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Abstract. The active migration of tumor cells 
through extracellular matrices has been proposed to 
play a role in certain aspects of metastasis. Metastatic 
tumor cells migrate in vitro in response to substra- 
tum-bound adhesive glycoproteins such as fibronectin. 
The present studies use affinity-purified proteolytic 
fragments of fibronectin to determine the nature of 
adhesion- and/or motility-promoting domains within 
the protein. Two distinct fragments were identified 
with cell adhesion-promoting activities. By a number 
of criteria, the adhesive activity promoted by these 
two fragments was distinct. One fragment, a 75-kD 
tryptic fragment purified by monoclonal antibody 
chromatography, promoted the adhesion, spreading, 
and haptotactic motility of melanoma cells. Experi- 
ments using a synthetic cell attachment peptide in 
solution indicated that at least part of the attachment 
activity exhibited by the 75-kD fragment is mediated 
by the sequence arg-gly-asp-ser. It was not possible to 
demonstrate migration-stimulating activity using a 

small (11.5 kD) peptic fragment containing this se- 
quence (Pierschbacher, M.D., E. G. Hayman, and E. 
Ruoslahti, 1981, Cell, 26:259-267) suggesting that an- 
other cell-binding activity within the 75 kD fragment 
distinct from arg-gly-asp-ser might be required for mo- 
tility. The second fragment that stimulated melanoma 
adhesion was a 33-kD tryptic/catheptic carboxyl-ter- 
minal heparin-binding fragment, which is localized to 
the A chain of fibronectin. This fragment promotes 
adhesion and spreading but not the motility of these 
cells. Melanoma adhesion to this heparin-binding 
fragment was sensitive to the effects of cycloheximide, 
which contrasted adhesion to the haptotaxis-promot- 
ing fragment. Importantly, these studies illustrate that 
haptotaxis in response to fibronectin is not due to 
simple adhesion gradients of this protein. The results 
are discussed in light of a model for multiple distinct 
cell surface constituents mediating cell adhesion and 
motility on fibronectin. 

T 
HE metastatic spread of certain malignant neoplasms 
has been associated with active cell motility. This 
association has been made both at the primary site of 

growth (43) as well as with model systems designed to study 
the entry and exit of tumor ceils into and out of the vascula- 
ture (42, 46, 48 and references therein). Ceils encounter a 
wide variety of extracellular matrix and basement membrane 
molecules as they penetrate and migrate through tissues. The 
vast amount of work on fibronectin has been important for 
developing an understanding of the molecular basis by which 
noncollagenous matrix glycoproteins promote the adhesion 
of many normal and transformed cell types in vitro (10, 12, 
16, 50 and references therein). The interaction of cells with 
fibronectin results in cell adhesion and in the reorganization 
of the cytoskeleton leading to spreading. This spreading can 
then become polarized and lead to cell motility over this 
protein. A variety of cell types have been shown to manifest 
this response to fibronectin (for review see references 10, 12, 
16, 50). 

Work from our laboratory (23) as well as others (1, 20, 25) 
demonstrates that fibronectin can promote the migration of 
a variety of tumor cell types in vitro. Laminin (2, 23, 24, 39) 
and serum-spreading factor (2), two additional cell attach- 
ment/spreading factors, have also been shown to promote the 
directed motility of a variety of tumor cell types in vitro. At 
least for certain of these cell/protein combinations, the di- 
rected motility has been shown to be haptotactic in nature, 
meaning that the directional migration observed is in response 
to substratum-bound density gradients of these attachment 
proteins (2, 20, 23, 24). 

Studies have shown that the diverse binding or functional 
activities of fibronectin exist in specific domains or regions of 
the molecule that can be isolated by proteolytic digestion and 
purification with various antibodies or other ligands. The 
work of Pierschbacher and co-workers was the first to eluci- 
date the molecular nature of a cell attachment/spreading 
activity present within the fibronectin molecule (31-33). 
These studies initially used a monoclonal antibody, termed 
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3E3, to isolate an 11.5-kD pepsin-derived fragment of fibro- 
nectin shown to directly promote the attachment and spread- 
ing of fibroblastic cells in vitro (33). This fragment represents 
domain IV of fibronectin according to the nomenclature 
described in Furcht (10). Further studies using direct amino 
acid sequencing identified the active region of the cell attach- 
ment-promoting domain as a continuous determinant of the 
molecule containing the amino acids arginyl-glycyl-aspartyl- 
serine (RGDS) (31). This sequence has been shown to occur 
in a disulfide-independent type III homology (30) of the intact 
protein located to the amino-terminal side of the carboxyl- 
terminal heparin-binding domain (13, 31, 38, 47). 

Yamada and Kennedy have examined the effect of soluble 
fibronectin or RGDS-containing synthetic peptides on the 
attachment and spreading of continuous cell lines (51). This 
study reported that high levels of soluble fibronectin (5-10 
mg/ml) could inhibit the spreading of fibroblastic cells on 
substrates coated with 3 ug/ml of plasma fibronectin. Increas- 
ing the concentration of substrate-bound fibronectin could 
overcome the inhibitory effect of soluble fibronectin, so in- 
hibition was concluded to be competitive in nature. Similar 
inhibitory effects were also reported using a soluble 75-kD 
tryptic cell-binding peptide or synthetic RGDS-containing 
peptides (32, 51). 

The present studies were performed in order to establish 
the nature of the domains in the fibronectin molecule that 
promote the attachment and motility of metastatic melanoma 
cells. These studies use a combination of limited proteolysis, 
affinity chromatography, and monoclonal antibody tech- 
niques to isolate biologically active fragments of fibronectin. 
The results show that although melanoma cells do in fact 
contain "receptors" for the RGDS peptide, the RGDS-con- 
taining domain alone does not appear to be sufficient to 
stimulate melanoma haptotaxis. Furthermore, while certain 
fragments with adhesion-promoting activities of fibronectin 
result in tumor cell motility, other fragments with adhesion- 
promoting activities do not stimulate movement. We con- 
clude that melanoma cells interact with at least two and 
possibly three distinct domains on the intact protein, and that 
these interactions are mediated by distinct cell surface com- 
ponents each of which potentially has different consequences 
for tumor cell behavior. 

