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A B S T R A C T   

This study employed a deep learning longitudinal model, graph convolutional and recurrent neural network 
(graph-CNN-RNN), on a series of brain structural MRI scans for AD prognosis. It characterized whole-brain 
morphology via incorporating longitudinal cortical and subcortical morphology and defined a probabilistic 
risk for the prediction of AD as a function of age prior to clinical diagnosis. The graph-CNN-RNN model was 
trained on half of the Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI, n = 1559) and validated on the 
other half of the ADNI dataset and the Open Access Series of Imaging Studies-3 (OASIS-3, n = 930). Our findings 
demonstrated that the graph-CNN-RNN can reliably and robustly diagnose AD at the accuracy rate of 85% and 
above across all the time points for both datasets. The graph-CNN-RNN predicted the AD conversion from 0 to 4 
years before the AD onset at ~80% of accuracy. The AD probabilistic risk was associated with clinical traits, 
cognition, and amyloid burden assessed using [18F]-Florbetapir (AV45) positron emission tomography (PET) 
across all the time points. The graph-CNN-RNN provided the quantitative trajectory of brain morphology from 
prognosis to overt stages of AD. Such a deep learning tool and the AD probabilistic risk have great potential in 
clinical applications for AD prognosis.   

1. Introduction 

Alzheimer’s Disease (AD) is a type of brain neurodegenerative dis
eases that become worse with time. It has an astounding impact at in
dividual and societal levels. AD may start to develop 20 years ago before 
clinical symptoms arise. Changes in the brain, such as amyloid plaques, 
neurofibrillary tangles, and tissue loss, are not noticeable to the person 
who is affected until clinical symptoms appear. Prodromal stages of AD 
are windows of opportunity in reducing the incidence and symptoms of 
AD. 

Structural brain imaging changes are suggested to lie between AD 
neuropathology and clinical and cognitive decline (Frisoni et al., 2010). 
Structural brain MRI characterizes tissue damage or loss in the medial 

temporal lobe (i.e., entorhinal cortex and hippocampus), followed by 
progressive cortical damage that occurs years before clinical symptoms 
appear (Chan et al., 2001; Thompson et al., 2003). Hippocampal atrophy 
is the best established and validated among all structural MRI markers of 
AD, such as voxel-by-voxel morphology and structural volumes (Mod
rego, 2006). Meta-analysis also shows that medial temporal atrophy has 
a sensitivity of ~ 70% and a specificity of ~ 80% for the AD prediction 
(Yuan et al., 2009). Moreover, structural imaging markers are more 
sensitive to change from mild cognitive impairment (MCI) to AD than 
markers of amyloid deposition assessed using cerebrospinal fluid (CSF) 
(Jack et al., 2009; Sluimer et al., 2010). Hence, structural brain imaging 
has been recommended to be included as a part of clinical assessment for 
earlier diagnosis of AD ((Dubois et al., 2007). Frisoni et al. (2010) 
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(Frisoni et al., 2010) proposed a theoretical trajectory of whole-brain 
and hippocampal atrophy over the course of AD but did not give 
detailed quantification. Also, it is unclear whether a single scalar derived 
from structural brain imaging can be a precise indicator of AD progression. 
Moreover, it remains unclear whether such a neuroanatomical scalar can be 
clinically adopted and clinicians can use it in the same way as cognitive 
scales. 

Deep learning has received great attention in the field of medical 
image analysis. In particular, convolutional neural networks (CNNs) 
have extensively been explored as computer-aided tools for the diag
nosis of AD (Basheera and Sai Ram, 2019; Bashyam et al., 2020; Liu 
et al., 2020; Liu et al., 2019; Qiu et al., 2020; Wee et al., 2019). 
Nevertheless, classification performance varies significantly from one 
study to another due to subject selection criteria, sample size, and image 
processing, which may raise a question on the generalization of deep 
learning approaches in clinical practice. Several recent studies per
formed extensive experiments using structural imaging data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and demonstrated 
that CNN approaches on cross-sectional 3D brain structural images (pre- 
processed or minimally processed) achieved 75% to 90% of the AD 
classification accuracy (Ansart et al., 2021; Jin et al., 2020; Wen et al., 
2020). Jin et al. (2020) showed the generalizability and reliability of 
deep learning approaches in the application of early diagnosis of AD 
based on multiple independent datasets. Moreover, a number of existing 
studies employed deep learning networks and focused on diagnostic 
conversion within a fixed time-window to identify subjects converted to 
AD in near future (e.g.,Basaia et al., 2019; Lian et al., 2020; Liu et al., 
2018). Traditional machine learning models employed longitudinal data 
and has shown the improvement of diagnostic conversion (Ye et al., 
2012; Zhang et al., 2012; Davatzikos et al., 2011; Risacher et al., 2009; 
Eskildsen et al., 2015; Moradi et al., 2015). In aid of a series of brain MRI 
scans, deep learning has potential to further improve the accuracy of AD 
diagnosis and prognosis. Nevertheless, it is challenging to handle 
missing brain scans at random time points. 

This study aimed to develop a deep learning approach, graph con
volutional and recurrent neural network (graph-CNN-RNN) on a series 
of brain structural MRI data, that can be used to 1) define a diagnosis- 
guided probabilistic risk for characterizing whole-brain morphology at 
each time point; 2) quantify the longitudinal trajectory of whole-brain 
morphology over the course of AD; 3) predict the AD conversion as a 
function of age prior to clinical diagnosis. This graph-CNN-RNN 
approach was designed as a longitudinal model that incorporated the 
information of subcortical volumes and cortical geometry at previous 
and current time points and computed the AD probabilistic risk at each 
time point. If there was a missing brain scan at a particular time point, 
the graph-CNN-RNN approach estimated it based on its previous time 
points. We trained this deep learning approach using a series of struc
tural brain MRI scans from half of the Alzheimer’s Disease Neuro
imaging Initiative (ADNI) samples and evaluated it on structural brain 
MRI data of the other half of the ADNI sample. Moreover, we also 
employed an independent sample, the Open Access Series of Imaging 
Studies-3 sample (OASIS-3, n = 930), to evaluate the generalizability 
and robustness of the graph-CNN-RNN trained by the ADNI dataset. We 
further demonstrated the usefulness of the AD probabilistic risk derived 
from our graph-CNN-RNN model via its associations with clinical traits, 
cognition, amyloid markers obtained from [18F]-Florbetapir (AV45) 
positron emission tomography (PET). Our results suggested its potential 
use in clinic and shed light on the quantification of the longitudinal 
trajectory of brain morphology over the course of AD and the AD pre
diction 4 years prior to clinical diagnosis. 

