various types of research have been performed
to control swarms’ behaviors, of which some focus on monitoring behavior. For example, UAV and
UGV swarms have been extensively used for an area monitoring [14]. In some cases, the swarm
reports hazards when they are detected in the monitoring process [15]. When it comes to marine
environmental and hazards monitoring, an Unmanned Surface Vehicle (USV) swarm has been widely
adopted [16–20]. Underwater robot swarms have been attracting much interest recently, such as the
COCORO [13,21] and MONSUN-II projects for swarm missions [22].

In this paper, the problem we aim to solve is how to coordinate a swarm of underwater robots
via indirect communication. We target an underwater robot swarm consisting of 10–100 robots,
which monitors an extensive area of 10–100 km2. Direct communication is inappropriate in this case:
radio and optical light based methods are short in range, unable to cover the large area; acoustic
communication is too costly to be applied to a swarm because it costs around 50,000 dollars to adopt
an acoustic modem on one robot. Moreover, when many robots communicate simultaneously, it is
challenging to deal with communication conflicts. Together with other factors, such as multipath
propagation, frequency and temporal fading and moving effects, it is infeasible to coordinate such
a large swarm using direct communication. As a result, we look into indirect communication in
this paper.

We propose a wide area monitoring strategy for an underwater swarm that takes account of the
communication and behavior coordination. The main contributions are as follows:

• We propose a communication network to organize a swarm of underwater robots using indirect
communication. The network consists of a set of underwater communication nodes. There are
various underwater navigation methods—such as Terrain-Referenced Navigation (TRN) [23],
Database-Referenced Navigation (DBRN) [24] and Gravity Aided Navigation (GAN) [25]—for an
underwater robot to periodically visit the nodes to exchange information and charge batteries
if needed.

• We apply a pheromone-based controller to coordinate a swarm to monitor marine environment
and search for static targets on the seafloor. The controller is composed of two layers: the layer of
virtual pheromone and the layer of behavior laws. Virtual pheromone indicates the pheromone
density in the area of interest (AOI). An algorithm is developed to map an AOI of a random
shape to the virtual pheromone in the form of a matrix. Behavior laws are designed on top
of the virtual pheromone, such that a swarm continuously monitors the environment. During
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the monitoring process, the swarm can also search for and report specific static targets, such
as hazards or wreckage. Note that the controller is bio-inspired, and thus we do not prove the
convergence of adopted algorithms.

• We introduce a swarm evolution scheme to improve the monitoring strategy by automatically
adjusting the robots’ visiting period. Experimental results indicate that the choice of a visiting
period affects a swarm’s performance. After adopting an evolution scheme, a swarm can achieve
an acceptable performance by avoiding unfavorable cases.

The rest of this paper is organized as follows. Related work is discussed in Section 2. We describe
the problem and introduce the pheromone-based controller in Section 3. The pheromone map is
explained in Section 4. The behavior laws to monitor the environment and search for static targets
are demonstrated in Section 5. In Section 6, we present the simulation and real-world experimental
results. Section 7 concludes this paper.

2. Related Work

2.1. Underwater Communication

The problem we plan to solve is to organize underwater robots into a swarm that can work
in a cooperative fashion. The cooperation foundation is to exchange information among robots so
that a robot can make a decision based on the current status of other robots. For UAVs and UGVs,
the communication is not considered as a serious problem because these robots can share information
via radio communication. In some research, swarms of UAVs or UGVs are connected to a network
so that one robot can exchange data with any other robot in the swarm [26,27]. At present, there
are several methods for underwater communication. Acoustic communication is the most widely
used method for communication among underwater devices. The communication range for acoustic
communication can reach kilometers, but the drawback is also significant as the communication is low
in bandwidth and is vulnerable to multipath propagation, frequency and temporal fading [28–30].
These features make the acoustic communication hard to be used to organize a robot swarm on a
large scale. Optical communication is also widely used in the underwater environment, mainly with
blue-green lights [31–34]. The speed of optical communication can reach the level of Mbps to Gbps,
making it possible to transmit a large volume of data in a short time. However, optical communication
only works at short distances. With scattered light, the communication range is limited to meters.
With laser, the communication range can reach tens of meters, but it requires stable alignment [35–37].
Other underwater communication methods include the magnetic-based method [38,39] and the
current field-based method [40,41]. However, these methods are far from applicable. Another way to
exchange data among underwater robots is via underwater communication nodes. An underwater
communication node is a device that is deployed on the seafloor. When an underwater robot comes to
visit it and the distance between the node and the underwater robot becomes smaller than a threshold,
the robot can exchange large volumes of data with the node quickly. This is because the node and
the robot can communicate through optical light, physical contraction, or even radio signals [42,43].
Communication nodes can be used to build a communication network to cover an extensive area.

2.2. Pheromone-Inspired Robot Swarms

Pheromones have become the most popular inspiration source for robot swarms and thus we
give a brief review on pheromone-inspired applications. Various social insects use pheromone-based
communication to control swarm behaviors, such as forging and collective decision [44].
With pheromones, one-to-one communication is not necessary and agents in the swarm are anonymous,
providing the swarm flexibility and robustness. References [45,46] introduce a cellular automata ant
memory model for swarm foraging tasks. Reference [47] present cooperative and non-cooperative
models for foraging by using stigmergy. Then, robots can transport the found food collectively.
Reference [48] propose a foraging approach that does not depend on free parameters. In [49,50],
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researchers use a virtual pheromone-based method to cover a region. Levy flight is added and the
effect of noise is studied. Reference [51] propose a foraging scheme with multiple nests, and a genetic
algorithm is adopted to improve the performance of the method. These studies have shown the
effectiveness of pheromone but failed to explain how to secrete pheromones by real robots.