Materials and Methods 

Cell cultures 
Murine melanoma cells, BI6 FI0, were cultured in vitro in Dulbecco's modified 
Eagle's medium with 10% heat-inactivated fetal calf serum (Dutehland Labs, 
Denver, PA) as previously described (23). Cells used for either attachment or 
migration assays were always 70-90% confluent. The luog-colonizing potential 
of these cells was verified using the tail vein experimental metastatic assay in 
C57B16 mice as previously described (34). 

Reagents 
Pepsin-generated I 1.5-kD cell-binding fragment (31) and monoclonal antibody 
3E3 (31) were generously supplied to us by Dr. Michael Pierschbacher of 
the La Jolla Cancer Research Foundation, La Jolla, CA. N-Tosyl-L-phenylala- 
nine chloromethyi ketone-trypsin was obtained from CooperBiomedical, Inc. 
(Malvern, PA). Cathepsin D, pepsin, cycloheximide, heparin-Sepharose, and 
3,3,diaminobenzidine were purchased from Sigma Chemical Co. (St. Louis, 
MO). Pentex bovine serum albumin (BSA) was from Miles Laboratories Inc. 
(Elkhart, IN). Insolubilized protease inhibitors, soybean trypsin inhibitor, and 
pepstatin A were from Pierce Chemical Co. (Rockford, IL), and Affi-Gel l0 
was from Bio-Rad Laboratories (Richmond, CA). Nitrocellulose blotting paper, 

type HAHY, was purchased from Millipore Corporation (Bedford, MA). Per- 
oxidase-coupled goa: anti-mouse lgG heavy and light chains was purchased 
from CooperBiomedical/Cappel (Malvern, PA). The synthetic fihronectin cell 
attachment peptide, RGDS, (32) was purchased from Peninsula Laboratories, 
Inc., Belmont, CA and was also kindly supplied by Dr. Alan Day, Genesis Labs 
(Minneapolis, MN). 

Purification of Fibronectin and Proteolytic Fragments 
Human plasma fibronectin was purified from plasma by gelatin and ion 
exchange chromatography as previously described (40). Tryptic/catheptic frag- 
ments of fihronectin were prepared as previously described (40, 41) by sequen- 
tial affinity chromatography over gelatin, heparin, and monoclonal antibody 
180-8 affinity columns. 

Additional proteolytic fragments were also prepared from flbronectin. Either 
the tryptic/catheptic 80-125-kD fragments or intact fibronectin were trypsin- 
ized extensively (1% enzyme to substrate for 2 h at 37"C) and fractionated over 
a monoclonal antibody 180-8 affinity column. The 180-8 bound fragments 
were then chromatographed over a Spherogel TSK 3000 column (Altex 7.5 
m m x  30 cm) at a flow rate'of 0.75 ml/min in 0.01 M phosphate, pH 6.5, 
containing 0.25 M NaCl. Fractions were collected every minute, and fractions 
containing molecular mass peptides ranging from 60 to 100 kD were pooled, 
concentrated, and used for further analysis in biological assays. SDS PAGE 
analysis of this pool demonstrated the presence of one major peptide at 75 kD 
and occasionally lesser amounts of a fragment at 70 kD which was closely 
related to the 75-kD fragment, since both bound monoclonal antibodies 180-8 
and 3E3 and could not be separated by a variety of chromatographic techniques. 
The 180-8 unbound fragments consisted of a series of poorly defined low 
molecular mass proteolytic fragments. These peptides were used in the cell 
attachment and motility assays as described below. 

Further proteolysis of the 180-8-bound 75-kD fragment was also performed 
with pepsin. Solutions of purified 75-kD fragment were dialyzed against 2% 
acetic acid and digested at 37"C with pepsin at an enzyme to substrate ratio of 
1% for various times. The reaction was terminated by the addition of insolu- 
bilized pepstatin A, and the digests were characterized for cell attachment and 
motility activities. The concentration of intact fibronectin was estimated using 
the extinction coefficient previously reported for the intact protein (26). The 
concentration of fragments was determined assuming an extinction coefficient 
of 10.0 for a 1% solution and a l-cm path length at 280 nm. 

Purified fragments of fibronectin or the intact protein were radioactively 
labeled using the reduetive methylation technique as previously described (23). 
Tritiated fragments or intact fibronectin were qualitatively assessed by the use 
of autoradiography of SDS polyacrylamide gels. The quantitative binding of 
these peptides to either tissue culture plastic or to polycarbonate filters used in 
the attachment and migration assays was analyzed as previously described (24, 
36). 

Immunolocalization of Electrophoretic Transfers 
Purified flbronectin fragment preparations were electrophoresed in SDS poly- 
acrylamide gels (36) and electrophoretically transferred to nitrocellulose as 
described (44). After overnight incubation in PBS with 3% bovine serum 
albumin (PBS/BSA), the filters were incubated for l h in the presence of 
monoclonal antibodies 180-8 (40), 2-8 (41), or 3E3 (3 l) that were diluted from 
ascites at a 1:500 ratio in PBS/BSA containing 10% normal goat serum. After 
30-rain rinse in PBS, peroxidase-coupled goat anti-mouse antibodies, diluted 
1:500 in PBS/BSA, were incubated with the sheets for an additional hour. 
Finally, blots were rinsed and color was developed using diaminobenzidine 
dissolved in PBS at a concentration of 120 t~g/ml with 0.001% H202 for 5 min. 
The reaction was terminated by flushing with water. Parallel blots were also 
stained immediately after transfer with Amido black to visualize all transferred 
proteins or proteolytic fragments. 

