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Abstract

Many patients with obstructive sleep apnea (OSA) experience
excessive daytime sleepiness (EDS), which can negatively affect
daily functioning, cognition, mood, and other aspects of well-
being. Although EDS can be reduced with primary OSA treatment,
such as continuous positive airway pressure (CPAP) therapy, a
significant proportion of patients continue to experience EDS
despite receiving optimized therapy for OSA. This article reviews
the pathophysiology and clinical evaluation and management of
EDS in patients with OSA. The mechanisms underlying EDS in
CPAP-treated patients remain unclear. Experimental risk factors
include chronic intermittent hypoxia and sleep fragmentation,
which lead to oxidative injury and changes in neurons and brain
circuit connectedness involving noradrenergic and dopaminergic
neurotransmission in wake-promoting regions of the brain. In
addition, neuroimaging studies have shown alterations in the

brain’s white matter and gray matter in patients with OSA
and EDS. Clinical management of EDS begins with ruling out
other potential causes of EDS and evaluating its severity. Tools
to evaluate EDS include objective and self-reported assessments
of sleepiness, as well as cognitive assessments. Patients who
experience residual EDS despite primary OSA therapy may benefit
from wake-promoting pharmacotherapy. Agents that inhibit
reuptake of dopamine or of dopamine and norepinephrine
(modafinil/armodafinil and solriamfetol, respectively) have
demonstrated efficacy in reducing EDS and improving quality
of life in patients with OSA. Additional research is needed
on the effects of wake-promoting treatments on cognition in
these patients and to identify individual or disorder-specific
responses.

Keywords: OSA; neuronal damage; intermittent hypoxia;
neurology

(Received in original form June 19, 2020; accepted in final form October 27, 2020 )

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0
(https://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Supported by Jazz Pharmaceuticals. Jazz Pharmaceuticals has worldwide development, manufacturing, and commercialization rights to solriamfetol, excluding
certain jurisdictions in Asia. SK Biopharmaceuticals, the discoverer of the compound (also known as SKL-N05), maintains rights in 12 Asian markets, including
Korea, China, and Japan.

Correspondence and requests for reprints should be addressed to Chitra Lal, M.D., D.-A.B.S.M., F.C.C.P., F.A.A.S.M., F.A.C.P., Medical University of South
Carolina, CSB 816, MSC 630, 96 Jonathan Lucas Street, Charleston, SC 29425. E-mail: lalch@musc.edu.

Ann Am Thorac Soc Vol 18, No 5, pp 757–768, May 2021
Copyright © 2021 by the American Thoracic Society
DOI: 10.1513/AnnalsATS.202006-696FR
Internet address: www.atsjournals.org

Obstructive sleep apnea (OSA) is a sleep-
related breathing disorder resulting from
repetitive collapse of the upper airway,
which causes intermittent episodic hypoxia
and impaired ventilation during sleep (1).
OSA is estimated to affect .900 million
adults (aged 30–69 yr) worldwide (2). OSA
is diagnosed based on the presence of
positive polysomnography (PSG) or home
sleep apnea test findings of predominantly
obstructive respiratory events (e.g., apneas,
hypopneas, or respiratory effort–related

arousals) (1, 3, 4). Diagnostic criteria
specify >15 respiratory events/hour alone
or >5 events/hour in combination with
typical symptoms of OSA, such as snoring,
fatigue, and excessive daytime sleepiness
(EDS), or comorbid conditions such as
hypertension, coronary artery disease, or
stroke (1, 3, 4).

EDS can be a prominent symptom
of OSA and occurs when sleepiness
intrudes into activities of daily living (5, 6).
EDS can have a negative impact on safety,

functioning, productivity, mood, cognition,
and quality of life (QoL) (7–10). For
example, EDS in patients with OSA is
associated with an increased risk of motor
vehicle and occupational accidents (11, 12),
and a higher prevalence of depression and
anxiety (13, 14). Patients with OSA and
EDS, treated or not, can demonstrate
impairments in attention, memory, and
higher-order executive functions (15–17).

Although EDS can be reduced with
primary OSA treatment, such as continuous
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positive airway pressure (CPAP) therapy, a
substantial proportion of patients continue
to experience EDS despite receiving
optimized primary OSA therapy (9, 10).
This article reviews the pathophysiology,
clinical evaluation, and management of EDS
in patients with OSA.