Several approaches have been proposed to mimic pheromone with robots and one method is to
use radio communication strategies. Reference [52] propose a swarm searching method, but it relies
on real-time communication. Reference [53] organize a UAV swarm by mimicking pheromone with an
ad hoc wireless network. A pheromone-inspired collective transportation method is proposed in [54],
with all robots connected to a communication network. In [55–57], a virtual pheromone is realized
with communication between a pair of robots. Reference [58] use a virtual pheromone to coordinate
a swarm consisting of UAVs and UGVs, but radio is still necessary. Reference [59] show foraging
with multiple nests, but radio communication is necessary. For [60], a global server is necessary to
build the pheromone map. Reference [61] does not need a previously built communication network,
but wireless communication is still required. However, these methods are not suitable for underwater
robot swarms because of radio signal attenuation. Adopting acoustic modems for these schemes will
significantly increase the cost of the swarm and encounter technology challenges.

In some research, chemical substances are used as pheromone markers [62], and alcohol is widely
used to act as a virtual pheromone [63–66]. It is obvious that this idea is not suitable for an extensive
underwater area. Other ideas to secrete virtual pheromone include the use of optical light [67],
infrared communication [68], and LCD and XBee [69]. Nonetheless, none of them work for underwater
robot swarms.

Researchers begin with mimicking the behavior of social insects and they can build wireless
communication networks through radio readily. However, it is infeasible to build point-to-point
direct communication for large swarms in underwater environments. This forces us to explore a
swarm scheme with indirect communication. In nature, one-to-one communication is not necessary
for pheromones, so we propose to mimic pheromones by allowing robots to periodically visit an
underwater communication network.

2.3. Comparison with Available Schemes

Monitoring the environment and searching for targets is a main application for multi-robot
systems. To realize this, robots involved in the swarm need to work cooperatively. There are two ways
to organize the robots: a consensus way and a distributed way.

When organized into a consensus structure, the whole swarm obeys commands from a leader.
To achieve this, the leader needs to be able to communicate with all robots in the swarm, so that
it can gather data from robots, make decisions based on the information, and send commands to
others. As the leader has access to global information of the swarm, it can make optimal decisions,
such as path planning and task assignment [70]. The drawback of this strategy is that the leader is
a single point of failure (SPOF) of the swarm. The failure of the leader will result in collapse of the
whole swarm. To solve this problem, some methods have been proposed to enhance the robustness of
the swarm using a dynamic leader, such as electing a leader with swarm decision-making methods,
or dynamically changing the roles of the robots in the swarm [4].

In a distributed robot swarm, a leader is not required and robots make decisions based on the
obtained information. At present, most methods are based on direct communication, e.g., [71] proposes
a power-efficient system where a node communicates with others within a certain communication
range. In addition, methods using indirect communication have been extensively studied, which are
mainly inspired by foraging of the ant colony. To build a robot swarm with indirect communication,
we assume a communication network consisting of communication nodes have been deployed into
the AOI in advance. Field experiments have verified that robots are able to exchange large volumes of
data in a short time by visiting a communication node. It is worth mentioning that, as the positions
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of communication nodes are fixed, an underwater robot can be navigated to a node by affordable
methods, such as TRN [23], DBRN [24] and GAN [25].

Direction communication adopts either acoustic or optical communication, but the former is low
in bandwidth and the latter is short in range, which limits the communication capability of the leader
in a consensus structure so that it cannot gather needed information in time. Therefore, in this paper,
we coordinate the swarm in a distributed way via indirect communication.

3. Problem Statement and Solution

3.1. Problem Statement and Underwater Robot Swarm with Indirect Communication

This paper seeks to develop a method to coordinate a large number of underwater robots into a
swarm that can work cooperatively and can be applied to monitor the environment while searching
for underwater targets simultaneously. The swarm is deployed into an extensive area in kilometers,
which means that the distance between a pair of robots will be too far to communicate with optical
lights, and acoustic communication cannot meet the communication bandwidth requirement. Thus,
we abandon direct peer-to-peer communication among robots. Then, the problem can be reformulated
as how to use N robots to monitor the environment and search for underwater targets in a cooperative
way without direct communication.

Our solution is to organize an underwater robot swarm with the help of a communication network.
We deploy a set of underwater communication nodes into the AOI. These communication nodes are
connected through underwater cables or radio (if the communication node is connected to a buoy
equipped with antennas). Finally, these nodes form an underwater communication network, and they
share data as a whole. When visiting a communication node, an underwater robot can exchange data
with the node through optical communication, transferring a large volume of data in a short time.
The whole AOI is shown in Figure 1.

a

1 2

34

b
c

d

e

Figure 1. The system consists of underwater robots and communication nodes. In addition, 1–4 are
communication nodes that have already been deployed into the AOI. Nodes 1 and 4 are connected
with an underwater cable while the rest nodes are connected to buoys equipped with antennas so
that they can communicate via radio signals. a–e are underwater robots equipped with an optical
communication device, enabling them to exchange data with the communication network when visiting
a communication node. In the figure, robot a is communicating with communication node 1, and robot
d is communicating with communication node 4. Other robots, i.e., robots b, c and e are searching.
The relationship between robots and nodes is not one-to-one, and one robot can visit any node.

It is assumed that all robots are equipped with localization devices, and the localization error
can be eliminated when visiting a communication node. Thus, we can assume that a robot can get a
relatively accurate position. All robots have the information of the AOI, including the shape of the
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AOI and the positions of the communication nodes. Robots are also equipped with collision avoidance
sensors that are able to detect the existence of another robot when the distance between them is smaller
than a threshold. This device can be a sonar-based, or an optical light-based sensor [67].

3.2. Virtual Pheromone-Based Controller

To achieve cooperative monitoring and search without direct communication, we design a virtual
pheromone-based controller. The controller consists of two layers. The bottom layer is a virtual
pheromone map, while the top layer is a behavior controller. The structure is shown in Figure 2.
The pheromone map is used to mimic the environment into which an individual can secrete pheromone,
and from which an individual can sense pheromones. Thus, this map contains the information of the
whole swarm. However, as robots in the swarm do not share real-time communication, the information
is readily outdated. Each robot maintains a pheromone map that updates at each step. When visiting a
communication node, a robot uploads its pheromone map to the communication network, and then the
pheromone map is merged with the one that is maintained by the communication network. Finally, the
robot downloads a new pheromone map from the communication network. The behavior controller
takes the pheromone map as input, making a decision to guide the robot to voyage in the area,
monitoring the environment, searching for targets and visiting the communication nodes.