Cell Migration Assays and Attachment 
The migration of cells in response to fibronectin or proteolytic fragments of 
the molecule was measured in blind well microchambers using 8.0 pore size 
polycarbonate filters as previously described (23, 24). The chambers were 
incubated for 4 h at 37"C, at which time the filters were removed, fixed, stained, 
and the cells were visualized on a Zeiss Universal Microscope at 400x magni- 
fication. Migrated cells were quantitated with the aid of an Optomax Image 
System IV automatic inaage analysis system (Optomax, Inc., HoUis, NH). 

The basic cell attachment methodologies have also been described previously 
(9, 27). Late log phase cultures of melanoma cells were incubated overnight in 
the presence of 2 ~aCi/ml of tritiated thymidine (specific activity, 6 mCi/ml; 
Amersham Corp., Arlington Heights, IL). In some cases the cells were then 
incubated with l0 t~g/ml cycloheximide for 2 h prior to harvest. Cells were 
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trypsinized, washed in serum-free medium, and adjusted to a final concentra-
tion of 5 x 10'/ml in Dulbecco's modified Eagle'smedium buffered with 0.015
M Hepes, pH 7 .2 . The cell attachment buffer contained 2 mg/ml BSA . The
cells were added in a volume of0.5 ml (2 .5 x 10' cells) to 24-well tissue culture
plates (Costar, Cambridge, MA) coated with the appropriate attachment factor,
and the plates were incubated for 90 min to 2 h at 37°C. Non-attached cells
were washed away and attached cells were solubilized with 0.5 N NaOH and
I % SDS. Solubilized radioactivitywasdetermined by liquid scintillation count-
ing . In experiments using cycloheximide, it was neccessary toadd the compound
back to the cell attachment assay at a concentration of 10 ug/ml in order to
prevent the resumption of protein synthesis during the assay.

Peptide inhibition studies of attachment were performed as follows. Cell
suspensions were adjusted to a concentration of 3 x l0'/ml in Dulbecco's
modified Eagle's medium with 2 mg/ml BSA and 0.015 M Hepes, pH 7 .2 .
Synthetic peptide was added at the indicated concentrations to radioactive cell
suspensions and the samples were incubated at a 37°C water bath for 10-15
min . 100-,u1 aliquots of these cell suspensions (3 x 10' total cells) were added
to pre-coated microtiter wells and cells were incubated for 90 min in the cell
attachment assays. The attached cells were examined visually before harvesting
the assay.

Results
Immunochemical Analysis of Tryptic Catheptic
Fragments ofFibronectin
Tryptic/catheptic fragments of plasma fibronectin were
prepared as described in Materials and Methods and in
previous reports (37, 40, 41). This particular fragment
preparation was chosen to start these studies since previous
work in our laboratory indicated these fragments collectively
could account for essentially the entire molecular mass as
well as many of the biological activities ofthe intact protein
(40, 41). These fragments were further characterized by
immunoblotting SDS PAGE gels ofthe fragment preparations
(not shown), the results of which are summarized in Fig . 1 .
The fragments will be summarized here for the sake ofclarity .
The initial tryptic/catheptic digestion scheme generates the
following proteolytic fragments (37, 40, 41): (a) a 27-kD
tryptic fragment, designated t27, that binds heparin weakly;
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Figure 1. The 'schematic shown above depicts the arrangement of
biologically activedomainswithin fibronectin as well asthe alignment
and apparent molecular masses of proteolytic fragments used in this
study. Details are summarized in Results. Hatched boxes indicate the
actual location of the domain delineated by the roman numerals.
The 75-kD fragment represents a cell-binding fragment previously
described by Hayashi and Yamada (13) . Domain IV represents the
pepsin-generated 11.5-kD fragment that binds monoclonal antibody
3E3 and contains the RGDS sequence described by Pierschbacher
and co-workers (31, 33). Domain nomenclature is based on the review
ofFurcht (10) .

(b) a 46-kD tryptic/catheptic fragment (tc 46) that binds
gelatin noncovalently ; (c) a series of four proteolytic
fragments, ranging in molecular mass from 80 to 125 kD (tc
80-125), that do not bind gelatin or heparin; (d) two tryptic/
catheptic fragments that bind heparin strongly (tc 33/66) ; and
(e) a tryptic 31-kD fragment (t31) that contains a free
sulfhydryl. Fig. 1 also shows the reactivity ofthese fragments
with three monoclonal antibodies . The 180-8 and 2-8
monoclonal antibodies have previously been used to
immunolocalize two free sulfhydryl-containing sites along the
chain of the fbronectin molecule (40, 41) . Monoclonal
antibody 3E3 has previously been used to locate a pepsin
fragment within fbronectin that contains a cell attachment/
spreading promoting sequence, RGDS (31) . The four main
peptides inserted above the main drawing of the molecule
with apparent molecular masses of 80, 105, 120, and 125 kD
all contain the 180-8 determinant. In contrast, the 2-8
determinant is localized within the 66-kD fragment, which
binds heparin strongly, and the 31-kD free sulfhydryl-
containing fragment. The nomenclature of the domains as
shown in this figure was previously described in Furcht (10) .