2. Methods 

2.1. Participants 

Data used in this study were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu) and 
the Open Access Series of Imaging Studies-3 (OASIS-3; http://oasis-b 
rains.org). Institutional review boards approved study procedures 
across participating institutions. 

The ADNI dataset included ADNI-1 (n = 811), ADNI-GO (n = 188) 
and ADNI-2 (n = 1019). At each visit, subjects were diagnosed as one of 
three clinical statuses (cognitive normal (CN), mild cognitive impair
ment (MCI), Alzheimer’s disease (AD)) based on the criteria described in 
the ADNI protocol (http://adni.loni.usc.edu). The number of visits per 
subject varied from 1 to 11. Table 1 lists the number of subjects based on 
the number of visits in each diagnostic group. There were 434 CN sub
jects, 548 stable MCI (s-MCI) subjects who did not convert to AD across 
all existing visits, 326 CE subjects, and 251 subjects converted from CN 
or MCI to AD. In addition, there were 115 cases, including 51 subjects 
converted from CN to MCI, 49 subjects converted to CN from MCI, and 
15 subjects converted back to CN or MCI from AD across the time, which 
were not used in this study. 

This study also included the OASIS-3 dataset to evaluate the gener
alization and robustness of our graph-CNN-RNN model. This study 
included 650 CN subjects, 47 s-MCI subjects, 233 CE subjects, and 17 
subjects converted from CN to AD from the OASIS dataset (Marcus et al., 
2010). The number of visits per subject varied from 1 to 7. Table 2 lists 
the number of subjects based on the number of visits in each diagnostic 
group of the OASIS-3 dataset. The diagnosis information of 58 subjects 
was missing or converted back to CN from MCI and AD, which were not 
used in this study. Due to the small sample size at each time point, the 
converted subjects were also excluded in this study (Table 2). 

2.2. MRI processing 

Both the ADNI and OASIS-3 studies acquired structural T1-weighted 
MRI scans using either 1.5 T or 3 T scanners. FreeSurfer (version 5.3.0) 
longitudinal analysis pipeline was then used to label each voxel in the 
usable T1-weighted image as gray matter, white matter, cerebrospinal 
fluid (CSF), or subcortical structures (Fischl et al., 2002). Post- 
processing quality check was conducted following the instruction on 
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Troubleshoot 
ingData. We employed large deformation diffeomorphic metric mapping 
(LDDMM) (Du et al., 2011; Tan and Qiu, 2016; Zhong and Qiu, 2010) to 
align individual cortical surfaces to the atlas and transferred cortical 
thickness of each subject to a common space. This study also extracted 
bilateral subcortical and ventricular volumes from FreeSurfer analysis 
and included the volumes of the hippocampus, amygdala, thalamus, 
caudate, putamen, and globus pallidus in the following deep learning. 

Table 1 
The number of subjects who have n number of visits in each diagnostic group of 
the ADNI dataset.  

the number of visits CN s-MCI AD Conversion 

1 54 45 49 0 
2 62 57 47 7 
3 52 87 75 13 
4 79 127 146 37 
5 94 114 7 68 
6 31 64 2 59 
7 21 28 0 30 
8 17 8 0 18 
9 18 12 0 12 
10 6 6 0 3 
11 0 0 0 4 
total 434 548 326 251 

Abbreviations: CN, controls; s-MCI, stable mild cognitive impairment; AD, Alz
heimer’s disease. 
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2.3. Diagnostic-Guided probabilistic risk via graph convolution and 
recurrent neural networks 

2.3.1. Graph-CNN-RNN model 
This study aimed to derive a probabilistic risk for AD diagnosis from 

structural MRI that is most relevant to neurodegeneration. We devel
oped a deep learning approach (graph-CNN-RNN) that incorporated 
vertex-based graph convolutional neural network (vertex-based graph 
CNN, code available at https://bieqa.github.io/deeplearning.html), (Liu 
et al., 2021) and minimal recurrent neural network (RNN) (Chen, 2017). 
This graph-CNN-RNN aimed to generate the probabilistic risk and make 
the diagnosis and prediction of AD based on longitudinal structural MRI 
data. We chose vertex-based graph-CNN because of its fast computation 
and better performance than spectral graph-CNN as shown in (Liu et al., 
2021). We employed the minimal RNN instead of long-short term 
memory (LSTM) because of its efficient model parameterization (fewer 
parameters) to be estimated (Chen, 2017). 

Fig. 1 illustrates the architecture of the vertex-based graph-CNN- 
RNN that incorporated a vertex-based graph CNN with 4 graph con
volutional layers and 1 fully connected layer as well as a minimal RNN. 
The vertex-based graph-CNN took cortical thickness as input data and 
the cortical surface represented by a triangulated mesh as a graph. It 

conducted filtering of cortical thickness on the cortical surface. Each 
convolutional layer had 1-ring neighbour filters, rectified linear unit 
(ReLU), and pooling with a down-sample rate of 4. The four convolu
tional layers respectively had 8, 16, 32, and 64 filters as shown in Fig. 1. 
The fully connected layer concatenated all filtered data and reduced the 
data dimensionality to 128. The mathematical foundation of the vertex- 
based graph-CNN was descripted in (Liu et al., 2021). We optimized this 
network by minimizing a three-class classifier. 

The minimal RNN then incorporated the 128 cortical features ob
tained from the vertex-based graph-CNN with the volumetric data, 
including the bilateral hippocampus, amygdala, thalamus, basal 
ganglia, and ventricle volumes. We denoted these morphological mea
sures as xt at the tth visit. x̃t+1 represents predicted morphological 
measures (thickness features and volumes) and the diagnostic proba
bility of CN, MCI, and AD at t + 1. If actual image data, xt+1, were 
missing, x̃t+1 was used in the model for the estimation of the next time 
point. Otherwise, the real image measures were used. We minimized the 
square errors of the image features and cross entropy of diagnostic 
labels. 

2.3.2. Graph-CNN-RNN training and evaluation 
We trained our network model using half of the CN, s-MCI, and AD 

samples at each time point in the ADNI dataset (see Table 1) with a 
learning rate of 1e-3. The rest of the CN, s-MCI, AD samples in the ADNI 
dataset were used as a testing dataset to evaluate the entire network (see 
eTable 1, Supplementary Material). The diagnostic accuracy of each 
class at each time point was computed as the percentage of correctly 
classified subjects over the overall subjects of the same class at each time 
point in the ADNI testing dataset. 