For robot i, take Pi(t) as the pheromone map it maintained at t, Bi(t) as its behavior at t, and A(·)
as the behavior law. fupdate(·) is the rule to update the pheromone map and fmerge(·) is the rule to
emerge pheromone of itself. The rule maintained by the communication network is defined as Pnet(t).
The mathematical model of the method can be described with the following functions:

Bi(t) = A(Pi(t)), (1)

Pi(t + 1) =

{
fmerge(Pi(t), Pnet(t)), visiting node,
fupdate(Bi(t), Pi(t)), otherwise.

(2)

A robot can calculate its new behavior with Equation (1) based on the pheromone map, and the
pheromone map will be updated using Equation (2). In following sections, we will introduce how
to define the pheromone map with a matrix in detail. The designs of A(·), fupdate(·) and fmerge(·) are
also presented.

From the bionic perspective, the behavior controller can be treated as a social insect such as an
ant, and the pheromone map it maintains is its environment. The main difference between our robot
swarm and a real insect swarm is that, in our swarm, the environment is not real-time. In an ideal
situation, namely all robots keep communicating with the communication network, the pheromone
map maintained by the robots will be the same and it can reflect the current global situation. However,
as robots can only exchange data with the network when visiting a communication node, in general, the
pheromone maps maintained by robots are different and outdated. This metaphor is also represented
in Figure 2.
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Figure 2. Structure of the controller. (a) is a robot swarm monitoring the environment and searching
targets in the AOI, mimicking the foraging behavior of ants in (b). For each robot, the controller consists
of two layers, with A being the behavior law and P being the pheromone map. The pheromone map is
similar to the environment for ants to deploy and sense pheromones. Just like ants can make a decision
based on pheromone information, the behavior controller A will generate a motion decision based on
the pheromone map P. It can be seen that all ants in (b) share the same environment, but in (a) the
pheromone maps for different robots differ due to the lack of real-time communication.

4. Pheromone Map

We define a pheromone map to mimic the environment for social insect swarms. Agents in the
swarm can write information into the pheromone map and read information out. To make it easy to
manipulate the pheromone map with mathematical tools, we represent the pheromone map with a
m× n matrix P as:

P = (pi,j)m×n, (3)

where pi,j implies the pheromone density in Di,j, which is a portion of the AOI. The definition of Di,j is
given in Section 4.1.

4.1. Mapping the AOI into the Pheromone Matrix

Let the AOI of random shape be a collection of points. We use a point set DAOI to represent the
AOI, where each tuple (x, y) ∈ DAOI is a point in the AOI. The definition of the coordinate system is
shown in Figure 3(2).

We use mapping fap : DAOI → P to get the pheromone matrix P. Mapping fap can is represented
with Algorithm 1.

The idea of Algorithm 1 is that:
STEPS 1 and 2: Build minimum bounding rectangle (MBR).
By finding XMAX, XMIN, YMAX, and YMIN from DAOI , we can build a collection

DMBR = {(x, y)|x ∈ [XMIN, XMAX], y ∈ [YMIN, YMAX]}. (4)

It is an MBR of DAOI . In this step, from an AOI with any kind of shape, we can always obtain a
rectangle. It is always easy to map a rectangle into a matrix.

STEPS 3 and 4: Expand the MBR.
Usually, researchers directly scatter a rectangle to get a matrix. When the rectangle is scattered,

we can get a set of rectangles. Then, we can build a matrix with each element representing the
pheromone information in each rectangle. This idea is straightforward and is adopted by various
research works [48,50,53]. The main drawback of this idea is that special behavior laws are necessary
to prevent robots from going out of the AOI.
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Algorithm 1 Mapping DAOI into P

Input: The AOI: DAOI
Output: The pheromone matrix: P = (pi,j)m×n

1: XMAX = max(x), XMIN = min(x), YMAX = max(y), YMIN = min(y), where (x, y) ∈ DAOI
2: DMBR = {(x, y)|x ∈ [XMIN, XMAX], y ∈ [YMIN, YMAX]}
3: X′MAX = XMAX + ∆x, X′MIN = XMIN − ∆x, Y′MAX = YMAX + ∆y, Y′MIN = YMIN − ∆y,

where ∆x > (XMAX − XMIN)/(2m− 2), ∆y > (YMAX − YMIN)/(2n− 2)
4: D = {(x, y)|x ∈ [X′MIN, X′MAX], y ∈ [Y′MIN, Y′MAX]}
5: Scatter D into m × n rectangles. Label them with Di,j where i = 1, 2, ..., m, and j = 1, 2, ..., n.

Calculate the center of each rectangle, with the center of Di,j being (xc(i), yc(j)):

xc(i) = X′MIN +
2i− 1

2m
× (X′MAX − X′MIN)

,

yc(j) = Y′MIN +
2j− 1

2n
× (Y′MAX − Y′MIN)

.
6: Create matrix P = (pi,j)m×n

pi,j =

∞, (xc(i), yc(j)) ∈ DAOI ,

0, (xc(i), yc(j)) /∈ DAOI .

With our idea, if the AOI is surrounded by repellent pheromone with extremely high density,
a robot will not set a point outside of the AOI as its next waypoint. Taking the waypoint as input,
a low-level Proportional-Integral-Differential (PID) controller controlling the thruster and rudder will
drive a robot back to the AOI in case it is pushed out by water flow. To achieve this, we expand the
DMBR into a larger rectangle

D = {(x, y)|x ∈ [X′MIN, X′MAX], y ∈ [Y′MIN, Y′MAX]}. (5)

In D, the edges are adjusted into: X′MAX = XMAX + ∆x, X′MIN = XMIN − ∆x, Y′MAX = YMAX + ∆y,
Y′MIN = YMIN − ∆y.