Epidemiology of EDS in OSA

EDS has been reported to affect 40.5–58% of
individuals with OSA (depending on
severity of OSA) at initial diagnosis (18) but
can persist even when the OSA is treated
with continuous positive airway pressure
(CPAP) therapy. Residual EDS is reported
by an estimated 9–22% of CPAP-treated
patients in population-based studies (9, 10).
A prospective clinical practice–based study
found that 34% of patients with EDS at
baseline reported daytime sleepiness after 3
months of CPAP use; this percentage was
lower (22%) among patients who used
CPAP >6 hours/night (19). A large 6-
month randomized controlled trial reported
22% of patients (overall) had residual EDS
after 6 months of CPAP treatment; the rate
was higher among patients with CPAP use
<4 hours/night (31%) compared with those
with CPAP use .4 hours/night (18%;
P= 0.003) (20).

Several characteristics and conditions
have been associated with a greater risk of
residual EDS in CPAP-treated patients with
OSA. For example, in one study, patients
with pretreatment EDS, diabetes, heart
disease, and lower respiratory disturbance
index at baseline had greater odds of having
EDS after 6 months of CPAP use (21). It is
common in clinical practice for patients
with idiopathic central hypersomnias to be
incidentally found to have a mild degree of
OSA, with sleepiness naturally persisting
after PAP treatment. This may explain the
association of EDS with lower respiratory
disturbance indexes. A randomized
controlled trial found that females and
patients using CPAP .4 hours/night had
significantly lower odds of experiencing
EDS after 6 months of CPAP use, whereas
chronic pain, depression, and baseline EDS
were associated with significantly higher
odds of having residual EDS (20). Such
analyses are challenged by disentangling
sleep restriction/deprivation and
bidirectional and multidimensional
relationships occurring with time, obesity,
age, and activities.

Pathophysiology of EDS in OSA

Mechanisms underlying residual EDS in
patients with treated OSA are likely
confounded by the unknown length of time an
individual has been exposed to the condition
and differences in individual susceptibility to
the consequences of OSA, as well as comorbid
conditions such as mood disorders and
neurologic conditions. Animalmodels of sleep
apnea, exposure to hypoxia, and sleep
fragmentation as well as neuroimaging studies
in humans are beginning to provide evidence
for plausible explanations.

Animal and Human Data on
Neuronal Damage and Injury

OSA is characterized by two physiological
consequences: episodic, intermittent
hypoxia and sleep fragmentation (Figure 1)
(22). Animal studies have demonstrated that
both are associated with neuronal injury and
degeneration in wake-promoting brain
regions.

Intermittent hypoxia has been shown
to be associated with oxidative injury that in
turn is associated with wake impairments.
For example, in mice, exposure (8 wk) to
long-term intermittent hypoxia (LTIH)
resulted in oxidative injury, specifically
nitration and carbonylation, in the basal
forebrain and brainstem (23). These injuries
were associated with behavioral wake
impairments, demonstrated by significantly
shorter mean sleep latencies on a murine
equivalent of the Multiple Sleep Latency
Test (MSLT) (LTIH, 8.9 min; sham LTIH,
12.7 min; P, 0.01). Even after a 2-week
recovery period, LTIH mice had
significantly more sleep in a 24-hour period
than controls (156 min; P, 0.001). In
addition, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase has been
implicated as a mediator of LTIH-related
oxidative injury in the basal forebrain,
dorsal raphe nucleus, and the locus
coeruleus (LC) and as a factor in associated
wake impairments (24).

LTIH can also lead to neuronal injury
and cell loss. A mouse model (25)
demonstrated that exposure (8–24 wk) to
LTIH resulted in injury and loss of
catecholaminergic wake neurons, including
neurons in the dopaminergic ventral
periaqueductal gray and noradrenergic LC
(25); specifically, neuronal c-fos responses
during wakefulness were suppressed by

70–90% and cell counts were reduced by 35–
50%. The observed neuronal injury and
loss was associated with behavioral wake
impairments that persisted over a 6-month
recovery period, including less wake time
per 24 hours (120 min; P, 0.01) and
shorter mean sleep latencies on the murine
MSLT versus controls (10.2 min vs. 14.3
min; P, 0.001). Other wake-active
neuronal populations, including orexinergic
and histaminergic neurons, showed similar
wake responses in LTIH and sham LTIH
mice, suggesting that these neurons were not
disturbed.