Migration Response of Tumor Cells to Purified
Proteolytic Fragments ofFibronectin
The fragment preparations shown in Fig. 1 were added to the
lower well of a modified Boyden chamber, and cells were
added to the upper wells . The migration of cells in response
to these fragments is shown in Fig. 2 . Melanoma cells migrate
in a concentration-dependent manner to increasing levels of
intact fibronectin, with a maximum response of 80-fold over
control level migration observed at 12.5 gg/ml in the lower
well. The only fragments observed to promote haptotactic
motility in these chambers were the tryptic/catheptic 80-125-
kD fragments that contained the 180-8 and 3E3 determinants .
All other fragments were observed to be ineffective at pro-
moting melanoma cell migration in this assay.
Fragments were isotopically labeled with tritium using re-

ductive methylation and added to the lower wells ofmigration

Figure 2. Migration of tumor cells in response to affinity-purified
tryptic/catheptic fragments of fibronectin . Purified tryptic/catheptic
fragments offibronectin, shown in Fig . 1, were adjusted to a concen-
tration equivalent on a molar basis to the indicated concentration of
intact fibronectin and added to the lower well of a Boyden chamber
assay . B16F, o murine melanoma cells were added to the upper well
and the chambers were incubated for 4 h . The assay was then
terminated and quantitated as described in Materials and Methods.
The results are presented as the mean number of migrated cells per
high power field (HPF) ± SEM. (") Intact fibronectin ; (p) tc80-125
fragments; (p) tc46 fragment; (O) tc33/66 heparin-binding fragments,
t27 or t31 fragments of fibronectin.
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chambers to determine that all fragments bound to the filter 
surface. This was done to establish that failure to stimulate 
migration in this system by any given preparation of frag- 
ments was not due to a failure of the fragments to bind to the 
filter under the assay conditions used, since earlier studies 
showed that cells migrated primarily in response to substra- 
tum-bound fibronectin (23, 24). The results of this experiment 
are shown in Table I. These data show that all of the fragments 
used in this assay bound to the filter surface in amounts that 
were within or exceeded the range of the binding of intact 
fibronectin to the filter surface, demonstrating that failure of 
cells to migrate to a given fragment was not due to a failure 
of the fragment to bind to the filter surface. 

Attachment of  Metastatic Melanoma Cells to Surfaces 
Coated with Purified Proteolytic Fragments 
of  Fibronectin 

Migration of tumor cells in this assay system is via substratum- 
bound attractant (20, 23), so it was of interest to determine 
the attachment-promoting activities of the fragment popula- 
tions used in the migration assay. To do this, attachment of 
tumor ceils to tissue culture surfaces coated with either intact 
fibronectin or the various fragment preparations was mea- 
sured as described. The results of this experiment are shown 
in Fig. 3. As has been shown repeatedly for this protein (for 
review see references 10, 16, 50), many cell types attach and 
spread very well to surfaces coated with the intact fibronectin 
molecule. Results in general indicate that within 90 min, 85% 
of the cells attach to tissue culture surfaces coated with 25 tzg/ 
ml of intact fibronectin (Fig. 3). High levels (>70%) of cell 
attachment were also observed to surfaces adsorbed with the 
molar equivalent of 25 #g/ml of the 80-125-kD and 33/66- 
kD heparin-binding fragments (designated tc 80-125 and tc 

Table I. Binding of Purified Fibronectin Fragments to 
Polycarbonate Filter Surfaces 

Amount Molar equivalent 
Protein in bound to to intact fibro- 

Sample lower well* filter surface* nectin bound! 

~tg/ml ng ng 

Fibronectin 100 120 120 
Fibronectin 1.0 2.3 2.3 
27 kD (t27) 100 123 1025 
27 kD 10 14.4 120 
46 kD (tc46) 100 70 350 
46 kD 10 20.5 100 
80-125 kD (tc80-125) 100 115 230 
80-125 kD 10 38.7 78 
33/66 kD (tc33/66) 100 97.5 325 
33/66 kD 10 24.7 82 
31 kD (t31) 100 59.5 425 
31 kD 10 15 107 

* Intact radioactively labeled fibronectin, at the indicated concentrations, or 
purified proteolytic fragments, at the molar equivalent, were diluted in the 
medium used for the migration assay and incubated in the chambers as 
described in Materials and Methods. The filters were removed and processed, 
and bound radioactivity was determined. 
* The actual amount of bound protein to the filter surface is the mean of 
triplicate wells in the migration chamber. The surface area of one side of the 
filter in a well is 7.9 mm 2. 
0 The molar equivalent bound relative to intact fibronectin was calculated as 
follows. The ratio of the molecular mass between each fragment and intact 
fibronectin monomer (assumed molecular mass of 230 kD) was calculated. The 
actual amount bound was divided by this ratio to represent the molar equivalent 
of this peptide relative to intact fibronectin monomer. 
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Figure 3. Cycloheximide inhibition of cell attachment to the carboxyl- 
terminal heparin-binding domains of fibronectin. Wells were coated 
with 25 gg/ml intact fibronectin or the molar equivalent of 25 tzg/ml 
of the particular proteolytic fragments. Radioactive fragments were 
bound to plastic in parallel to determine that all fragments bound 
sufficiently (not shown). Radioactively labeled cells were added to 
wells as described in the presence or absence of 10 ~g/ml cyclohexi- 
mide. The assay was terminated and adhesion values were determined 
after a 90-min incubation period. Background adhesion to BSA- 
coated substrata was 2.5% of the applied counts. Values shown are 
the triplicate determination of the mean percentage of attached cells 
plus or minus the SEM. 

33/66, respectively). Attachment of these cells to intact fibro- 
nectin or the centrally located haptotaxis-promoting region(s) 
was resistant to the effects of cycloheximide. In contrast, cell 
adhesion to the 33/66-kD heparin-binding fragments was 
sensitive to cycloheximide, with a ~90% decrease in levels of 
adhesion compared to that observed in the cycloheximide- 
free conditions. 

Identification of Proteolytic Heparin-Binding 
Fragment That Promotes Melanoma Attachment 

The 33/66-kD heparin-binding fragments (tc 33/66) could be 
further resolved by affinity chromatography on monoclonal 
antibody 2-8. Previous reports using this monoclonal anti- 
body (40, 41) demonstrated that the 66-kD heparin-binding 
fragment contains a determinant for this antibody while the 
33-kD fragment does not (see Fig. 1). This difference was used 
to separate these two tryptic/catheptic heparin-binding frag- 
ments from each other. A gel of the isolated peptides is shown 
in Fig. 4. Cell attachment activity was then measured for the 
purified 33-kD and 66-kD fragments (Table II). The majority 
of the cell attachment activity present in the 33/66-kD car- 
boxyl-terminal heparin-binding fragments of fibronectin is 
associated with the 33-kD heparin-binding fragment (contain- 
ing domain V) and not the 66-kD fragment (which contains 
both domains V and VI). Curiously, the combination of 
fragments plated at the lowest concentration tested (25 ug/ 
ml) exhibited much greater adhesion activity (about fivefold) 
than either the 33-kD or 66-kD fragment alone at this con- 
centration. 