∆x and ∆y are parameters that should be chosen properly.
STEP 5: Scatter D.
As we want to obtain an m× n matrix, we scatter the rectangle D into m× n cells. We label these

cells with Di,j so that pi,j in matrix P can represent the pheromone information in Di,j. We have

Di,j = {(x, y)|x ∈ Rx, y ∈ Ry}, (6)

Rx = [X′MIN +
i− 1

m
× (X′MAX − X′MIN), X′MIN +

i
m
× (X′MAX − X′MIN)], (7)

Ry = [Y′MIN +
j− 1

n
× (Y′MAX − Y′MIN), Y′MIN +

j
n
× (Y′MAX − Y′MIN)]. (8)

The center of Di,j is defined as (xc(i), yc(j)), which can be calculated with:

xc(i) = X′MIN +
2i− 1

2m
× (X′MAX − X′MIN), (9)
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yc(j) = Y′MIN +
2j− 1

2n
× (Y′MAX − Y′MIN). (10)

We further have

xc(i) = XMIN − ∆x +
2i− 1

2m
× (XMAX − XMIN + 2∆x), (11)

yc(j) = YMIN − ∆y +
2j− 1

2n
× (YMAX − YMIN + 2∆y). (12)

STEP 6: Create the pheromone matrix P
Finally, we set initial values for each pi,j according to the situation whether Di,j is inside DAOI .

We treat Di,j inside DAOI if its center (xc(i), yc(j)) is inside DAOI , and then set pi,j as 0, namely, no
pheromone exists in this cell. Otherwise, the Di,j is out of DAOI , which means we do not want a robot
moves in Di,j. In this case, we set pi,j as ∞, indicating that this cell is filled with repellent pheromone
with extremely high density.

To avoid a robot moving out of DAOI , we want DAOI surrounded by repellent pheromone.
This means:

(xc(1), yc(j)) /∈ DAOI , (xc(m), yc(j)) /∈ DAOI , ∀j = 1, 2, ..., n, (13)

(xc(i), yc(1)) /∈ DAOI , (xc(i), yc(n)) /∈ DAOI , ∀i = 1, 2, ..., m. (14)

We have:
xc(1) < XMIN, xc(m) > XMAX, (15)

yc(1) < YMIN, yc(n) > YMAX. (16)

Finally, we can obtain:
∆x > (XMAX − XMIN)/(2m− 2), (17)

∆y > (YMAX − YMIN)/(2n− 2), (18)

which is the condition to choose ∆x and ∆y in STEP 2. The whole process is also shown in Figure 3.
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Figure 3. Mapping an AOI into a pheromone matrix. From (1) to (2), we find the MBR of the AOI.
The definition of the coordinate system is also shown in (2). Then, the MBR is expanded slightly and
scattered into m× n squares in (3). The cells that overlap with the AOI are set to 0, while other cells
are set to ∞. This manipulation ensures that, in the pheromone matrix, all inaccessible cells are filled
with a repellent pheromone of extremely high density. Finally, we get the pheromone matrix P from
these cells.
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4.2. Rules to Update Pheromone Matrix

For environment monitoring and static target search applications, we define the density of virtual
pheromone as:

pi,j(t + 1) = pi,j(t) + gdeployment(rpos(t)), (19)

gdeploy(t) =

{
k, rpos(t) ∈ Di,j,
0, rpos(t) /∈ Di,j,

(20)

where rpos(t) is the position of the robot at t. Di,j is the cell corresponding to pi,j, and k is a parameter
indicating the density of the pheromone deployed.

When a robot visits a communication node, it will exchange data with the communication
network, merging the matrices maintained by the robot and the communication network, as fmerge(·)
in Equation (2).

Assume that one robot has visited a communication node at T and visits the communication
network again at T + tback. Then, tback is defined as the re-visit time. We define a trajectory matrix
Mtrace = (mi,j)m×n, whose dimension is the same as that of P, to record the trajectory of the robot
during [T, T + tback]. In Mtrace, mi,j = 1 if Di,j has been visited by the robot during [T, T + tback],
otherwise it is set as 0. When visiting a communication node, a robot first uploads the change of
the pheromone map caused by its behavior during [T, T + tback], and then downloads the whole
pheromone map. The rules are as follows.

Let Pr be the pheromone matrix maintained by the robot before exchanging data, Pnet be
the matrix maintained by the communication network before exchanging data, P′r be the matrix
maintained by the robot after exchanging data, and P′net be the pheromone map maintained by the
communication network after exchanging data. Mtrace is updated to M′trace after exchanging data.
Then, we have Algorithm 2.

Algorithm 2 Update pheromone matrix when visiting a communication node

Input: Pr, Pnet, Mtrace
Output: P′r , P′net, M′trace

1: P′net ← Pnet + Pr . ∗Mtrace
2: P′r ← P′net
3: M′trace ← 0

At Step 2, the operator .∗ is element-wise multiplication. It will return a matrix the same size as
the two operands, by multiplying operands’ elements with the same subscript. In this way, we can
merge the pheromone map from the robot and that maintained by the communication network.

5. Environment Monitoring and Target Search

This section introduces the behavior law to monitor the environment and search for a set of static
targets with an underwater robot swarm. It can be treated as an abstraction of deploying a swarm of
underwater robots to monitor the AOI and search for underwater mine resources or wreckage after a
shipwreck. We also explore to improve the performance by adjusting tback dynamically using a swarm
evolution strategy.

5.1. Behavior Law for Environment Monitoring and Target Search

The behavior law is represented with a finite state machine, as illustrated in Figure 4. The state
transition conditions are given in Table 1. The finite state machine consists of three states: the search
state, the visit state, and the report state.
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In the search state, robots move in the AOI while monitoring and searching simultaneously.
The behavior law is A(·) in Equation (1), which can be treated as a mapping:

fbehavior : P→ CD, (21)

CD = {Di+a,j+b|a, b ∈ {−1, 0, 1}}, (22)

with the current position of the robot rpos(t) ∈ Di,j, namely, the robot is currently in Di,j. In the next
step, it should move to a neighbor cell in CD, according to the pheromone matrix P.

The intuitive behavior law is to directly mimic behaviors of social insects. In the next step,
the robot should directly go to the neighbor cell with the lowest pheromone, i.e., the cell Di∗,j∗,
following behavior law:

fbehavior(P) = Di∗,j∗, (23)

where i∗, j∗ fulfill:
pi∗,j∗ = min{pi+a,j+b|a, b ∈ {−1, 0, 1}}. (24)

When a robot has monitored the environment and searched for a period tback, it will change to the
visit state.

