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The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure.
The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new
splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large
steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize
due to their infinitely large stability regions.

1. Introduction

The exploration of mechanisms of gene expression and regu-
lation has become one of the central themes in medicine and
biological sciences such as cell biology, molecular biology,
and systems biology [1, 2]. For example, it has been acknowl-
edged that the p53 tumor suppressor plays key regulatory
roles in various fundamental biological processes, including
development, ageing, and cell differentiation. It can regulate
its downstream genes through their signal pathways and
further implement cell cycle arrest and cell apoptosis [3–6].
The qualitative analysis as well as numerical simulation has
become an important route in the investigation of differential
equations of genetic regulatory networks (GRNs) in the
past few years [7–10]. Up till now, algorithms used in the
simulation of GRNs have primarily been classical Runge-
Kutta (RK) methods (typically of order four) or Runge-
Kutta-Fehlberg embedded pairs as employed in the scientific
computing software MATLAB [11–13]. However, if we are
required to achieve a very high accuracy, we have to take
very small stepsize. Moreover, the traditional Runge-Kutta
type methods often fail to retain some important qualitative
properties of the system of interest. This prevents us from
acquiring correct knowledge of the dynamics of genetic
regulatory networks.

Geometric numerical integration aims at solving differ-
ential equations effectively while preserving the geometric
properties of the exact flow [14]. Recently, You et al. [15]

develop a family of trigonometrically fitted Scheifele two-step
(TFSTS) methods, derive a set of necessary and sufficient
conditions for TFSTS methods to be of up to order five
based on the linear operator theory, and construct two
practicalmethods of algebraic four andfive, respectively. Very
recently, You [16] develops a new family of phase-fitted and
amplification methods of Runge-Kutta type which have been
proved very effective for genetic regulatory networks with a
limit-cycle structure.

Splitting is one of the effective techniques in geometric
integration. For example, Blanes and Moan [17] construct
a symmetric fourth- and sixth-order symplectic partitioned
Runge-Kutta and Runge-Kutta-Nyström methods and show
that these methods have an optimized efficiency. For a
systematic presentation of the splitting technique, the reader
is referred to Hairer et al. [14]. The purpose of this paper
is to develop the splitting methods for GRNs. In Section 2
we present the system of differential equations governing the
GRNs and basic assumptions for the system. In Section 3 we
describe the idea and formation of the approach of splitting
strategy which intends to simulate exactly the characteristic
part of the system. Section 4 gives the simulation results of
the new splitting methods and the traditional Runge-Kutta
methods when they are applied to a one-gene network, a two-
gene network, and a p53-mdm2 network. We compare their
accuracy and computational efficiency. Section 5 is devoted to
conclusive remarks. Section 6 is for discussions. In Appendix,
the linear stability of the new splitting methods is analyzed.
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2. Materials

2.1. mRNA-ProteinNetworks. An𝑁-gene regulatory network
can be described by the following system of ordinary differ-
ential equations:

̇𝑟 (𝑡) = −Γ𝑟 (𝑡) + 𝐹 (𝑝 (𝑡)) ,

�̇� (𝑡) = −𝑀𝑝 (𝑡) + 𝐾𝑟 (𝑡) ,

(1)

where 𝑟(𝑡) = (𝑟
1
(𝑡), . . . , 𝑟

𝑁
(𝑡)) and 𝑝(𝑡) = (𝑝

1
(𝑡), 𝑝
2
(𝑡), . . . ,

𝑝
𝑁
(𝑡)) are 𝑁-dimensional vectors representing the concen-

trations of mRNAs and proteins at time 𝑡, respectively, and
𝐹(𝑝(𝑡)) = (𝐹

1
(𝑝(𝑡)), . . . , 𝐹

𝑁
(𝑝(𝑡))), Γ = diag(𝛾

1
, . . . , 𝛾

𝑁
),

𝑀 = diag(𝜇
1
, . . . , 𝜇

𝑁
), and𝐾 = diag(𝜅

1
, . . . , 𝜅

𝑁
) are diagonal

matrices. The system (1) can be written in components as

̇𝑟
𝑖
(𝑡) = −𝛾

𝑖
𝑟
𝑖
(𝑡) + 𝐹

𝑖
(𝑝 (𝑡)) ,

�̇�
𝑖
(𝑡) = −𝜇

𝑖
𝑝
𝑖
(𝑡) + 𝜅

𝑖
𝑟
𝑖
(𝑡) ,

(2)

where, for 𝑖 = 1, 2, . . . , 𝑁, 𝑟
𝑖
(𝑡) and 𝑝

𝑖
(𝑡) ∈ R+ are the

concentrations of mRNA 𝑖 and the corresponding protein 𝑖

at time 𝑡, respectively; 𝛾
𝑖
and 𝜇

𝑖
, positive constants, are the

degradation rates of mRNA 𝑖 and protein 𝑖, respectively; 𝜅
𝑖
is

a positive constant; and𝐹
𝑖
(⋅), the regulatory function of gene 𝑖,

is a nonlinear andmonotonic function in each of its variables.
If gene 𝑖 is activated by protein 𝑗, 𝜕𝐹

𝑖
/𝜕𝑝
𝑗
> 0, and if gene 𝑖 is

inhibited by protein 𝑗, 𝜕𝐹
𝑖
/𝜕𝑝
𝑗
< 0. If protein 𝑗 has no action

on gene 𝑖, 𝑝
𝑗
will not appear in the expression of 𝐹

𝑖
.