Further Definition of the Haptotaxis-promoting 
Region of  the Molecule 
The initial studies indicated that the haptotaxis-promoting 
domain(s) of the molecule is located within the region of the 
protein which has been shown to contain the determinant for 
the 3E3 monoclonal antibody and the RGDS sequence. This 
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Figure 4. SDS PAGE gel of purified carboxyl-terminal heparin- 
binding fragments of fibronectin. The 33/66-kD carboxyl-terminal 
heparin-binding fragments were chromatogmphed over a monoclonal 
antibody 2-8 column. The 2-8 unbound (lane 1) and bound (lane 2) 
depict the 33-kD and 66-kD fragments, respectively. 

Table II. Adhesion of  Metastatic Melanoma Cells to 
Purified Fibronectin Fragments 

Percent total cells bound to increasing con- 
Protein or fragment tested* centrations of protein* 

25 ug/ml 50 ~g/ml I00 ~g/ml 
Fibronectin 54.2 69.7 62.4 
tc 33/66 50.0 58.6 53.1 
tc 33 (2-8 unbound) 8.6 25.5 50.4 
tc 66 (2-8 bound) 1.9 2.7 7.0 

* The 33/66-kD heparin-binding fragments were obtained from a tryptic/ 
catheptic limited digest of fibronectin as described in Materials and Methods. 
These fragments, which both bind heparin strongly, could be segregated on the 
basis of monoclonal antibody 2-8 chromatography. 
*Cell adhesion was performed as described in Materials and Methods in the 
absence of cycloheximide. Intact fibronectin or purified proteolytic fragments 
were added to wells for coating at the indicated concentration (ug/ml or molar 
equivalent). The data are presented as mean percent adhesion, and represent 
the mean of triplicate determinations. SEMs were <10% of the reported value. 
(Background adhesion to BSA--coated plastic was I% of the total counts 
applied.) 

sequence has been reported to promote the attachment and 
spreading of fibroblasts in vitro (31, 33). Furthermore, these 
fragments also contained the determinant for monoclonal 
antibody 180-8, a monoclonal antibody that has been previ- 
ously used to localize a free sulfhydryl within these fragments 
(41). Different proteases were used with monoclonal antibody 
chromatography to further define the region of the molecule 
that was responsible for promoting the haptotaxis of mela- 
noma cells. The first approach was to perform long-term (2- 
h) trypsinization of either the 80-125-kD fragments or of 
intact fibronectin (Fig. 5). In either case a predominant end 

Figure 5. Long-term trypsinization o f  the 80-125 kD haptotaxis- 
promoting fragments of  fibronectin. The haptotaxis-promoting frag- 
ments  (tc 80-125) or intact fibronectin were trypsinized for 2 h at 
37"C and the digests were examined by gradient (6-20%) SDS PAGE 
in the presence of  2-mercaptoethanol. Lane 1 contains a 2-h digest 
o f  the 80-125 kD fragments and lane 2 shows a 2-h digest o f  intact 
fibronectin. Lane 3 contains the 180-8 bound/high performance 
liquid chromatography-purif ied 75-kD fragment from the fibronectin 
digest. The fragments in lane 4 represent the 180-8 nonbound frag- 
ments  from a 2-h tryptic digest o f  fibronectin. Approximately 20 ug 
of  protein was applied to each lane. 

product was a 75-kD fragment. Both monoclonal antibody 
and ligand-binding activities were used to place the 75-kD 
tryptic fragment within fibronectin as shown in Fig. 1. This 
fragment consists of domains III and IV of fibronectin (10). 
The 180-8 affinity column was used to bind the 75-kD frag- 
ment from the tryptic digest of fibronectin (see Fig. 5, lane 
3). The unbound fragments from the 180-8 affinity column 
included a series of smaller fragments (Fig. 5, lane 4). The 
180-8 bound and unbound fragments were tested for biolog- 
ical activity in the cell attachment and haptotaxis assays. 

The results of the attachment assay on the 180-8 bound 
and unbound fractions are shown in Fig. 6. Fibronectin- 
coated surfaces are active at promoting attachment of mela- 
noma cells in a concentration-dependent manner. At the 
higher coating concentration (50 ug/ml), almost 75% of the 
cells were attached to the substratum. Similar values of cell 
attachment were observed on surfaces coated with the molar 
equivalent of the 180-8-bound fragments of the tryptic digest. 
In contrast, minimal attachment of the melanoma cells was 
observed on surfaces coated with the fractions of the tryptic 
digest that did not bind the 180-8 affinity column. The 
localization of the 3E3 monoclonal antibody determinant to 
the 180-8 bound tryptic fragments prompted us to examine 
the pepsin-derived 11.5-kD fragment (domain IV) for mela- 
noma cell attachment activity. This purified peptide, kindly 
supplied to us by Dr. Michael Pierschbacher, has been previ- 
ously demonstrated to promote the attachment of fibroblasts 
to surfaces having this peptide adsorbed to it (31, 33). In 
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Figure 6. Purification of attachment activity from 2-h tryptic digests 
of fibronectin by monoclonal antibody 180-8. The 180-8-bound and 
-unbound fractions from a 2-h tryptic digest of fibronectin were used 
to coat tissue culture wells to monitor attachment of melanoma cells. 
Wells were coated at the indicated concentration of intact fibronectin 
or the molar equivalent of the 75-kD tryptic fragment or 11.5-kD 
RGDS-containing fragment. The molar equivalent of the series of 
low molecular mass 180-8 unbound fragments was estimated assum- 
ing an average molecular mass of 25 kD for this sample. The buffer 
control represents cells attached to tissue culture plastic coated with 
BSA alone. Data represent the mean number of cells attached _+ 
SEM. Determinations were in triplicate. 