In the visit state, a robot moves directly to the nearest communication node. When the
robot reaches the communication node, it changes to the report state, exchanging data with the
communication network following Algorithm 2.

The control commands here and those in the following sections are derived from a discrete model,
i.e., the robots are required to track a series of waypoints rather than following continuous velocity
commands. This is because the behavior of an underwater robot is disturbed by unpredictable ocean
current, and hydrodynamics needs to be taken into account, making it difficult to build an accurate
model. The solution to this problem is to adopt a layered controller in underwater robots. The top
layer generates commands such as velocity and waypoints, while the bottom layer—usually following
PID law—directly controls the steering and thrust. It is usually more effective for underwater robots
to track waypoints than following continuous velocity commands because the bottom controller has
disturbance rejection capabilities.

Two factors affect the performance of the method. The first factor is the re-visit time tback,
and the second factor is the behavior law fbehavior. We explore the effects of the two factors
in Sections 5.2 and 5.3.

Search Visit

Report

(1)

(2)(3)

Figure 4. Behavior law to monitor the environment and search for static targets.

Table 1. State transition condition in Figure 4 for static targets.

Marker Description

(1) Monitor the environment and search for a period of tback
(2) Reach the nearest communication node
(3) Finish exchanging data with the communication node
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5.2. The Relationship between tback and Performance

As defined in Section 4.2, tback indicates the re-visit time of a node. We observe that, as tback
increases, the performance, namely the coverage rate, for the same swarm first increases and then
decreases, as shown by simulation results using different tback in Section 6.

We provide a qualitative explanation for the phenomenon. For a swarm with N robots and
operation time Ttotal , the coverage rate is Pc = cvisited \ ctotal , with cvisited being cells that have been
visited by at least one robot, and ctotal the total number of cells in the AOI. As ctotal is constant,
the coverage rate is determined by cvisited:

cvisited =
N

∑
i=1

(Ti
search × (1− Pi

overlap)), (25)

with Ti
search being the time consumed by robot i to search, and Pi

overlap the possibility of robot i visiting
a cell that has already been visited. To simplify the analysis, it is assumed that a robot can only visit
one cell within a unit time.

Assuming that, during Ttotal , robot i visits the communication node Nb times, then we
have Ttotal = Nb × tback + ∑Nb

j=1 tj
return. Here, tj

return is the time for robot i to voyage towards the
communication node for the jth time. As a robot visits the communication node following the shortest
path, tj

return << tback. To simplify the analysis, we assume that the travel time to the communication
node is a constant value treturn, then we have:

Ttotal ≈ Nb × (tback + treturn). (26)

We further have:
Nb × tback ≈ Ttotal − Nb × treturn. (27)

For robot i,
Ti

search = Nb × tback. (28)

Then, for all robots,
Tsearch ≈ Ti

search = Ttotal − Nb × treturn, (29)

cvisited ≈ Tsearch ×
N

∑
i=1

(1− Pi
overlap). (30)

cvisited is determined by Tsearch and Pi
overlap. With the increase of tback, Nb decreases so that Tsearch

increases, i.e., the increase of tback is favorable to the increase of cvisited. Meanwhile, without real-time
data of each other, the chance for a robot to visit a cell that has already been visited by other robots also
increases with the increase of tback. i.e., Pi

overlap increases, which is a negative factor for cvisited. When

tback is small, Pi
overlap is so small that Tsearch plays the main role, and, with the increase of tback, the weight

of Pi
overlap increases, and finally neutralizes the advantage brought by Tsearch. Thus, the coverage rate

first increases and then decreases with the increase of tback, as shown in the experimental section.
As the robot swarm is a complex system affected by multiple contradictory factors, we are unable

to analyze the effects of tback quantitatively, i.e., unable to theoretically obtain the tback with the best
performance. Therefore, a swarm intelligent method is proposed to adjust the parameter tback online
and automatically. For robot r, we define pback to measure the performance of tback:

pback = 1− |cr
overlap|/|c

r
T,T+tback

|, (31)

cr
overlap = cr

T,T+tback
∩ call

T+tback
, (32)

where cr
T,T+tback

represents the cells that have been visited by robot r during time range [T, T + tback],
and call

T+tback
indicates the cells that have been visited by other robots during this period.



Sensors 2019, 19, 4089 13 of 25

Apparently, pback implies the rate of new cells that have been visited only by robot r to the
cells visited by robot r during the last period. Thus, we have pback ∈ [0, 1] and, if pback is larger,
the performance is better.

Based on pback, the robots in the swarm can adjust tback automatically according to the performance
during the last tback interval, and the method is as follows:

• Set initial values. For each robot, we assign a small initial value to tback(0). We also set pback(0) = 0,
and k(0) = 1.

• When a robot visits the communication network the ith time, calculate pback(i) and update tback(i)

tback(i) = tback(i− 1) + k(i)∆t, (33)

where

k(i) =

{
k(i− 1) pback(i) ≥ pback(i− 1),
−k(i− 1) pback(i) < pback(i− 1)

and ∆t is a parameter.

When robots in the swarm adjust their own tback automatically with the method above, we can
get an acceptable performance. Even though it is not an optimal solution, we can avoid the risk of
choosing an unfavorable tback.

5.3. Improve Performance by Using Global Information

The behavior law fbehavior in Section 5.1 just uses the information from the nine neighbor cells.
This strategy wastes the information from far-away cells. A better strategy should consider both nearby
and far-away pheromones. In this section, we propose an improved behavior law as follows:

f ′behavior : P→ CD, (34)

CD = {Di+a,j+b|a, b ∈ {−1, 0, 1}}. (35)

Assume that the current position of the robot is rpos(t) ∈ Di,j. In order to obtain f ′behavior, we define
two 3× 3 matrices Plocal and Pglobal . Plocal is a sub-matrix of P as follows:

Plocal =

pi−1,j−1 pi−1,j pi−1,j+1
pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1

 . (36)

Apparently, Plocal implies the pheromone information in cells in CD. As cells in the border region
are assigned a pheromone whose density is ∞, a robot does not set a point at the border as its next
waypoint. Only when it reaches one waypoint will a robot plan the next one. Hence, during the whole
searching process, waypoints are within the AOI. As a result, we can always get Plocal .