We also applied the graph-CNN-RNN model trained using the ADNI 
dataset to the OASIS-3 dataset to examine its robustness and reliability 
on the AD classification. We did not use the OASIS-3 as a training dataset 
due to its limited time points and relatively small sample sizes of s-MCI 
and AD (see Table 2). The diagnostic accuracy of each class at each time 
point was computed as the percentage of correctly classified subjects 
over the overall subjects of the same class at each time point in the 

Table 2 
The number of subjects who have n number of visits in each diagnostic group of 
the OASIS-3 dataset.  

the number of visits CN s-MCI AD Conversion 

1 242 42 187 0 
2 191 3 44 8 
3 114 2 1 8 
4 64 0 1 1 
5 26 0 0 0 
6 13 0 0 0 
total 650 47 233 17 

Abbreviations: CN, controls; s-MCI, stable mild cognitive impairment; AD, Alz
heimer’s disease. 

Fig. 1. The architecture of the vertex-based graph convolution and recurrent neural network (graph-CNN-RNN). The graph-CNN reduces the dimensionality of 
cortical thickness data and the minimal RNN updates anatomical measures and predicts the diagnosis of controls (CN), mild cognitive impairment (MCI), or Alz
heimer’s disease (AD) at each time point. xt denotes an observed data at time t, comprising 128 cortical features, subcortical volumes, and diagnosis. x̃t+1 represents 
the predicted value of xt at time t + 1. The hidden state ht is a combination of the previous hidden state and the transformed input and hence encodes the longitudinal 
information of xt and ht . The gate mt is on if xt exists. The forget gate ft weights the contribution of the previous hidden state ht and current transformed input ut 

toward the hidden state ht+1 at time t + 1. 
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OASIS-3 sample. 
We further applied the graph-CNN-RNN model to individual brain 

scans of conversion samples and computed its ability to predict future 
diagnosis (CN, MCI, or AD) of the ADNI sample. We defined the AD 
prediction accuracy as a function of years prior to AD onset. This study 
did not perform this experiment to the OASIS-3 sample due to its small 
sample size of conversion subjects at each time point (see Table 2), 
which cannot provide the precision of the prediction accuracy (1/the 
number conversion subjects at each time point). 

2.3.3. AD probabilistic risk 
We further defined an AD probabilistic risk as a ratio of the diag

nostic probability of AD to the sum of the diagnostic probability of AD 
and CN from the graph-CNN-RNN model. It was a continuous scalar 
ranging from 0 to 1. The smaller value, the healthier the subject was. We 
used this AD probabilistic risk to represent brain morphological 
degeneration. 

2.4. Diagnosis, cognition, and amyloid burden 

This study included all available data of diagnosis, cognition, and 
biomarkers available in the ADNI and OASIS databases. For diagnostic 
measures, we included mini-mental state exam (MMSE), clinical de
mentia rating scale sum of boxes (CDR-SOB), the 13 item version of the 
Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog) at 
every time point. This study also included cognitive measures at all 
available time points. The ADNI study included Rey Auditory Verbal 
Learning Test immediate and delayed scores (RAVLT IR, RAVLT DR) for 
memory, category fluency and Boston naming tests for semantic mem
ory and language, Trail Making Test A and B scores (TMT-A, TMT-B) for 
attention and executive function, and clock test for visuospatial func
tion. The OASIS-3 study also included Wechsler Memory Scale (WMS)- 
Revised measures, LOGIMEM and MEMUNITS, for episodic memory. 

Both ADNI and OASIS-3 assessed amyloid burden based on standard 
uptake value ratios (SUVRs) derived from [18F]-Florbetapir (AV45) 
positron emission tomography (Villars et al., 2010). AV45 SUVRs were 
computed as the value averaged over the cingulate, frontal, parietal, and 
temporal regions (Su et al., 2013; Su et al., 2019). 

2.5. Statistical analysis 

Partial correlation was used to examine the relationship of the AD 
probabilistic risk with diagnostic measures, cognition, and amyloid 
burden at each time point. Age and gender were considered as cova
riates. This partial correlation analysis was applied to both the ADNI 
testing dataset and OASIS-3 dataset to quantify the use of the AD 
probabilistic risk in associations with clinical and pathological 
measures. 

2.6. Data availability 

The ADNI and OASIS data are available at https://adni.loni.usc.edu 
and https://www.oasis-brains.org, respectively. 

3. Results 

3.1. Subject characteristics 

This study included both the ADNI and OASIS-3 datasets. Tables 3 
and 4 list the demographic, clinical, and cognitive information, as well 
as amyloid burden assessed using AV45 SUVRs at the baseline time point 
of the ADNI and OASIS-3 datasets, respectively. In the ADNI dataset, 
there were significant group differences in age, gender, and years of 
education among the four diagnostic groups at the baseline (all p <
0.01). The AD patients showed the worst memory, language, attention, 
and visuospatial functions, and the highest amyloid burden in the 

cingulate, frontal, parietal, and temporal brain regions compared to the 
s-MCI, conversion patients, and controls (all p < 0.001). 

The OASIS-3 dataset showed significant group differences in baseline 
age (p < 0.001) and gender (p = 0.006) but not in years of education (p 
= 0.812). Similar to the ADNI dataset, the OASIS-3 dataset also showed 
the worst memory, language, and attention function as well as the 
highest amyloid burden in the cingulate, frontal, parietal, and temporal 
brain regions in the AD patients when compared to the other groups (all 
p < 0.001). Unlike the ADNI dataset, the OASIS-3 had a few conversion 
subjects at each time point that were not included in this study (see 
Table 2). 

3.2. Diagnostic prediction of stable controls and AD patients 

This study included 2491 subjects from the ADNI and OASIS-3 
datasets (Tables 1-2,). For the ADNI dataset, each subject had multiple 
scans that were taken over the course of 9 ~ 10 years. But, subjects with 
MRI scans more than 4 years were few (Table 1). For the OASIS-3 
dataset, each subject had MRI scans over the course of 4 years, how
ever, a few subjects had MRI scans over the course of more than 2 years 
(Table 2). 

For the stable controls and AD classification, this study employed 
half of the ADNI sample to train the graph-CNN-RNN and the other half 

Table 3 
Demographic, clinical, cognition, and amyloid burden characteristics of the 
ADNI dataset at the baseline visit.   