Chronic sleep fragmentation can result
in wake impairments associated with
neuronal degeneration and oxidative injury
(26). Four weeks of sleep fragmentation in
mice resulted in impaired excitability of
wake-promoting neurons in the LC and
reduced axonal projections from neurons
in the LC to the frontal cortex (26). A
subsequent study (27) demonstrated that
chronic (14 wk) sleep fragmentation
also results in degeneration of LC and
orexinergic neurons, with cell counts
reduced by 50% and 25%, respectively,
relative to controls (P, 0.001 and P, 0.05,
respectively), even after a 4-week recovery
period (27). The same study (27) found that
lipofuscin, a marker of oxidative stress,
increased in wake-active LC and orexinergic
neurons following sleep fragmentation.

Thus, several lines of evidence suggest
that chronic intermittent hypoxia and sleep
fragmentation, the pathophysiological
hallmarks of OSA, can produce overlapping
and potentially complementary modalities
of injuries, including oxidative injury,
neuronal damage, and cell loss in wake-
promoting brain regions. These neuronal
disturbances have been associated with wake
impairments, demonstrated by changes in
behavioral sleep/wake patterns (e.g.,
significantly shorter mean sleep latencies).
Even after recovery periods of 2 weeks to 6
months, neuronal and wake deficits
persisted, suggesting that the intermittent
episodic hypoxia and sleep fragmentation
associated with OSA may result in
irreversible brain damage and impaired
wakefulness. The advantage of animal
models is that they permit a consistent, often
severe, level of risk exposure and complete
mitigation, whereas human expression of
EDS in OSA is present in some but not all of
those with mild to severe AHI levels.
Therefore, these are clues rather than
absolute, as factors such as genetic diversity
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(as a surrogate for individual susceptibility)
are not examined in this literature.

Unlike animal studies, the duration and
severity of exposure to OSA may vary or is
difficult to quantify in human studies.
Nonetheless, emerging functional evidence
from patients with OSA suggests that
residual EDS may be related to alterations in
brain structure consistent with exposure to
chronic intermittent hypoxia and/or sleep
fragmentation. Patients with OSA who are
adherent to CPAP therapy and have residual
EDS often experience fatigue, have periodic
limb movements, spend less time in stage
N3 sleep, and have shorter daytime sleep
latencies and more daytime sleep (28).
Although animal models were developed to
test assumptions of causality, the onus now
is on experimental design and how findings
in nonhuman models inform the next
generation of human studies.

Focusing on LTIH-induced
dopaminergic injury, EDS in patients
with OSA was associated with overnight
changes in concentrations of dopamine
metabolites homovanillic acid and

3,4-dihydroxyphenylacetic acid (DOPAC);
levels of both metabolites were significantly
correlated with subjective EDS severity, even
after adjusting for potential confounding
factors (29). Furthermore, patients with
OSA and EDS were 3.5 times more likely to
have a nocturnal increase in urine DOPAC
than patients without EDS (29). These
findings suggest that EDS in OSA may be
related to disruptions in the dopaminergic
system, consistent with animal models. In
addition, some data demonstrate normal
cerebrospinal fluid levels of orexin and
histamine in patients with OSA (30, 31), a
finding that is consistent with data from
animal models of LTIH-induced neuronal
injury that suggested these neurons were not
affected, as described above (25).

Human Imaging Studies

Neuroimaging methodologies have enabled
evaluation of brain structural and functional
changes in patients with OSA. Although
informative, neuroimaging technologies are

unable to distinguish causes from effects of
OSA. Differences in imaging and data
processing techniques, as well as in patient
characteristics in individual studies,
complicate comparisons across studies and
the generalizability of findings.

Neuroimaging studies of structure,
however, have resulted in a consensus that
white matter (WM) alterations are present
in patients with OSA and EDS. Diffusion
tensor imaging (DTI) studies showed that
among patients with OSA treated with
CPAP, higher whole-brain mean diffusivity
(MD) was observed in patients with EDS
compared with those without EDS, and that
the increase was primarily caused by higher
radial diffusivity (Figures 2A and 2B). These
changes suggest possible myelin and/or
axonal damage. In contrast, whole-brain
fractional anisotropy (FA) and axial
diffusivity in patients with OSA did not
differ between patients with and without
EDS (32, 33). In the same studies,
differences in regional DTI parameters
were reported, with higher regional MD
(primarily related to increased radial

Oxidative injury;
injury/degeneration of

dopaminergic and
noradrenergic neurons

in the VPG and LC

Intermittent hypoxia

Behavioral wake
impairments

Neuronal damage in wake-
promoting brain regions

Injury/degeneration of
noradrenergic and

orexinergic neurons in
the LC

Sleep fragmentation

Figure 1. Proposed mechanisms of disease underlying residual excessive daytime sleepiness in obstructive sleep apnea. LC= locus coeruleus (purple);
VPG= ventral periaqueductal gray (red).
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diffusivity) and lower regional FA in
patients with EDS compared with those
without EDS. These differences are
suggestive of decreased axonal and myelin
integrity (32, 33). Specifically, these regional
differences were observed in fibers of the
corpus callosum, internal and external
capsule, corona radiata, and sagittal stratum,
with most changes seen in the left
hemisphere (32).