Pglobal is a matrix compressed from P, which means that Pglobal should contain the pheromone
information of the whole pheromone matrix. We get Pglobal with Algorithm 3.

In STEP 1, we replace the ∞ elements in P with 0 to get P′ so that we can sum elements up and
calculate the average value. Then, in STEP 2, we compress P′ into a 3× 3 matrix. This is achieved by
dividing P′ into nine sub-matrices and calculate the average values of these sub-matrices, as shown
in Figure 5. After this step, we can obtain a matrix called P′global . P′global already contains the information
of the whole pheromone matrix. However, it does not indicate if the neighbor cells are accessible.
Thus, in STEP 3, we get a matrix P′local that indicates all the inaccessible neighbor cells. In STEP
4, we combine P′local and P′global to get Pglobal that contains the global information, while indicating
neighbor inaccessible cells with ∞. The process is shown in Figure 5.
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Algorithm 3 Compress P into Pglobal

Input: P, Plocal ,rpos ∈ Di,j
Output: Pglobal

1: Define P′ = (p′i,j)m×n:

p′i,j=

 0 pi,j = ∞

pi,j pi,j 6= ∞

2: Compress matrix P′ into 3× 3 matrix P′global =
∑

a=i,b=j
a=1,b=1 p′a,b

i×j
∑a=i,b=n

a=1,b=1 p′a,b
i×n

∑a=i,b=n
a=1,b=j p′a,b

i×(n−j+1)
∑

a=m,b=j
a=1,b=1 p′a,b

m×j ∞
∑a=m,b=n

a=1,b=j p′a,b
m×(n−j+1)

∑
a=m,b=j
a=i,b=1 p′a,b

(m−i+1)×j
∑a=m,b=n

a=i,b=1 p′a,b
(m−i+1)×n

∑a=m,b=n
a=i,b=j p′i,j

(m−i+1)×(n−j+1)


3: Mapping Plocal to P′local by replacing all elements not equal to ∞ into 0
4: Pglobal = P′local + P′global

Now, we have two 3× 3 matrices, i.e., the local matrix Plocal and the global matrix Pglobal . Then,
we can decide the motion of the robot according to the two matrices. The idea is that, if a neighbor cell
has not been visited before, the robot will explore it. If all neighbor cells have already been visited, the
robot will move in the direction with the lowest pheromone density. We define the next cell to visit as
Di∗,j∗, which can be obtained with Algorithm 4.

Algorithm 4 Get the next cell to visit according to pheromone matrix

Input: Plocal , Pglobal
Output: Di∗,j∗

1: Create collection Cglobal that contains all elements of Pglobal
2: Create collection Clocal that contains all elements of Plocal
3: Create empty collection C
4: for pa,b in Clocal do

5: if pa,b = 0 then

6: put (a, b) into C
7: end if
8: end for
9: if |C| 6= 0 then

10: (i∗, j∗)← random(C)
11: end if
12: if |C| = 0 then

13: for pa,b in Cglobal do

14: if pa,b = min(Cglobal) then

15: put (a, b) into C
16: end if
17: end for
18: (i∗, j∗)← random(C)
19: end if
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The behavior law means:

• Check local matrix Plocal and go to a random cell whose pheromone density is 0.
• If no cell in Plocal equals 0, move to the cell with the lowest element in Pglobal .

∞ ∞ ∞ ∞ ∞

∞ p p p ∞

∞ p R ∞ ∞

∞ p p p ∞

∞ ∞ ∞ ∞ ∞

p p p

p R ∞

p p p

0 0 0 0 0

0 p p p 0

0 p R 0 0

0 p p p 0

0 0 0 0 0

0 0 0

0 0 ∞

0 0 0

∞

11A
12A

23A

13A

32A

21A

31A 33A

∞ ∞

11A 12A 13A

32A

21A

31A 33A

13A

32A

P :

localP :

localP :

P :

globalP :

globalP :

Figure 5. Steps of getting Pglobal from P. R indicates the current position of the robot, and p is
pheromone value that is not equal to ∞. ∞ indicates the inaccessible cells. From P, we can get P′ and
Plocal . P′ is compressed into P′global . Plocal transits to P′local by replacing all elements not equal to ∞
with 0. Finally, we get Pglobal by summing up P′local and P′global . Pglobal implies the average pheromone
density at each direction and indicates the adjacent inaccessible cells with ∞.

6. Simulation and Real-World Experiment

Simulations are carried out in Matlab (version 2014a) to test the strategy proposed in this
paper. We use an underwater robot swarm to monitor the environment and search for static targets.
The proposed methods are evaluated, and factors affecting the performance of the methods are
analyzed. Finally, we give some recommendations for the application of the methods according to the
simulation results.

6.1. Simulation

In the simulation of monitoring the environment and searching for static targets, we set the AOI
as a rectangle composed of 200× 200 cells. At each step, a robot can move to one of the adjacent cells,
and the total simulation time is set to 2000 steps. We assume that a robot is able to move from one
cell to another in one step. A communication network of sixteen communication nodes is deployed
into the AOI. These nodes are deployed evenly into the AOI, forming a uniform grid. All robots are
deployed from the same position. This is because, in practical application, all robots in the swarm are
deployed by the same mothership or from the same base station. In Section 5, we develop two behavior
laws. The behavior law flocal in Section 5.1 uses only local pheromone information, while fglobal in
Section 5.3 uses global pheromone information. Both methods are simulated. We also test a random
search scheme with all robots moving randomly. In Section 5.2, we assume that the re-visit time
tback can affect the performance of the method. Thus, we implement simulations with different tback.
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To eliminate randomness, for the same setting, we repeat the simulation 10 times. Each setting is
defined as

setting = (number, tback, behavior_law),

number ∈ {10, 20, 30, 40, 50},

tback ∈ {50, 150, 250, 350, 450, 550, 650, 750, ∞},

behavior_law ∈ { flocal , fglobal , frandom}.