Control (n 
¼ 434) 

s-MCI (n ¼
548) 

AD (n ¼
326) 

Conversion 
(n ¼ 251) 

Age (range, 
years) 

74.0 
(59.7–90.1) 

73.1 
(54.4–91.4) 

75.1 
(55.1–92.3) 

73.7 (55–88.3) 

Gender 
(females, 
%) 

52.5 42.2 44.8 41.0 

Education 
(SD, yrs) 

16.4 (2.70) 15.8 (2.96) 15.1 (2.94) 15.9 (2.72) 

Clinical 
MMSE (SD) 29.0 (1.14) 27.9 (1.73) 23.2 (2.22) 26.9 (1.79) 
CDR-SOB 
(SD) 

0.04 (0.14) 1.34 (0.79) 4.45 (1.79) 1.84 (1.00) 

ADAS-Cog 
(SD) 

8.85 (4.28) 14.8 (6.03) 30.1 (8.58) 20.7 (6.04) 

Cognition 
Memory     

RAVLT IR 
(SD) 

45.4 (9.77) 36.6 (10.7) 22.6 (7.60) 28.6 (7.80) 

RAVLT DR 
(SD) 

12.9 (2.59) 11.2 (3.22) 7.06 (3.90) 9.15 (3.63) 

Language     
Animal 
fluency (SD) 

20.6 (5.45) 17.7 (5.08) 12.3 (5.08) 15.5 (4.88) 

Boston 
naming (SD) 

28.0 (2.60) 26.5 (3.64) 22.2 (6.14) 25.4 (4.15) 

Visuospatial     
Clock (SD) 4.68 (0.64) 4.45 (0.79) 3.34 (1.35) 4.06 (1.10) 

Attention/ 
Executive     
TMT-A (SD) 34.4 (12.0) 39.7 (16.9) 65.5 (36.0) 46.9 (23.8) 
TMT-B (SD) 84.2 (42.9) 108.7 (58.5) 199.4 (86.4) 141.3 (76.3) 

AV45 SUVR 
Cingulate 
(SD) 

1.41 (0.28) 1.48 (0.30) 1.70 (0.29) 1.67 (0.28) 

Frontal (SD) 1.30 (0.25) 1.37 (0.29) 1.60 (0.28) 1.57 (0.28) 
Parietal (SD) 1.32 (0.27) 1.38 (0.29) 1.60 (0.28) 1.55 (0.26) 
Temporal 
(SD) 

1.22 (0.23) 1.28 (0.26) 1.48 (0.27) 1.46 (0.26) 

Abbreviations: MMSE, Mini-Mental State Examination; CDR-SOB, clinical de
mentia rating scale sum of boxes; ADAS-Cog, the Alzheimer’s disease assessment 
scale-cognitive subscale; 
RAVLT IR, Rey Auditory Verbal Learning Test (RAVLT) total immediate recall; 
RAVLT DR, RAVLT total delayed recognition; Clock, clock drawing; TMT-A, trail 
making test part A; TMT-B, trail making test part B; SD, standard deviation. 
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of the ADNI sample to validate the classification accuracy (eTable 1, 
Supplementary Material). Since the graph-CNN-RNN was a longitudinal 
model, the prediction of diagnosis at the current time was based on the 
MRI data and diagnosis information at the previous time points. Fig. 2A 
shows the classification accuracy between stable controls and AD pa
tients of the ADNI dataset at each time point. The accuracy rate ranged 
from 85.4% to 92.3% and had relatively a small fluctuation over the 6 
years from the baseline. Nevertheless, the 95% confidence interval 
increased over time due to the drop in the number of subjects available 
in the ADNI dataset (Fig. 2B). 

Moreover, the robustness and reliability of the graph-CNN-RNN 
model were tested using the OASIS-3 dataset (Table 2). We directly 
applied the trained graph-CNN-RNN model to the OASIS-3 sample and 
achieved the classification accuracy ranging from 82.6% to 95.2% over 
the 2 years from the baseline (Fig. 2C). There was an increasing trend in 
the classification accuracy over time mainly because of the incorpora
tion of longitudinal MRI scans despite the small sample size at 1.5-year 
and 2-year visits (Fig. 2D and Table 2). 

3.3. The discrimination map of stable controls and AD patients 

We evaluated the discriminative power of various brain regions for 
AD diagnosis over time. For this, we evaluated the contribution of each 
brain region to the AD classification as follows. The measure within a 
brain region was first set to the difference between the CN and AD 
subjects and the measure of the rest of brain regions was set to be the 
averaged value of the CN subjects. The graph-CNN-RNN model then 
computed the AD probabilistic risk of this region. We repeated this for 
all brain regions. Fig. 2E shows that the hippocampal volume was 
ranked with the highest discriminative power of AD diagnosis, followed 
by the cortical thickness, lateral ventricular, thalamus, and amygdala 
volumes (range: 0.020 ~ 0.475). Among cortical regions, the bilateral 
medial temporal lobes (MTL) had the highest discriminative power of 
AD diagnosis (Fig. 2F). Our findings were highly consistent to the 

existing findings on the hippocampal and MTL atrophy in AD (Leung 
et al., 2013; Liedes et al., 2019; Qiu et al., 2009). 

3.4. The AD probabilistic risk predicts AD incident 4 years in advance 

We computed the AD probabilistic risk for the ADNI testing sample 
(eTable 1, Supplementary Material) and the OASIS-3 samples (Table 2) 
based on the graph CNN-RNN model. Fig. 3A, B illustrate the distribu
tion of the AD probabilistic risk in each diagnostic group of the ADNI and 
OASIS-3 datasets, respectively. Both datasets showed the same trend, 
that is, AD patients had the largest AD probabilistic risk score, while 
normal controls had the lowest AD probabilistic risk score (all p <
0.001). Nevertheless, the AD probabilistic risk in each diagnostic group 
of the OASIS-3 dataset was smaller than the respective value in the ADNI 
dataset partly because of the differences in age and the sample size of s- 
MCI and AD patients in the two datasets. The standard deviations of 
clinical measures in the ADNI dataset were smaller than those in the 
OASIS-3 dataset (Tables 3 and 4). 