Findings from DTI studies have also
demonstrated associations with clinical
outcomes. In one study described above
(32), regional MD positively correlated and
regional FA negatively correlated with
sleepiness severity and impairment in
sustained attention, suggesting that the
observed WM structural differences may be
one mechanism contributing to residual
EDS and impaired vigilance in patients with
OSA.

In a study of previously untreated
patients with OSA (34), lower FA values
were associated with greater sleepiness,
poorer sleep quality, and delayed response
time and increased errors on executive
function tasks compared with controls; in
contrast, higher values corresponded to
better memory-based performance (34).
After 3 months of CPAP treatment,
pathologic WM clusters were significantly
smaller and patients improved on measures
of attention, executive function, and short-
and long-term memory. After 12 months of
treatment, more notable reversals in WM
abnormalities were observed, although there
was no further significant improvement in
cognitive function. These findings further
suggest that EDS and cognitive impairments
associated with OSA may result from WM
structural damage andmay be at least partially
reversible with CPAP treatment (34).
Similarly, in older patients (>65 yr), 3months
of CPAP treatment increased connectivity,
attenuated cortical thinning, and significantly
improved memory (episodic and short term)
and sleep-related QoL (35).

Data based on diffusion-weighted
imaging and a continuous-time random-
walk model (33) also indicate WM changes
in patients with OSA and EDS. Specifically,
these patients had higher whole-brain Dm

and whole-brain a compared with patients
with OSA without EDS (Figure 2C) (33). Dm

is analogous to MD, as described above,
whereas a relates to temporal diffusion
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Figure 2. White matter changes in patients with excessive daytime sleepiness associated with
obstructive sleep apnea (OSA). (A) Diffusion tensor imaging (DTI) results showing possible white
matter alterations in DTI metrics including FA, MD, l1 (AD), and l23 (RD) between sleepy and
nonsleepy patients with OSA. Green: mean FA skeleton (threshold = 0.2) without significant
change. Red-yellow: fibers with increased DTI metrics in the sleepy group when compared to the
nonsleepy group (P , 0.05) (32). (B) Results from DTI whole-brain analysis based on FA, MD, l23
(RD), and l1 (AD) showing the presence or absence of differences between sleepy and nonsleepy
patients with OSA. Age was included as a covariate in the group analyses for all parameters.
Green: mean fractional anisotropy (FA) skeleton (threshold = 0.2) without significant change. Red-
yellow: voxels with significantly increased parameters values in the sleepy group as compared to
the nonsleepy group with P , 0.05 as shown in the color bar (33). (C ) Whole-brain a, b, and Dm

maps showing the presence or absence of differences between sleepy and nonsleepy patients
with OSA (33). (A) Reprinted with permission of John Wiley & Sons. Xiong Y, et al. Brain white
matter changes in CPAP-treated obstructive sleep apnea patients with residual sleepiness.
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heterogeneity. For both parameters, higher
values suggest WM damage related to
shrinkage of axons and myelin. Similarly,
increased regional Dm and regional a were
also observed, mostly in the corpus
callosum, internal and external capsule,
corona radiata, superior longitudinal
fasciculus, and sagittal stratum (similar to
regions with differences in MD and FA
(32)). Whole-brain b (which relates to
spatial diffusion heterogeneity) did not
differ between patients with and without
EDS, although regional b was lower in the
corpus callosum and longitudinal fasciculus
in patients with EDS compared with those
without EDS. A lower b value suggests
damage to oligodendrocytes (which form
myelin) and compromised myelin.

These parameters also demonstrated
correlations with clinical outcomes.
Specifically, regional a and Dm values were
positively correlated and regional b values
were negatively correlated with sleepiness
severity, impairments in attention, and
reaction time. Thus, these findings further
support the notion that alterations in WM
may underlie residual EDS in patients with
OSA (33).