For a random search, no tback is used.
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Figure 6. Comparison of performance for fglobal , flocal and frandom. In each subfigure, tback is set with
the same value, and swarms with 10, 20, 30, 40, 50 robots are tested with all three behavior laws.
The performance of the control law is evaluated with coverage rate. From each subfigure, we notice
that, for a fixed number of robots, no matter how tback is set, the performance of fglobal is always
superior to that of flocal . Both the fglobal and flocal schemes perform better than frandom. In addition,
with the increase of swarm size, the performance also increases no matter which scheme is adopted.
However, the increase of performance is obvious for flocal and fglobal , while that for frandom is rather
insignificant. This trend appears in each subfigure, which implies that fglobal is superior to flocal and
frandom no matter how tback is set.
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(a) Pheromone map with flocal (b) Pheromone map with fglobal

Figure 7. Typical pheromone maps with behavior law flocal and fglobal . The pheromone maps are
shown with a grayscale map, indicating the density of repellent pheromone. The density of the
pheromone is higher in the lighter region and lower in the darker region. The pheromone density is 0
in the black region. We want most areas to be visited by robots, but not repeated many times; (a) is not
perfect because it has a large black part, representing regions that have never been visited. It also has a
large part that is extremely white, indicating that these regions have been visited repeatedly, which is a
duplication of label; (b) is better because almost the whole AOI is covered with a layer of light white,
indicating that most parts have been visited, and not repeated over and over again.

As all experiments are carried out in the area of the same size, the number of robots can also
reflect the density of robots. As the swarm is used to monitor the environment and search static targets,
we assume that, only when the target that is within the cell has been visited by a robot, it can be found.
Thus, we use the coverage rate at the final time to measure the performance of the method.

From the simulation results in Figure 6, we compare the performance of the three methods with the
same number of robots and the same tback. It can be found that the method using the global pheromone
information is better than the method using only local pheromone information. The performances
of both pheromone-based methods are superior to that of the random search method. We note that,
except for tback = 50, the coverage rate with 20 robots and the behavior law fglobal is similar to that of a
swarm with 50 robots using flocal . In addition, for tback = 50, when the size of swarm using fglobal is 10,
the coverage rate is similar to a flocal swarm with 50 robots. This means that fglobal is very superior to
flocal . This is because, by using the Pglobal , the strategy fglobal can guide the robots to the region with
a lower repellent pheromone density in which fewer cells have been visited by robots. As a result,
with fglobal , the pheromone density is more even and robots can spread out in a short time. Figure 7
provides the pheromone map of a swarm using flocal and that of a swarm using fglobal for comparison.
The pheromone maps are represented with a grayscale map, indicating the density of the pheromone.
In both cases, the size of the swarm is 50 and the tback is set to 250. It can be seen that, when using
flocal , the grayscale map is more imbalanced. The light region implies that these cells have been visited
multiple times, so repellent pheromones have been deployed again and again, while the large dark
regions have never been visited. Meanwhile, the map using fglobal is very balanced, and the dark
region is much smaller. This implies that fewer cells have been visited multiple times by the swarm,
enabling robots to explore new regions.

In Section 5.2, we predict that tback can affect the performance of the swarm, and with the increase
of tback, the coverage rate will first increase and then decrease. Figures 8 and 9 show the effects of tback
to the performance of the swarm. We can clearly see the trend that the performances first increase and
then decrease. Therefore, it is important to choose a proper tback.

To solve this problem, we propose a method in Section 5.2 that can dynamically adjust the tback
for each robot. Again, we use a different number of robots and the two kinds of behavior controllers to
perform simulations. In these cases, the tback is not a constant value, and keeps changing following
the scheme in Section 5.2. The simulation results are shown in Figures 8 and 9. In each subfigure,
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the red box shows the performance while automatically adjusting the tback. From Figure 8, it is obvious
that, when using flocal , the performance with dynamic tback is better than that of any constant tback.
From Figure 9, when using fglobal , the performance with dynamic tback is mediocrity. Even though the
dynamic tback scheme is not optimal, the performance is acceptable. More importantly, evolving the
tback by the swarm, we can avoid the risk of choosing a bad tback.
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Figure 8. The effects of tback on behavior law flocal . Each subfigure illustrates the variation of the
swarm’s performance with the increase of tback when using a fixed number of robots. The robot
numbers are 10, 20, 30, 40, and 50, respectively. The tback increases from 50 to 150, 250, 350, 450, 550,
650, 750, and ∞. With ∞, it means that the robots never visit the communication network. The red box
shows the coverage rate with the method in Section 5.2 that adjusts tback automatically. The black line
links the mean values of the coverage rate, showing how the performance changes with the increase of
tback. From the black line, we notice that, with the increase of tback, the performance first increases and
then decreases. There exists a best tback which provides the fastest coverage rate. However, as analyzed
in Section 5.2, we are unable to obtain this value directly. Meanwhile, the red box shows that, with the
dynamic adjust tback strategy, the performance is superior to that of any fixed tback. The phenomenon
appears in each subfigure, i.e., simulation with different swarm size, indicating that, when using flocal ,
the dynamic adjust tback scheme performs better than any fixed tback.
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Figure 9. The effects of tback on behavior law fglobal . Each subfigure illustrates the variation of the
swarm’s performance with the increase of tback when using a fixed number of robots. The robot
numbers are 10, 20, 30, 40, and 50, respectively. The tback increase from 50 to 150, 250, 350, 450, 550,
650, 750, and ∞. With ∞, it means that the robots never visit the communication network. The red box
shows the coverage rate with the method in Section 5.2 that adjusts tback automatically. The black line
links the mean values of the coverage rate, showing how the performance changes with the increase of
tback. Similar to Figure 8, in each subfigure, the black line first increases and then decreases, indicating
that, with the increment of tback, the coverage rate will first increase and then decrease. From the five
sub-figures, the red box is a bit lower than the top of the black line. This indicates that, with fglobal ,
the dynamic adjust tback scheme will provide the performance that is not the best, but still acceptable.
Considering that we are unable to get the best tback in advance, using the dynamic adjust tback scheme
has application value because it can avoid choosing a poor tback.