We then applied the graph-CNN-RNN model to earlier MRI scans to 
compute the longitudinal trajectory of the probabilistic risk for the 
prediction of AD conversion at a later time point. Fig. 3C shows the 
prediction accuracy of the AD conversion from 0 to 4 years prior to the 
onset of AD. For instance, our model can predict the AD conversion at 
the accuracy of 79.7% while using the MRI scan acquired 4 years before 
the onset of AD. The prediction accuracy of the AD conversion was 
relatively consistent across 0 to 4 years prior to the onset of AD (range: 
78.3% ~ 81.5%). When the sample size (Fig. 3D) was larger, the pre
diction accuracy was relatively higher. The 95% confidence interval of 
the prediction accuracy increased as the sample size reduced. 

Fig. 4 illustrates the longitudinal trajectory of the AD probabilistic 
risk that was averaged over all conversion subjects in the ADNI dataset. 
This trajectory quantified brain morphology over the course of AD. This 
trajectory quantified the theoretical model of whole-brain morphology 
proposed by Frisoni et al. (2010) (Frisoni et al., 2010). 

3.5. The AD probabilistic risk in relation with diagnostic measures, 
cognition, and biological markers 

For the ADNI dataset, the higher AD probabilistic risk score was 
associated with lower MMSE, and higher CDR-SOB and ADAS-Cog 
scores at all the time points (Fig. 5A and eTable 2, Supplementary Ma
terial) after adjusting for age and gender. Fig. 5B shows that the higher 
AD probabilistic risk score was correlated with lower memory, language, 
attention, and visuospatial cognitive functions over the 5 years from the 
baseline visit (see statistical values and sample sizes in eTable 3, Sup
plementary Material). Similarly, the higher AD probabilistic risk score 
was associated with higher amyloid burdens in the cingulate, frontal, 
parietal, and temporal regions at most of the time points (Fig. 5C), 
except at 0.5, 1, and 5 years from the baseline due to the limited samples 
(eTable 5, Supplementary Material). 

The above correlation patterns shown in the ADNI dataset were 
replicated in the OASIS-3 dataset (Fig. 5D-F). ETables 2, 4, 5 (Supple
mentary Material) provided the detailed statistical values and sample 
sizes for the OASIS-3 dataset. Overall, the AD probabilistic risk was 
highly correlated with diagnostic status, cognitive ability, and AD 
neuropathology, suggesting its potential use in the integration with the 
clinical and pathological measures of AD. 

4. Discussion 

This study developed the graph-CNN-RNN model and defined a 
scalar measure, AD probabilistic risk, that well characterizes whole- 
brain morphology. The graph-CNN-RNN was a longitudinal model that 
incorporated longitudinal cortical and subcortical morphology for the 
diagnosis and prediction of AD. This study employed the two largest AD 
datasets with the most time points and demonstrated that the graph- 

Table 4 
Demographic, clinical, cognition, and amyloid burden characteristics of the 
OASIS-3 dataset at the baseline visit.   

Control (n ¼
650) 

s-MCI (n ¼ 47) AD (n ¼ 233) 

Age (range, years) 67.6 (42.5–97) 75.1 
(61.5–89.5) 

76.0 
(49.5–95.5) 

Gender (females, %) 40.9 44.7 51.5 
Education (SD, yrs) 15.6 (2.55) 15.9 (2.27) 16.3 (10.8) 
Clinical 

MMSE (SD) 29.0 (1.44) 27.3 (2.66) 22.9 (5.13) 
CDR-SOB (SD) 0.14 (0.91) 1.46 (1.25) 4.67 (3.24) 

Cognition 
Memory    

WMS LOGIMEM 
(SD) 

13.8 (3.92) 9.57 (4.72) 5.68 (4.92) 

WMS MEMUNITS 
(SD) 

12.9 (4.29) 7.23 (4.62) 3.58 (4.77) 

Language    
Animal fluency 

(SD) 
20.4 (5.72) 15.9 (5.22) 12.2 (5.64) 

Boston naming (SD) 27.3 (3.09) 24.8 (4.99) 21.7 (6.28) 
Attention/Executive    

TMT-A (SD) 35.1 (17.3) 43.0 (19.1) 71.3 (46.3) 
TMT-B (SD) 91.1 (45.4) 131.8 (83.4) 188.0 (92.9) 

AV45 SUVR 
Cingulate (SD) 1.44 (0.51) 2.83 (2.05) 2.54 (1.01) 
Frontal (SD) 1.05 (0.52) 2.30 (1.92) 2.14 (0.88) 
Parietal (SD) 0.90 (0.45) 1.84 (1.19) 1.80 (0.75) 
Temporal (SD) 1.15 (0.49) 2.75 (2.13) 2.28 (0.71) 

Abbreviations: MMSE, Mini-Mental State Examination; CDR-SOB, clinical de
mentia rating scale sum of boxes; ADAS-Cog, the Alzheimer’s disease assessment 
scale-cognitive subscale; 
WMS, Wechsler Memory Scale; TMT-A, trail making test part A; TMT-B, trail 
making test part B; SD, standard deviation. 
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CNN-RNN can reliably and robustly diagnose AD at the accuracy rate of 
85% and above at all the time points. The graph-CNN-RNN predicted the 
AD conversion 4 years prior to the AD onset at ~ 80% of accuracy. The 
AD probabilistic risk was associated with clinical traits, cognition, and 
amyloid burden across all the time points. Our findings suggested the 
possibility of constructing a scalar measure to quantify brain 
morphology and successfully predict the onset of AD 4 years prior to 
clinical diagnosis. 

Deep learning methods have increasingly been used in the computer- 

aided diagnosis of AD due to their flexibility and ability to learn neu
roimage features that have the most discriminative power of AD diag
nosis (e.g., Ansart et al., 2021; Jin et al., 2020; Wen et al., 2020). In the 
past 10 years, a substantial body of research mainly employed con
volutional neural networks (CNNs) on 2D slices, 3D patches/regions of 
interest (ROIs), or 3D images, or volumetric features of cross-sectional 
data for AD diagnosis. However, due to participant selection, image 
processing, sample size, or validation procedure across studies (e.g., 
Basaia et al., 2019; Jin et al., 2020; Lian et al., 2020; Liu et al., 2018; 

Fig. 2. Prediction accuracy of stable controls and AD patients and attention maps. A, B) The classification accuracy of stable controls and AD patients over time for 
the ADNI and OASIS-3 samples, respectively. The shading area represents the 95% confidence interval for the classification accuracy. C, D) show the sample sizes of 
stable controls and AD patients from the ADNI and OASIS-3 datasets used to test the robustness and generalizability of the graph-CNN-RNN model, respectively. E) 
The discriminative map indicates the contribution of various brain regions for the AD diagnosis over time. F) The discriminative map indicates the contribution of 
cortical thickness for the AD diagnosis over time. 
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Wee et al., 2019), their classification results may not be comparable. A 
recent review (Wen et al., 2020) implemented the existing CNN models, 
such as CNN on 2D slices, 3D patches/regions of interest (ROIs), or 3D 
images to overcome the above variations and provided the most com
parable classification results across the existing CNN models in litera
ture. It demonstrated that 3D CNN approaches (3D images, 3D-ROI, 3D- 
patch) achieved the best classification performance between CN and AD 