The authors suggest that elevated
whole-brain and regional a values may be
explained by OSA-related hypoxia and/or
ischemia, resulting in degeneration of
neurons and oligodendrocytes, and that
elevated a, Dm, and MD may be attributed
to shrinkage of axons and myelin sheaths in
patients with EDS. Whether connectivity
alterations are linked to disruptions in
neurotransmitter systems involved in
wakefulness, as suggested by animal studies,
requires further investigation.

Changes in MD and FA values could be
driven by alterations in the extracellular
space, and that WM microstructure is
impacted by time of day (which may vary
by study), and this may in turn affect
interpretation of the studies discussed above
(36).

Autopsied brain tissue of patients with
OSA has been studied to link OSA to
hippocampal injury; specifically, OSA
severity has been shown to be related to
cortical thinning in the dentate gyrus, the
CA1 layer of the hippocampus, and some

layers of the entorhinal cortex and to
decreased myelin in the deep layers of the
entorhinal cortex (37). Patients who were
regular CPAP users at time of death
(determined by hospital records) showed no
significant reductions in cortical thickness
but had myelin loss in the deep layers of the
entorhinal cortex, suggesting that CPAP
may have a protective effect against cortical
thinning but may be ineffective in
preventing hippocampal myelin loss. These
findings are consistent with murine models
demonstrating neuronal death in the
hippocampus following exposure to LTIH
(38). Longitudinal studies are needed to
determine the directionality of the
association between OSA and hippocampal
damage and to examine the impact of CPAP
(39).

The specific role of these changes
in EDS associated with OSA has not
been determined, although evidence
demonstrates an inverse correlation
between hippocampal volume and severity
of EDS (40). Considering the critical role
of the hippocampus in memory (41),
hippocampal damage associated with OSA
may contribute to cognitive impairments as
well as EDS.

Findings regarding gray matter (GM)
changes associated with OSA are mixed; the
brain regions affected and types of changes
are somewhat inconsistent across studies. A
study in patients with severe OSA (42)
found that GM concentrations were
significantly reduced in cortical and
subcortical regions (e.g., caudate nucleus,
hippocampus, frontal cortex, anterior
cingulate, thalamus, cerebellum, and
temporal cortex) (Figures 3A and 3B).
Another study (43) also found GM damage
in the caudate and hippocampus; however,
reductions in GM volume, rather than
concentration, were noted. Significant
reductions in GM volume in the right
middle temporal gyrus have been
demonstrated in patients with OSA
compared with healthy controls (44). Other
imaging studies have identified cortical and
hippocampal GM changes (45).

In treatment-naive patients with OSA,
GM structural changes, specifically reduced
GM volume in the entorhinal cortex and

left posterior parietal cortex, have been
associated with cognitive impairments (46).
Notably, these structural changes and
associated cognitive deficits appeared to be
at least partially reversible with CPAP
treatment (Figure 3C). After 3 months of
CPAP treatment, regional and overall GM
volume significantly increased and patients
showed significant improvement in EDS
and on measures of executive function,
attention, short- and long-term memory,
QoL, and mood.

Overall, neuroimaging studies provide
support for WM and GM structural changes
associated with OSA. Future studies
controlling for data acquisition, analysis
techniques, and confounding patient
characteristics are needed to elucidate
current findings.

Clinical Evaluation of EDS
in OSA

Differential Diagnosis
When evaluating patients with OSA for
residual EDS, healthcare providers should
make individualized assessments of
potential underlying causes of sleepiness
(47). The differential diagnosis includes a
review for underrecognized comorbid
conditions, such as sleep deprivation,
idiopathic hypersomnia, narcolepsy,
hypothyroidism, circadian rhythm
disorders, psychiatric illness, chronic
medical conditions, concomitant
medications, or illicit drug use. Work
schedules (in particular shift work), use of
over-the-counter and prescribed sedating
medications, and lifestyle factors also should
be reviewed. Furthermore, healthcare
providers should ensure that the underlying
airway obstruction is being adequately
treated with CPAP, an oral appliance,
hypoglossal nerve stimulation, or other
surgical interventions (48–51).

Measures of EDS
Clinical tools to evaluate EDS include
objective and self-reported assessments of
sleepiness, as well as assessments of
cognition or alertness (Table 1).