contrast to these reported results (31, 33), we had success in 
promoting only low levels of attachment of melanoma cells 
to surfaces coated with even very high concentrations of this 
peptide (see Fig. 6). Even at coating concentrations of a molar 
equivalent of 500 #g/ml of intact fibronectin, only ~20% of 
the cells applied were observed to attach to surfaces coated 
with the 11.5-kD pepsin-generated fragment. This was in 
contrast to the higher levels (>70%) of adhesion observed on 
either fibronectin of the 75-kD tryptic fragment coated at a 
10-fold lower molar equivalent concentration. Data using 
tritium-labeled 11.5-kD fragment to monitor binding dem- 
onstrated that the molar equivalent amount bound was equal 
to or greater than the amount of intact fibronectin bound 
(not shown). 

These fragment preparations were also tested for the stim- 
ulation of haptotaxis activity in the Boyden chamber assay. 
The results are shown in Fig. 7. As with the attachment assay, 
both intact fibronectin and the 180-8-bound tryptic frag- 
ments are effective at promoting the haptotactic migration of 
melanoma cells in vitro. The 180-8 unbound fragments are 
inactive at promoting melanoma migration. The purified 
11.5-kD pepsin-derived fragment (domain IV) is also inactive 
at promoting the haptotactic migration of metastatic tumor 
cells. The failure of this peptide to stimulate migration is not 
due to the inability of the peptide to bind to the fdter surface, 
since immunolocalization of the fragment on the filter surface 
could be established using monoclonal antibody 3E3 (not 
shown). Additionally, the radiolabeled 11.5-kD peptide veri- 
fied binding to the filter surface (not shown). This 11.5-kD 
peptide added to the lower well at molar equivalent concen- 
trations of up to 1 mg/ml fibronectin was observed to be 
ineffective at stimulating tumor cell migration in this system. 

The 180-8 purified 75-kD cell-binding/haptotaxis-promot- 
ing fragment was subjected to further proteolytic digestion 
with pepsin for 10 or 30 min. The resulting digest is shown 
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Figure 7. Purification of haptotaxis activity from long-term tryptic 
digests of fibronectin by monoclonal antibody 180-8. Fibronectin 
(O), the 11.5-kD RGDS-containing pepsin-derived cell attachment 
fragment (A), or 180-8-bound (O) and unbound (A) fractions of a 2- 
h tryptic digest were adjusted to the indicated concentrations and 
dispensed into the lower well ofa Boyden microehamber as described. 
Melanoma cells were added to the upper well and the chambers were 
incubated as described. Data represent the mean number of migrated 
cells per high power field (HPF) _+ SEM. 

in the inset in Fig. 8 and this confirms our observation in Fig. 
7. Within 10 rain of treatment with pepsin, there is the 
appearance of tbur major peptides in the preparation that 
range in molecular mass from 11.5 to 42 kD. As indicated by 
immunoblots (not shown), the 180-8 and 3E3 determinants 
segregate to the 21- and 11.5-kD peptide fragments, respec- 
tively. By the end of 30 min of pepsinization, the four major 
peptides are all that remain of the 75-kD tryptic haptotaxis- 
promoting region. The data in Fig. 8 show that the migration- 
promoting activity of 75-kD fragment preparation is virtually 
destroyed by complete digestion with pepsin. 

Addition o f  Soluble Peptide to Cells Attaching to 
Substratum-bound Fibronectin or to Purified Cell 
Attachment Domains 

The next studies determined the role of the RGDS tetrapep- 
tide in mediating the attachment and spreading of cells on 
fibronectin and the various purified fragments. In the first set 
of experiments, the effect of a high concentration of soluble 
RGDS was examined on cell attachment to substrates coated 
with various concentrations of fibronectin, the 80-125-kD 
fragments (tc 80-125), or the purified 75-kD haptotaxis- 
promoting fragment (t75) (Fig. 9, top). These results show 
t ha t  10 -3 M soluble RGDS inhibits the attachment of mela- 
noma cells by 80% to substrates coated with 1 #g/ml of intact 
fibronectin compared to attachment in the absence of this 
synthetic peptide. Similarly, the attachment of cells to the 
haptotaxis-promoting fragments was inhibited dramatically 
(almost 90%) by the presence of this concentration of RGDS 
in wells coated with the molar equivalent of 5 #g/ml of these 
fragments. The inhibitory effect of this peptide could be 
overcome by increasing the amount of fibronectin or hapto- 
taxis-promoting fragment adsorbed to the surface. The use of 
5 #g/ml fibronectin or 25 tzg/ml of the haptotaxis-promoting 
fragments for coating the wells almost completely eliminated 
the inhibitory effects of 10 -3 M soluble RGDS. 