(accuracy: 75% ~ 90%). Instead of 3D volumetric images, our graph- 
CNN-RNN model took an advantage of cortical geometry and applied 
the convolution along the cortical surface. Moreover, our model 
comprised the recurrent neural network and incorporated the longitu
dinal information of the data, which allowed the interpolation of 
missing data points based on previous time points and stabilized the 
classification performance across all the time points. In other words, our 
model provided a diagnosis of individual subjects at any time point. 
Even though our model was trained on half of the ADNI sample, both the 
ADNI and OASIS-3 datasets showed similar performance (accuracy: 
85.4% ~ 92.3% for ADNI; 82.6% ~ 95.2% for OASIS-3) across all the 
time points, suggesting that our graph-CNN-RNN model was reproduc
ible, robust, and generalizable. 

Structural MRI has become a part of the clinical assessment of AD. 
Frisoni et al. (Frisoni et al., 2010) proposed a theoretical model on the 
progression of AD biological markers from preclinical to overt stages of 
AD. Nevertheless, there is still a lack of the quantification of these bio
markers over the course of AD. Brain morphological changes have 
mainly been restricted to the volumes of whole-brain or ROIs, such as 
the hippocampus and medial temporal structures. This study employed 
the deep learning approach and encoded whole brain morphology as a 
scalar measure, AD probabilistic risk. Our study provided the quantifi
cation of the longitudinal trajectory of brain morphology over the course 
of AD. This trajectory allowed early prediction of AD and achieved the 
prediction accuracy of ~ 80% from 0 to 4 years before clinical diagnosis. 
Moreover, the trajectory of the AD probabilistic risk was highly corre
lated not only with the trajectory of clinical traits and cognition but also 
with the trajectories of AD pathology, amyloid burden. These findings 

Fig. 3. The distributions of the AD probabilistic risk and the prediction accuracy of AD conversion. A, B) The distributions of the AD probabilistic risk in each 
diagnostic group of the ADNI and OASIS-3 datasets, respectively. C, D) The prediction accuracy of the AD conversion prior to the AD onset and the number of the AD 
conversion subjects used. 

Fig. 4. The longitudinal trajectory of the AD probabilistic risk averaged over all 
conversion subjects in the ADNI dataset. 
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implicated the feasibility of using this graph-CNN-RNN as a computer- 
aided tool for the prognosis of AD in clinical practice. 

While the experimental results highlighted a promising potential of 
clinical diagnosis and prognosis applications of the graph-CNN-RNN for 
AD classification and prediction, this study has some limitations that 
warrant consideration. The graph-CNN-RNN model achieved good pre
diction results based on the ADNI dataset. Nevertheless, there is lack of 
longitudinal deep learning methods for fair comparison. The OASIS-3 
dataset was lack of conversion subjects with multiple time points. The 
performance and robustness of the proposed model should be further 
tested on longitudinal datasets with larger samples. Moreover, as multi- 
modal brain image data become available, our model can be extended to 

other image modalities and create a functional, metabolic, and patho
logical signature for the diagnosis and prognosis of AD, which can 
facilitate the quantification of the trajectory of image biomarkers over 
the course of AD. 

5. Conclusion 

This study offered a promising deep learning tool for individualized 
diagnosis and prognosis over the course of AD. This study employed the 
two major AD datasets longitudinally, defined the AD probabilistic risk, 
and quantified the trajectory of whole-brain morphology via a scalar 
measure from prognosis to overt stages of AD. Such a deep learning tool 

Fig. 5. Correlation of the AD probabilistic risk with diagnosis, cognition, and [18F]-Florbetapir (AV45) standard uptake ratio (SUVR) at each time point of the ADNI 
and OASIS-3 datasets. The left column shows the results for the ADNI dataset, while the right column illustrates the results for the OASIS-3 dataset. The sample sizes 
of each time points are listed in eTables 2–5 (Supplementary Material). Abbreviations: MMSE, mini mental state exam; CDR-SOB, clinical dementia rating scale sum 
of boxes; ADAS-Cog, the Alzheimer’s disease assessment scale-cognitive subscale; RAVLT IR and DR, Rey Auditory Verbal Learning Test Immediate and Delayed 
scores; TMT-A and TMT-B, Trail Making Test A and B scores; WMS, Wechsler Memory Scale. 
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and the AD probabilistic risk have great potential in clinical practice. 
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Faouzi, J., Koval, I., Louis, M., Thibeau-Sutre, E., Wen, J., Wild, A., Burgos, N., 
Dormont, D., Colliot, O., Durrleman, S., 2021. Predicting the progression of mild 
cognitive impairment using machine learning: A systematic, quantitative and critical 
review. Med. Image Anal. 67, 101848. 

Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M., 
Neuroimaging, A.D., I.,, 2019. Automated classification of Alzheimer’s disease and 
mild cognitive impairment using a single MRI and deep neural networks. 
Neuroimage Clin. 21, 101645. 

Basheera, S., Sai Ram, M.S., 2019. Convolution neural network-based Alzheimer’s 
disease classification using hybrid enhanced independent component analysis based 
segmented gray matter of T2 weighted magnetic resonance imaging with clinical 
valuation. Alzheimers Dement (N Y) 5 (1), 974–986. 

Bashyam, V.M., Erus, G., Doshi, J., Habes, M., Nasrallah, I., Truelove-Hill, M., 
Srinivasan, D., Mamourian, L., Pomponio, R., Fan, Y., Launer, L.J., Masters, C.L., 
Maruff, P., Zhuo, C., Volzke, H., Johnson, S.C., Fripp, J., Koutsouleris, N., 
Satterthwaite, T.D., Wolf, D., Gur, R.E., Gur, R.C., Morris, J., Albert, M.S., Grabe, H. 
J., Resnick, S., Bryan, R.N., Wolk, D.A., Shou, H., Davatzikos, C., 2020. MRI 
signatures of brain age and disease over the lifespan based on a deep brain network 
and 14 468 individuals worldwide. Brain 143, 2312–2324. 

Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., Rossor, A.M., 
Stevens, J.M., Cipolotti, L., Rossor, M.N., 2001. Patterns of temporal lobe atrophy in 
semantic dementia and Alzheimer’s disease. Ann. Neurol. 49 (4), 433–442. 

Chen, M., 2017. Minimalrnn: Toward more interpretable and trainable recurrent neural 
networks. arXiv:1711.06788. 

Davatzikos, C., Bhatt, P., Shaw, L.M., Batmanghelich, K.N., Trojanowski, J.Q., 2011. 
Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern 
classification. Neurobiol. Aging 32 (2322), e2319–2327. 

Du, J., Younes, L., Qiu, A., 2011. Whole brain diffeomorphic metric mapping via 
integration of sulcal and gyral curves, cortical surfaces, and images. Neuroimage 56 
(1), 162–173. 

Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., 
Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., 
O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P.J., 
Scheltens, P., 2007. Research criteria for the diagnosis of Alzheimer’s disease: 
revising the NINCDS-ADRDA criteria. Lancet Neurol. 6 (8), 734–746. 

Eskildsen, S.F., Coupe, P., Fonov, V.S., Pruessner, J.C., Collins, D.L., Neuroimaging, A.D., 
I., 2015. Structural imaging biomarkers of Alzheimer’s disease: predicting disease 
progression. Neurobiol. Aging 36 (Suppl 1), S23–31. 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der 
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., 
Rosen, B., Dale, A.M., 2002. Whole brain segmentation: automated labeling of 
neuroanatomical structures in the human brain. Neuron 33 (3), 341–355. 

Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M., 2010. The clinical use 
of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6 (2), 67–77. 

Jack Jr., C.R., Lowe, V.J., Weigand, S.D., Wiste, H.J., Senjem, M.L., Knopman, D.S., 
Shiung, M.M., Gunter, J.L., Boeve, B.F., Kemp, B.J., Weiner, M., Petersen, R.C., 
Alzheimer’s Disease Neuroimaging, I., 2009. Serial PIB and MRI in normal, mild 
cognitive impairment and Alzheimer’s disease: implications for sequence of 
pathological events in Alzheimer’s disease. Brain 132, 1355–1365. 

Jin, D., Zhou, B., Han, Y., Ren, J., Han, T., Liu, B., Lu, J., Song, C., Wang, P., Wang, D., 
Xu, J., Yang, Z., Yao, H., Yu, C., Zhao, K., Wintermark, M., Zuo, N., Zhang, X., 
Zhou, Y., Zhang, X., Jiang, T., Wang, Q., Liu, Y., 2020. Generalizable, Reproducible, 
and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer’s Disease. 
Adv. Sci. (Weinh) 7 (14), 2000675. 

Leung, K.K., Bartlett, J.W., Barnes, J., Manning, E.N., Ourselin, S., Fox, N.C., 
Neuroimaging, A.D., I.,, 2013. Cerebral atrophy in mild cognitive impairment and 
Alzheimer disease: rates and acceleration. Neurology 80, 648–654. 

Lian, C., Liu, M., Zhang, J., Shen, D., 2020. Hierarchical Fully Convolutional Network for 
Joint Atrophy Localization and Alzheimer’s Disease Diagnosis Using Structural MRI. 
IEEE Trans. Pattern Anal. Mach. Intell. 42 (4), 880–893. 

Liedes, H., Lötjönen, J., Kortelainen, J.M., Novak, G., van Gils, M., Gordon, M.F., 2019. 
Multivariate Prediction of Hippocampal Atrophy in Alzheimer’s Disease. 
J. Alzheimers Dis. 68 (4), 1453–1468. 

Liu, C., Ji, H., Qiu, A., 2021. Fast vertex-based graph convolutional neural network and 
its application to brain images. Neurocomputing 434, 1–10. 

Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Alzheimer’s Disease Neuroimaging, I., Shen, L., 
Xu, M., 2020. A multi-model deep convolutional neural network for automatic 
hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 
208, 116459. 

Liu, M., Zhang, J., Adeli, E., Shen, D., 2018. Landmark-based deep multi-instance 
learning for brain disease diagnosis. Med. Image Anal. 43, 157–168. 

Liu, M., Zhang, J., Adeli, E., Shen, D., 2019. Joint classification and regression via deep 
multi-task multi-channel learning for alzheimer’s disease diagnosis. IEEE Trans. 
Biomed. Eng. 66 (5), 1195–1206. 

Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C., Buckner, R.L., 2010. Open 
access series of imaging studies: longitudinal MRI data in nondemented and 
demented older adults. J. Cogn. Neurosci. 22, 2677–2684. 

Modrego, P.J., 2006. Predictors of conversion to dementia of probable Alzheimer type in 
patients with mild cognitive impairment. Curr. Alzheimer Res. 3, 161–170. 

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Alzheimer’s Disease 
Neuroimaging, I., 2015. Machine learning framework for early MRI-based 
Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412. 

Qiu, A., Fennema-Notestine, C., Dale, A.M., Miller, M.I., Alzheimer’s Disease 
Neuroimaging, I., 2009. Regional shape abnormalities in mild cognitive impairment 
and Alzheimer’s disease. Neuroimage 45, 656–661. 

Qiu, S., Joshi, P.S., Miller, M.I., Xue, C., Zhou, X., Karjadi, C., Chang, G.H., Joshi, A.S., 
Dwyer, B., Zhu, S., Kaku, M., Zhou, Y., Alderazi, Y.J., Swaminathan, A., Kedar, S., 
Saint-Hilaire, M.H., Auerbach, S.H., Yuan, J., Sartor, E.A., Au, R., Kolachalama, V.B., 
2020. Development and validation of an interpretable deep learning framework for 
Alzheimer’s disease classification. Brain 143, 1920–1933. 

Risacher, S.L., Saykin, A.J., West, J.D., Shen, L., Firpi, H.A., McDonald, B.C., Alzheimer’s 
Disease Neuroimaging, I., 2009. Baseline MRI predictors of conversion from MCI to 
probable AD in the ADNI cohort. Curr. Alzheimer Res. 6, 347–361. 

Sluimer, J.D., Bouwman, F.H., Vrenken, H., Blankenstein, M.A., Barkhof, F., van der 
Flier, W.M., Scheltens, P., 2010. Whole-brain atrophy rate and CSF biomarker levels 
in MCI and AD: a longitudinal study. Neurobiol. Aging 31 (5), 758–764. 