Figure 2. (Continued). J Magn Reson Imaging. 2017;45(5):1371–1378. Copyright© 2016 International Society for Magnetic Resonance in Medicine.
(B and C ) Reprinted from Zhang J, et al.White matter structural differences in OSA patients experiencing residual daytime sleepiness with high CPAP
use: a non-Gaussian diffusion MRI study. Sleep Med. 2019;53:51–59. doi:10.1016/j.sleep.2018.09.011, with permission from Elsevier. AD = axial
diffusivity; Dm = anomalous diffusion coefficient; FA = fractional anisotropy; MD =mean diffusivity; RD = radial diffusivity.
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Objective assessments for EDS include
the Maintenance of Wakefulness Test
(MWT), Oxford Sleep Resistance test, and
MSLT (52). The MWT assesses a patient’s
ability to stay awake for a defined time (a 40-
min protocol is recommended) and
generally includes four trials performed at
2-hour intervals, beginning 1.5–3 hours
after the patient’s usual wake-up time (52).
A mean sleep latency <19 minutes on the
40-minute MWT has been suggested as a
threshold indicative of EDS (53). The
Oxford Sleep Resistance test is structured
similarly to the MWT but uses a
computerized method for monitoring
wakefulness (individuals press a switch in
response to a light-emitting diode) (54).
The MSLT assesses a patient’s ability to
fall asleep, typically involving five nap
opportunities (20 minutes each) at 2-hour
intervals, beginning 1.5–3 hours after
termination of nocturnal PSG (52). A mean
sleep latency <8 minutes is considered
indicative of EDS (4, 55). These tests can be
used during initial evaluation of patients
with EDS, although the MSLT is more
typically used when narcolepsy (rather than
OSA) is suspected (52). As they are time
consuming and expensive, these tests may
not be practical for screening or routine
monitoring of treatment response unless
there is some uncertainty as to the
functional severity of EDS.

Self-reported measures of sleepiness
include the Epworth Sleepiness Scale (ESS)
(56), Stanford Sleepiness Scale (SSS) (57,
58), and Karolinska Sleepiness Scale (KSS)
(59). The ESS is an eight-item self-reported
measure of trait EDS in which patients rate
their likelihood of dozing off or falling asleep
in various scenarios (e.g., reading, watching
television, riding in a car) on a Likert scale of
0–3 (total score 0–24), with higher scores
indicating a greater likelihood of falling
asleep (56); scores .10 are considered
indicative of significant EDS (56, 60). The
ESS is inexpensive and convenient; however,
it may not correlate well with objective
measures of EDS or PSG parameters (61, 62)
such that some patients may be unaware of
their sleepiness (19). The SSS and KSS are
single-item self-reported assessments of
sleepiness at a point in time or state
sleepiness (57–59). The SSS uses a 7-point
Likert-type scale (ranging from [1] feeling
active, vital, alert, or wide awake to [7] no
longer fighting sleep, sleep onset soon, or
having dream-like thoughts) (57, 58); scores
.3 are associated with sleep debt (63).
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Figure 3. Gray matter changes in patients with OSA. (A) Areas of decreased gray matter concentration
in patients with severe OSA (42). (B) Areas with reduced gray matter concentrations shown in three-
dimensional rendering. Reduced gray matter concentrations were observed in the bilateral superior frontal
gyri, left gyrus rectus, and bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right anterior insular
gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdala and hippocampi, bilateral inferior temporal
gyri, and bilateral cerebellar cortices. Results were superimposed on the two-dimensional planes of
averagedT1 template of all subjects. Scales in color bar are t scores. Left-hand sides of images represent the
left hemisphere of the brain. Reprinted with permission of Oxford University Press. Joo EY, et al. Reduced
brain gray matter concentration in patients with obstructive sleep apnea syndrome. Sleep. 2010;33(2):235–
241. (C) Gray matter volume before and after continuous positive airway pressure (CPAP) treatment in
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The KSS uses a 9-point Likert-type scale
(ranging from [1] extremely alert to [9]
extremely sleepy and fighting sleep), with
scores >7 corresponding to physiological
signs of sleepiness, as determined
by electroencephalography and
electrooculography (59). The KSS is not
typically used for clinical purposes because it
is sensitive to fluctuations in prior sleep and
time of day (64).

The Psychomotor Vigilance Task
(PVT) measures alertness and vigilance
based on response to a visual stimulus (65,
66), with eight different metrics including
response time and number of lapses in
attention. In patients with OSA, PVT
performance is impaired compared with
healthy controls (67) and higher ESS scores
were associated with worsened performance
(66). PVT performance also was highly
correlated with performance on a computer-
based driving simulation task and on a
highway driving test (68, 69), suggesting this
test may be particularly relevant to real-
world outcomes. Typically, a 10-minute test
is used in research settings; a longer-
duration (e.g., 20-min) test may be needed
to determine milder levels of EDS. The
PVT is not currently used in routine
care, although a 3-minute test has been
considered for this purpose (70).