The effect of RGDS on attachment to the 33-kD heparin- 
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Figure 8. Pepsin sensitivity of haptotactic activity in the 75-kD
fragment offibronectin . The 180-8-purified 75-kD fragment (Fig. 4,
lane 3) pepsinized for either 10 min (shown in gel insert in lane 1) or
30 min (lane 2) . These samples, along with intact fibronectin, were
added at a concentration (or molar equivalent) of 100 }cg/ml to the
lower well ofa Boyden chamber and tested as described for the ability
to stimulate melanoma cell migration . Data represent the mean
numberofmigrated cells per high power field ±SEM. Determinations
are in triplicate .

binding fragment was also studied (Fig. 9, bottom). In this
experiment, substrates were coated with 5 ug/ml of fibronec-
tin or the molar equivalent (relative to intact fibronectin) of
the 33-kD heparin-binding/cell attachment fragment . This
coating level of 33-kD fragment was chosen since it was at
the lower range of concentrations observed to promote mel-
anoma attachment . The haptotaxis-promoting fragments of
fibronectin were also included for comparison's sake in the
assay and were coated at a molar equivalent concentration of
5 lug/ml intact fibronectin . Concentrations of 10-° and 10 -3
M RGDS inhibited the attachment of melanoma cells to the
75-kD haptotaxis-promoting fragment by 50 and 85%, re-
spectively, compared to attachment in the absence of any
competing peptide. Similar levels of inhibition were also
observed on substrates coated with the tryptic/catheptic 80-
125-kD fragments. In contrast, the attachment of melanoma
cells to substrates coated with 5 pg/ml intact fibronectin was
relatively resistant to the effects of RGDS. Similarly, the
attachment ofmelanoma cells to the 33-kD heparin-binding/
cell attachment domain was unaffected by 10 -° M RGDS
with <10% inhibition in relative attachment. Melanoma at-
tachment to the 33-kD fragment was somewhat more sensitive
to the presence of 10 -3 RGDS (almost 40% relative inhibi-
tion); however, this level of RGDS also inhibited the relative
nonspecific attachment to BSA-coated substrata by a similar
amount (-45%) . Therefore it is difficult to attribute this effect
of 10-3 M RGDS on the 33-kD fragment as a specific inhib-
itory effect of the peptide, since it also decreased nonspecific
adhesion to BSA.

Discussion
The interaction ofthe cell surface with extracellular matrices
has wide-ranging consequences for numerous developmental
and pathobiological processes. Constituents of the extracel-
lular matrix participate in several aspects of cell behavior
ranging from simple adhesion, to promoting cytoskeletal re-
organization and active cell motility (10, 12, 16, 50). Further-
more, the phenotypic behavior of cells can be dramatically

Figure 9. Effect of soluble RGDS on fibronectin-mediated attachment
of melanoma cells. (Top) Microtiter wells were coated with the
indicated concentrations of fibronectin or the molar equivalent con-
centrations of the fragment preparations. Adherence of melanoma
cells was then determined in the presence or absence of 10' M
soluble competing RGDS . Actual cell adhesion values for the various
coating levels (1-50 ug/ml) in the absence of competing peptide
ranged as follows . Fibronectin ranged from 22% (1 jug/ml coating) to
60% (25 Ag/ml), the 80-125 kD fragment ranged from 15% (molar
equivalent of 5 jug/ml) to 50% (molar equivalent of 50 tug/ml), and
adhesion to the 75-kD fragment ranged from 18-50% . Control (back-
ground) adherence to BSA was 3% . Data represent the mean per-
centage of cells (± SEM) adhering, relative to control adherence in
the absence of competing peptide. Determinations were in triplicate .
(Bottom) Microtiter wells were coated with 5 tag/ml of intact fibro-
nectin (0) or the molar equivalent of 5 jug/ml of the 33-kD heparin-
binding fragment (O), the 80-125 kD (A) fragment, or the 75-kD
(A) fragment. Adhesion was then measured in the presence or absence
of the indicated concentrations of RGDS . Actual adherence in the
absence of competing peptide was 35% for fibronectin, 18% for the
33-kD fragment, 15% for the 80-125-kD fragment, and 18% for the
75-kD fragment. The relative inhibition of nonspecific attachment to
BSA (which was 3% of the applied counts) in the presence of com-
peting peptide are shown (-) . The data are expressed as the mean
percent of cells attached to each fragment relative to control adher-
ence in the absence of any competing soluble peptide. The SEW
were all <10% of the indicated values, and determinations were all
in triplicate .

affected by the extracellular matrix, indicating an important
role for the matrix in modulating cellular growth and differ-
entiation (12) . Although the importance ofcell-matrix inter-
actions has been appreciated for some time, the molecular
basis for these interactions is complex and currently poorly
understood .
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The work presented in this manuscript examined cell adhe- 
sion and haptotactic motility of malignant melanoma cells 
on fibronectin and purified proteolytic fragments of the mol- 
ecule. Using the approaches outlined, we have identified two 
distinct proteolytic fragments of fibronectin with cell adhe- 
sion-promoting qualities. One of these adhesion-promoting 
fragments, a tryptic 75-kD fragment (t75), also promotes the 
haptotaxis of tumor cells in vitro. This fragment, which 
contains domains III and IV, includes the RGDS tetrapeptide 
sequence that promotes cell adhesion in a number of other 
systems (31, 33, 51). The second adhesion-promoting frag- 
ment, which is the 33-kD heparin-binding fragment, contains 
domain V. Adhesion of cells to domain V does result in cell 
spreading but not in tumor cell motility. This indicates that 
haptotactic migration in this system, which is due to substra- 
tum-bound fibronectin, is not due to simple adhesion gra- 
dients of this protein. High levels of RGDS in solution have 
little effect on cell adhesion to this heparin-binding fragment, 
which contrast the results seen on the 75-kD haptotaxis- 
promoting fragment. One further distinction between domain 
III/IV-mediated adhesion and domain V-mediated adhesion 
is that the former is cycloheximide resistant while the latter is 
sensitive to protein synthesis inhibition, suggesting that dis- 
tinct receptors on the cell surface are involved in adhesion to 
each fragment. 