6.2. Real-World Experiment

The experiment is carried out with a USV swarm in Xiuhu Lake, Shenyang, China. As experiments
with a swarm of underwater robots are costly, it is a common practice to mimic the behavior
of underwater robots using USVs as an alternative in real-world experiments, such as in [72,73].
As shown in Figure 10, a float ball acting as the communication node is located at the center of the
lake (123.653555 E, 41.934899 N). In the lake, we set a square of 150 × 150 m2 as the AOI and deploy
two USVs. The AOI is first mapped into a matrix representing the pheromone with Algorithm 1.
This is achieved by scattering the AOI into a set of grids properly. The USVs adopt GPS to obtain their
locations and the positioning error is around 5 m. The cruise speed of both USVs are 1.5 m/s, with the
turn radius being 10 m. With these parameters, we scatter the AOI into 25 cells, with the edge of each
cell being 30 m. This value is big enough for USVs to overcome negative effects caused by positioning
errors, and is larger than the turn radius so that one USV can move smoothly from one cell to another
without circling around the destination. To prevent the USVs from going out of the AOI, the edge of
the AOI is expanded slightly, generating the border region filled with the pheromone of ∞ density.
In this case, we set a border region whose width is 30 m, as shown in Figure 11. The two USVs are
unable to communicate with each other but can exchange data with a communication node when the
distance between them is less than five meters.

In the experiment, two behavior laws are tested, which are based on local pheromone information
in Section 5.1 and global pheromone information in Section 5.1, respectively. Considering the choice of
tback and the simulation results in Section 6.1, the scheme in Section 5.2 can adjust tback dynamically,
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providing an acceptable performance in both cases. Thus, in the test, we do not set a fixed tback but
rather adjust it dynamically. The performance is evaluated with the distribution of pheromones in
the area, and we are interested in two metrics. The first metric is the coverage rate, implying if the
whole area has been explored by the swarm. The second metric is the mean square error of the density
of pheromone. A small mean square error indicates that each square is visited frequently enough,
enabling the robots to find emerging targets in time.

Both methods are tested for 20 min, with Figure 11 showing the distribution of pheromones for
both methods. With the local pheromone-based method, the coverage rate is 88% with the mean square
error of 0.3594. However, with the global pheromone-based method, the coverage rate reaches 100%
with a smaller mean square error of 0.2899. We conclude that the scheme adopting global pheromone
information performs better. This result further supports the discussion in Section 5 and verifies the
simulation results.

Figure 10. The lake experiment carried out with two USVs and one communication node. USV #1 is
approaching the communication node to update its pheromone map, while #2 that has just visited the
node is exploring the lake.

(a) flocal (b) fglobal

Figure 11. Pheromone distribution with flocal and fglobal . In our test, the AOI is scattered into 5× 5
grids with Algorithm 1. The color of each square indicates the density of pheromone: the darker a
square, the greater the pheromone density is. The edge of the AOI is black and the corresponding
pheromone density is ∞, preventing the robots from going out of the AOI. The red star indicates a
communication node. With fglobal , pheromone has been deployed into the whole area, but it is not the
case when using flocal . In addition, the density with global is more balanced.
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7. Conclusions

An underwater robot swarm can be applied for maritime monitoring applications. Compared
with a single robot, a swarm covers a larger area and it can accomplish tasks more rapidly by working
collectively. In this paper, we propose a monitoring strategy for an underwater robot swarm. The use
of robots makes it possible to monitor a dynamically selected area, rather than monitor a fixed
area using stationary monitoring sensors. Our strategy deals two aspects, i.e., communication and
swarm monitoring behavior. We build a communication network which contains a set of underwater
communication nodes. Robots periodically visit communication nodes to exchange information
with each other in an indirect way. To form cooperative swarm monitoring behavior, we apply a
pheromone-inspired controller to each robot. The controller uses virtual pheromone to store the
information of an AOI. Behavior laws are designed to guide robots to monitor the environment with
the help of the virtual pheromone. In the monitoring process, static target search—such as wreckage or
mine resources—can be performed simultaneously. Once the targets are found, they can be reported
by updating information to communication nodes.

Experimental results indicate that, among the three schemes we tested (i.e., fglobal , flocal and
random search), the fglobal scheme performs best, and both fglobal and flocal schemes work better than
the random search scheme. This can be explained from the degree of "cooperation" among robots.
With the random search scheme, every robot works independently. Thus, they do not use information
from their peers, resulting in duplicate work. With flocal , a robot uses the nearby information. It
can infer the density of nearby robots and visit unexplored areas. With fglobal , a robot can obtain the
information of the whole AOI. The more information it has, the wiser a decision it can make.

There is a trade-off between performance and computation cost. For a robot swarm with a
random search scheme, only a few robots are needed and the calculation workload is small. When
adopting a flocal scheme, an underwater communication network consisting of a set of communication
nodes is necessary. To achieve better performance, we apply fglobal scheme, which may require a high
performance computer because a robot needs to handle a matrix representing the whole AOI. With the
expansion of the AOI, the calculation workload will also increase. If the AOI is enormous, robots may
need a high performance computer, which will increase the cost of the swarm, as well as the energy
consumption. However, with flocal , no matter how large the AOI is, the calculation workload is fixed
and small because only a 3× 3 matrix is processed (or 3× 3× 3 matrix when the third dimension is
added). As a result, the robot can carry a computer with lower performance, thus reducing the cost of
the robot.

In addition, the performance of fglobal can be further improved. The key point is to extract
valuable information from the pheromone matrix. Our current scheme uses the mean pheromone
density in each direction to determine the behavior of a robot. However, from the global matrix,
other information can also be used. A proper choice of the information may improve the performance
of the swarm, and that is what we are currently working on.

In order to achieve a reasonable performance, we introduce an evolution scheme that automatically
varies the visiting period of the robots in the monitoring process. Simulation results reveal that,
for flocal , the performance of dynamic tback is superior to that of any fixed tback. However, for fglobal ,
the performance of this scheme is not remarkable. This is because a robot adjusts its tback based on
its own historical performance. There is a chance that the strategy can be improved by utilizing the
historical performance of other robots.

In the future, we plan to enhance the performance of our monitoring strategy by predicting
global information based on past information from the network and demonstrate its effectiveness in
real-world applications.
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