Treatment of EDS in OSA
Because EDS can persist in patients with
OSA despite optimal treatment and can
significantly impact QoL and increase risk
of motor vehicle accidents, independent

and direct management of EDS may be
necessary in addition to primary OSA
therapy. Pharmacologic management
strategies for EDS should not replace
primary treatment of the underlying airway
obstruction.

Pharmacotherapy of EDS in OSA
Modafinil (PROVIGIL) (71), armodafinil
(NUVIGIL) (72), and solriamfetol
(SUNOSI) (73) are approved in the United
States for the treatment of EDS in adults
with OSA; only solriamfetol is approved
in the European Union for this indication
(74). Modafinil and armodafinil bind to
the dopamine transporter and inhibit
dopamine reuptake (71, 72). Solriamfetol
binds to dopamine and norepinephrine
transporters and inhibits reuptake of both
neurotransmitters (73, 75). Thus, these three
agents have pharmacologic actions on
neurotransmitters implicated in sleep–wake
regulation (76).

Modafinil and armodafinil have
demonstrated efficacy in improving
wakefulness and reducing EDS in patients
with OSA treated with CPAP in placebo-
controlled short-term (4- to 12-wk) studies
(Table 2) (77–80) and in open-label long-
term studies (81, 82). A meta-analysis of 10
modafinil/armodafinil studies in CPAP-
treated participants with OSA determined
that modafinil/armodafinil reduced ESS
scores by 22.2 points and increased MWT
sleep latency by 3 minutes compared with
placebo (83). Several of these studies also
demonstrated improvements in QoL

measures (Functional Outcomes of Sleep
Questionnaire [FOSQ], Brief Fatigue
Inventory, and/or Short Form 36 [SF-36])
(78–80, 82).

In CPAP-treated patients with OSA
and EDS, modafinil has demonstrated
improvements in some PVT outcomes
(number of lapses and inverse reaction
time) (84, 85), and armodafinil has been
associated with improvements in some
measures of memory (79, 80, 86).
Armodafinil has also been shown to
improve PVT inverse reaction time
and number of errors while reducing
electroencephalography delta activity
compared with placebo in a small study of
healthy sleep-deprived adults (87). Some
data suggest that modafinil and armodafinil
may have pharmacologic effects in addition
to those related to dopaminergic
neurotransmission, including direct or
indirect effects on noradrenergic,
serotonergic, glutamatergic, and GABAergic
neurotransmission; interactions with
cholinergic and histamine neurotransmission;
and other effects on brain areas involved
in cognitive processes, and it has been
proposed that such effects may be associated
with improvements in cognitive function
(88).

Common adverse events (AEs)
associated with modafinil include headache,
nausea, nervousness, rhinitis, diarrhea, back
pain, anxiety, insomnia, dizziness, and
dyspepsia (71). Common AEs associated
with armodafinil include headache, nausea,
dizziness, and insomnia (72). Rare but

Table 1. Commonly used tools for evaluating EDS

Tool Type Measurement Cutoff Value Suggestive
of EDS

Maintenance of Wakefulness Test (52, 53) Objective Ability to stay awake (40-min session) Sleep latency <19 min
Oxford Sleep Resistance Test (54) Objective Ability to stay awake (40-min session) N/A*
Mean Sleep Latency Test (4, 52, 55) Objective Ability to fall asleep (20-min nap opportunity) Sleep latency <8 min
Psychomotor Vigilance Task (65, 68) Objective Sustained attention (i.e., reaction time, lapses in

attention)
N/A†

Epworth Sleepiness Scale (56, 60) Subjective Sleep propensity in daily situations‡ Score .10
Stanford Sleepiness Scale (57, 58, 63) Subjective Degree of sleepiness at a point in timex Score .3
Karolinska Sleepiness Scale (59, 64) Subjective Degree of sleepiness at a point in timejj Score >7