The tryptic 75-kD cell-binding fragment, representing do- 
mains II2 and IV, is the smallest portion of the molecule that 
we could isolate with tumor cell haptotactic activity. It would 
appear from these data that although the RGDS sequence is 
involved in the adhesion and spreading of melanoma cells on 
the 75-kD fragment that it is insufficient to promote tumor 
cell haptotaxis. This assertion is supported by the following 
observations. First, the purified l l.5-kD pepsin fragment 
(domain IV), which contains RGDS, does not stimulate mo- 
tility and only partially promotes adherence. These negative 
results were not due to a failure of the 11.5-kD fragment to 
bind to the surfaces used in the respective assays. Further- 
more, it was difficult to totally inhibit adhesion of melanoma 
cells to the 75-kD fragment with high levels of soluble RGDS. 
Increasing the amount of bound 75-kD fragment virtually 
eliminates the inhibitory effect of soluble RGDS. Addition- 
ally, cells incubated for longer times in the presence of RGDS 
will also overcome RGDS inhibition of spreading (51). These 
results are consistent with the possibility that an adhesion site 
in addition to RGDS is present in domain 222 of the 75-kD 
fragment although definitive isolation of this putative site is 
necessary to prove this. Multiple spreading/motility activities 
in this region of the molecule have also been alluded to by 
Donaldson et al. (8), in studies designed to study active 
domains of fibronectin responsible for epithelial migration 
during wound healing. 

There have been many attempts to define cell surface 
receptors for fibronectin (see reviews 10, 15, 16, 50). Ganglio- 
sides, which have been reported to inhibit cell attachment to 
fibronectin (17, 52) and to bind weakly to fibronectin (29), 
could interact with the type I2I homologies (30) present in the 
75-kD fragment that contain clusters of positively charged 
residues (38). Similarly, a cell surface glycoprotein complex 
has been identified by several groups which seems to be 
involved in cell adhesion to fibronectin (5, 6, 49). This gly- 
coprotein complex is apparently trypsin resistant (11), and 
recent work by Pytela et al. (35) suggests that this complex 

may interact in part with the RGDS sequence on the fibro- 
nectin molecule. Studies using an adhesion-disrupting mono- 
clonal antibody that recognizes this complex (7) demonstrates 
that not all cell types use this complex to the same degree in 
adhering to intact fibronectin. The current findings are also 
consistent with the possibility that binding of multiple con- 
stituents on the cell surface by the 75-kD fragment is a 
prerequisite for cell motility. Perhaps cross-linking of cell 
surface constituents by this fragment stimulates cell move- 
ment, a mechanism suggested by examining other model 
systems for motility (for review see reference 45). 

These results also clearly demonstrate the attachment of 
melanoma cells to a carboxyl-terminal heparin-binding do- 
main that is RGDS independent. The heparin-binding quality 
of the 33-kD fragment suggests that this adhesion activity 
might be mediated by cell-associated proteoglycan and pre- 
liminary data supports this (unpublished observations). The 
localization of the cell attachment activity to the 33-kD and 
not the 66-kD tryptic/catheptic heparin-binding fragment 
localizes this activity to the A chain of the molecule (5) since 
a tryptic site occurs within this region of the A chain that is 
lacking in the B chain (13). To our surprise, the combination 
of heparin-binding fragments exhibited much greater activity 
at lower coating concentrations (i.e., 25 ~zg/ml) than either 
the 33- or 66-kD fragments alone (approximately fivefold). 
We have no immediate explanation for this data and at this 
point feel that the reason might be trivial. As an example, the 
amount or conformation of the 33-kD fragment (the active 
fragment) might be altered when co-plated with the 66-kD 
fragment compared to adherence of this peptide directly onto 
plastic. Identification of the active adhesion structure in the 
33-kD fragment will help to clarify this point. 

The region of the molecule in the A chain that this 33-kD 
fragment arises from has been shown to represent a structur- 
ally dynamic portion of the protein (13, 19, 38). Schwarzbauer 
et al. (38) have shown that the A chain of rat hepatocyte 
fibronectin selectively contains one of two possible non-type 
I, II, or III homology inserts of 90 or 125 amino acids that, 
because of the extended conformation, could create new 
proteolytic sites on the molecule between domains V and VI. 
Based on the amino acid composition of these inserts, it has 
also been postulated that this insert may participate in mod- 
ifying proteoglycan-binding activity by this region of the 
molecule (38). The results using human fibronectin cDNA 
also demonstrate heterogeneity in primary structure of this 
region of plasma fibronectin, with extra non-type III inserts 
found between domains V and VI (18). The results of the 
present study suggest a possible explanation for the biological 
significance at the cellular level for this structural heteroge- 
neity. These variations in structure may have consequences 
regarding the interaction of fibronectins with specific cell 
surface constituents, and thus may be important in determin- 
ing the phenotypic expression of cells attached to the various 
forms of this protein. 

Several lines of evidence point to an important role for 
intercalated heparin sulfate proteoglycan (for review see ref- 
erences 3, 14) in cell surface interactions with fibronectin. 
Cell surface heparan sulfate can be cross-linked to fibronectin 
at the surface of cells attached to fibronectin (28). Proteogly- 
cans, especially heparan sulfate, have also been identified in 
substrate-attached material (28), which is left behind following 
cell detachment from substrate by chelating agents (for review 
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see reference 21). Cell attachment via platelet factor 4 has 
previously been used by Laterra et al. (22) as a model to 
examine cell attachment via cell surface heparan sulfate. 
Using this model, cell attachment via cell surface heparan 
sulfate proteoglycan has been reported to have effects on 
cytoskeletal reorganization that are distinct from those ob- 
served on intact fibronectin (21). 

Importantly, recent work from this group has indicated that 
cell attachment to the cell-binding (RGDS) region of fibro- 
nectin versus platelet factor 4 has different consequences for 
contact formation and cytoskeletal architecture (4). This study 
reported that attachment to either fragment alone results only 
in close contact formation, whereas cell adhesion to both 
fragments co-plated fully duplicates focal contact adhesion 
and stress fiber formation seen with cells adherent to intact 
fibronectin. These results suggest that multiple cell surface 
receptors interact with distinct domains and serve to regulate 
total phenotypic expression on intact fibronectin. The iden- 
tification and further characterization of multiple attachment 
sites for cell surfaces should help to explain the biochemical 
basis for the myriad of effects that fibronectin has on behavior 
of both normal and malignant cells. 
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