Su, Y., D’Angelo, G.M., Vlassenko, A.G., Zhou, G., Snyder, A.Z., Marcus, D.S., Blazey, T. 
M., Christensen, J.J., Vora, S., Morris, J.C., Mintun, M.A., Benzinger, T.L.S., Chen, K., 
2013. Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS ONE 8 (11), 
e73377. 

Su, Y., Flores, S., Wang, G., Hornbeck, R.C., Speidel, B., Joseph-Mathurin, N., 
Vlassenko, A.G., Gordon, B.A., Koeppe, R.A., Klunk, W.E., Jack, C.R., Farlow, M.R., 
Salloway, S., Snider, B.J., Berman, S.B., Roberson, E.D., Brosch, J., Jimenez- 
Velazques, I., Dyck, C.H., Galasko, D., Yuan, S.H., Jayadev, S., Honig, L.S., 
Gauthier, S., Hsiung, G.R., Masellis, M., Brooks, W.S., Fulham, M., Clarnette, R., 

A. Qiu et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.nicl.2022.102993
https://doi.org/10.1016/j.nicl.2022.102993
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0005
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0005
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0005
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0005
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0005
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0010
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0010
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0010
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0010
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0015
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0015
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0015
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0015
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0020
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0025
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0025
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0025
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0035
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0035
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0035
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0040
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0040
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0040
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0045
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0045
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0045
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0045
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0045
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0050
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0050
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0050
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0055
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0055
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0055
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0055
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0060
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0060
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0065
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0065
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0065
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0065
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0065
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0070
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0070
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0070
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0070
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0070
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0075
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0075
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0075
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0080
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0080
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0080
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0085
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0085
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0085
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0090
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0090
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0095
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0095
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0095
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0095
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0100
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0100
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0105
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0110
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0115
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0115
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0120
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0125
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0125
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0125
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0130
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0130
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0130
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0130
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0130
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0135
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0140
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0145
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150


NeuroImage: Clinical 34 (2022) 102993

10

Masters, C.L., Wallon, D., Hannequin, D., Dubois, B., Pariente, J., Sanchez-Valle, R., 
Mummery, C., Ringman, J.M., Bottlaender, M., Klein, G., Milosavljevic-Ristic, S., 
McDade, E., Xiong, C., Morris, J.C., Bateman, R.J., Benzinger, T.L.S., 2019. 
Comparison of Pittsburgh compound B and florbetapir in cross-sectional and 
longitudinal studies. Alzheimers Dement (Amst) 11 (1), 180–190. 

Tan, M., Qiu, A., 2016. Large deformation multiresolution diffeomorphic metric mapping 
for multiresolution cortical surfaces: a coarse-to-fine approach. IEEE Trans. Image 
Process. 25 (9), 4061–4074. 

Thompson, P.M., Hayashi, K.M., de Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J., 
Herman, D., Hong, M.S., Dittmer, S.S., Doddrell, D.M., Toga, A.W., 2003. Dynamics 
of gray matter loss in Alzheimer’s disease. J. Neurosci. 23 (3), 994–1005. 

Villars, H., Oustric, S., Andrieu, S., Baeyens, J.P., Bernabei, R., Brodaty, H., Brummel- 
Smith, K., Celafu, C., Chappell, N., Fitten, J., Frisoni, G., Froelich, L., Guerin, O., 
Gold, G., Holmerova, I., Iliffe, S., Lukas, A., Melis, R., Morley, J.E., Nies, H., 
Nourhashemi, F., Petermans, J., Ribera Casado, J., Rubenstein, L., Salva, A., 
Sieber, C., Sinclair, A., Schindler, R., Stephan, E., Wong, R.Y., Vellas, B., 2010. The 
primary care physician and Alzheimer’s disease: an international position paper. 
J. Nutr. Health Aging 14 (2), 110–120. 

Wee, C.Y., Liu, C., Lee, A., Poh, J.S., Ji, H., Qiu, A., Neuroimage, A.D., I.,, 2019. Cortical 
graph neural network for AD and MCI diagnosis and transfer learning across 
populations. Neuroimage Clin 23, 101929. 

Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-Gonzalez, J., Routier, A., Bottani, S., 
Dormont, D., Durrleman, S., Burgos, N., Colliot, O., Alzheimer’s Disease 
Neuroimaging, I., Australian Imaging, B., Lifestyle flagship study of, a., 2020. 
Convolutional neural networks for classification of Alzheimer’s disease: Overview 
and reproducible evaluation. Med Image Anal 63, 101694. 

Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., 
DiBernardo, A., Narayan, V.A., Alzheimer’s Disease Neuroimaging, I., 2012. Sparse 
learning and stability selection for predicting MCI to AD conversion using baseline 
ADNI data. BMC Neurol. 12, 46. 

Yuan, Y., Gu, Z.-X., Wei, W.-S., 2009. Fluorodeoxyglucose-positron-emission 
tomography, single-photon emission tomography, and structural MR imaging for 
prediction of rapid conversion to Alzheimer disease in patients with mild cognitive 
impairment: a meta-analysis. AJNR Am. J. Neuroradiol. 30 (2), 404–410. 

Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging, I., 2012. Predicting future 
clinical changes of MCI patients using longitudinal and multimodal biomarkers. 
PLoS ONE 7, e33182. 

Zhong, J., Qiu, A., 2010. Multi-Manifold Diffeomorphic Metric Mapping for Aligning 
Cortical Hemispheric Surfaces. NeuroImage 49 (1), 355–365. 

A. Qiu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0150
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0155
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0160
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0165
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0170
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0170
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0170
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0180
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0185
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0190
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0195
http://refhub.elsevier.com/S2213-1582(22)00058-4/h0195

	Predicting diagnosis 4 ​years prior to Alzheimer’s disease incident
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 MRI processing
	2.3 Diagnostic-Guided probabilistic risk via graph convolution and recurrent neural networks
	2.3.1 Graph-CNN-RNN model
	2.3.2 Graph-CNN-RNN training and evaluation
	2.3.3 AD probabilistic risk

	2.4 Diagnosis, cognition, and amyloid burden
	2.5 Statistical analysis
	2.6 Data availability

	3 Results
	3.1 Subject characteristics
	3.2 Diagnostic prediction of stable controls and AD patients
	3.3 The discrimination map of stable controls and AD patients
	3.4 The AD probabilistic risk predicts AD incident 4 ​years in advance
	3.5 The AD probabilistic risk in relation with diagnostic measures, cognition, and biological markers

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