Definition of abbreviations: EDS=excessive daytime sleepiness; N/A=not applicable; OSA=obstructive sleep apnea.
*No standard cutoff; however, in the original study of this test, all patients with OSA had mean sleep latencies,20 minutes whereas all healthy patients had
mean sleep latencies .20 minutes (group mean sleep latency values were 10.5 min for patients with OSA and 39.8 min for healthy patients).
†No standard cutoff; however, patients with EDS have been shown to have slower reaction times, greater variability in reaction times across a task, and
longer and more frequent lapses (reaction time .500 ms).
‡Timeframe is “in recent times.” Includes eight items rated by patients on a scale from 0 to 3 (higher scores indicating greater likelihood of falling asleep); total
score can range from 0 to 24.
xAt a specific moment in time. This is a single-item scored using a 7-point Likert-type scale (1–7), with higher scores indicating greater sleepiness.
jjAt a specific moment in time. This is a single-item scored using a 9-point Likert-type scale (1–9), with higher scores indicating greater sleepiness.
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serious side effects (e.g., Stevens-Johnson
Syndrome) can occur with modafinil/
armodafinil; drug interactions with
CYP3A4/5 substrates, including oral
contraceptives, are also a consideration
(71, 72).

Solriamfetol has demonstrated efficacy in
improving wakefulness and reducing EDS in
participants with OSA (who were currently
using or who had previously failed primary
OSA therapy) in a placebo-controlled 6-week
randomized withdrawal study (89) and a
placebo-controlled 12-week study (90);
long-term efficacy in reducing EDS was
demonstrated in a 1-year open-label extension
study, which also included a 2-week
randomized withdrawal period (Table 2) (91).
In the 12-week study, solriamfetol (37.5, 75,
150, and 300mg/d) dose-dependently reduced
ESS scores by 21.7 to 24.7 points, and
increased MWT sleep latency by 4.5 to 12.8
minutes, compared with placebo (90). Efficacy
was similar in subgroups who were adherent
or nonadherent to primary OSA therapy (90).

Solriamfetol treatment was also
associated with improvements in QoL,
functioning, and work productivity
measures (SF-36v2, FOSQ short version
[FOSQ-10], and Work Productivity and
Activity Impairment Questionnaire: Specific
Health Problem) (92). Data on cognitive
outcomes with solriamfetol have not been
reported, although a randomized, double-
blind, placebo-controlled, crossover study to
evaluate the effect of solriamfetol on on-road
driving performance in participants with
EDS due toOSA is currently being conducted
(NCT 02806895; EudraCT 2015-003930-28).

CommonAEs associatedwith solriamfetol
are headache, nausea, decreased appetite,
insomnia, and anxiety (73). Solriamfetol has
been shown to improvewakefulness from1 to 9
hours after dosing (90); therefore, solriamfetol
should not be administered within 9 hours of
planned bedtime as it has the potential to
interfere with sleep (73).

Future Directions
Potential mechanisms of EDS in OSA have
been hypothesized but are not entirely clear.
Pharmacologic treatments have been shown
to improve EDS and QoL in patients with
OSA, but whether they have some effect on
the brain changes that can be seen in
patients with OSA and EDS has yet to be
studied. Neuroimaging studies to evaluate
brain changes in patients with OSA with
EDS are not part of the routine clinical
management of these patients. More specificT
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tests to evaluate the brain changes and
overall pathophysiological mechanisms
involved in EDS in patients with OSA would
inform the overall clinical management of
these patients. This can result in a more
personalized and phenotype-based
approach to OSA management as we learn
more about this disease state. Studies of
agents with different mechanisms of action,
such as the selective histamine H3
antagonist pitolisant, an agent currently
approved to treat narcolepsy that also has
shown efficacy in clinical trials of patients
with EDS associated with OSA (93, 94),
would be beneficial in this regard. Such data
could provide a better understanding of
potential therapeutic approaches that
recruit alternate alerting pathways and
the effects of OSA on these pathways.

Given that animal models show
damage in several neurotransmitter systems,

neuroimaging studies suggest dysfunction
in both WM and GM, and the success of
diverse agents, there may be functional
redundancy in EDS mitigation. Future studies
could investigate the action of pharmacologic
agents to determine whether wake-promoting
agents impact the structural or functional
changes observed with neuroimaging
techniques. Additionally, the impact of wake-
promoting agents on cognition in patients
with OSA is an area for future study. Finally, it
is unknown why some individuals may
respond better to one line of therapy than
another.

Conclusions

An estimated 9–22% of patients with
OSA continue to experience EDS despite
adequate primary OSA therapy. Although

neuroimaging studies demonstrate
evidence of neuronal injury, the exact
pathophysiologic mechanisms underlying
residual EDS in OSA remain unclear.
Currently marketed treatments for EDS in
OSA have demonstrated improvements in
various measures of EDS as well as QoL
and work productivity measures. Future
studies should evaluate the impact of wake-
promoting agents on cognitive impairment
and brain changes seen in patients with OSA
with EDS. n
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