In particular, we are concerned in this paper with the
following two simple models.

(I) The first model is a one-gene regulatory network
which can be written as

̇𝑟 (𝑡) = −𝛾𝑟 (𝑡) + 𝑓 (𝑝 (𝑡)) ,

�̇� (𝑡) = −𝜇𝑝 (𝑡) + 𝜅𝑟 (𝑡) ,

(3)

where 𝑓(𝑝(𝑡)) = 𝛼/(1 + 𝑝(𝑡)
2
/𝜃
2
) represents the action of an

inhibitory protein that acts as a dimer and 𝛾, 𝜇, 𝜅, 𝛼, and 𝜃 are
positive constants. This model with delays can be found in
Xiao and Cao [18].

(II) The second model is a two-gene cross-regulatory
network [7, 19]:

̇𝑟
1
= 𝜆
1
ℎ
+
(𝑝
2
; 𝜃
2
, 𝑛
2
) − 𝛾
1
𝑟
1
,

̇𝑟
2
= 𝜆
2
ℎ
−
(𝑝
1
; 𝜃
1
, 𝑛
1
) − 𝛾
2
𝑟
2
,

�̇�
1
= 𝜅
1
𝑟
1
− 𝛿
1
𝑝
1
,

�̇�
2
= 𝜅
2
𝑟
2
− 𝛿
2
𝑝
2
,

(4)

where 𝑟
1
and 𝑟
2
are the concentrations ofmRNA 1 andmRNA

2, respectively, 𝑝
1
and 𝑝

2
are the concentrations of their

corresponding products protein 1 and protein 2, respectively,
𝜆
1
, and 𝜆

2
represent the maximal transcription rates of gene

1 and gene 2, respectively, 𝛾
1
and 𝛾
2
are the degradation rates

of mRNA 1 and mRNA 2, respectively, 𝛿
1
and 𝛿

2
are the

degradation rates of protein 1 and protein 2, respectively,

ℎ
+
(𝑝
2
; 𝜃
2
, 𝑛
2
) =

𝑝
𝑛
2

2

𝑝
𝑛
2

2
+ 𝜃
𝑛
2

2

,

ℎ
−
(𝑝
1
; 𝜃
1
, 𝑛
1
) =

𝜃
𝑛
1

1

𝑝
𝑛
1

1
+ 𝜃
𝑛
1

1

(5)

are the Hill functions for activation and repression, respec-
tively, 𝑛

1
and 𝑛
2
are the Hill coefficients, and 𝜃

1
and 𝜃
2
are the

thresholds. It is easy to see that the activation function ℎ
+ is

increasing in 𝑝
2
and the repression function ℎ

− is decreasing
in 𝑝
1
.

2.2. A p53-mdm2Regulatory Pathway. Anothermodelwe are
interested in is for the damped oscillation of the p53-mdm2
regulatory pathway which is given by (see [20])

�̇�
𝐼
= 𝑠
𝑝
+ 𝑗
𝑎
𝑃
𝐴
− (𝑑
𝑝
+ 𝑘
𝑎
𝑆 (𝑡)) 𝑃

𝐼
− 𝑘
𝑐
𝑃
𝐼
𝑀+ 𝑗

𝑐
𝐶,

�̇� = 𝑠
𝑚0

+
𝑠
𝑚1
𝑃
𝐼
+ 𝑠
𝑚2
𝑃
𝐴

𝑃
𝐼
+ 𝑃
𝐴
+ 𝐾
𝑚

+ 𝑘
𝑢
𝐶 + 𝑗
𝑐
𝐶 − (𝑑

𝑚
+ 𝑘
𝑐
𝑃
𝐼
)𝑀,

�̇� = 𝑘
𝑐
𝑃
𝐼
𝑀− (𝑗

𝑐
+ 𝑘
𝑢
) 𝐶,

�̇�
𝐴
= 𝑘
𝑎
𝑆 (𝑡) 𝑃

𝐼
− (𝑗
𝑎
+ 𝑑
𝑝
) 𝑃
𝐴
,

(6)

where 𝑃
𝐼
represents the concentration of the p53 tumour

suppressor,𝑀 (mdm2) is the concentration of the p53’s main
negative regulator, 𝐶 is the concentration of the p53-mdm2
complex, 𝑃

𝐴
is the concentration of an active form of p53

that is resistant against mdm2-mediated degradation, 𝑆(𝑡) is a
transient stress stimulus which has the form 𝑆(𝑡) = −𝑒

𝑐
𝑠
𝑡, 𝑐
𝑠
=

𝛾𝑘
𝑢
, 𝑠
∗
(∗ = 𝑝,𝑚0,𝑚1) are de novo synthesis rates, 𝑘

∗
(∗ =

𝑎, 𝑐, 𝑢) are production rates, 𝑗
∗
(∗ = 𝑎, 𝑐) are reverse reactions

(e.g., dephosphorylation), 𝑑
𝑝
is the degradation rate of active

p53, and𝐾
𝑚
is the saturation coefficient.

3. Methods

3.1. Runge-Kutta Methods. Either the mRNA-protein net-
work (1) or the p53-mdm2 regulatory pathway (6) can be
regarded as a special form of a system of ordinary differential
equations (ODEs):

𝑧

= 𝑔 (𝑧) , (7)

where 𝑧 = 𝑧(𝑡) ∈ 𝑅
𝑑 and the function 𝑔 : R𝑑 → R𝑑

is smooth enough as required. The system (7) together with
initial value 𝑧(0) = 𝑧

0
is called an initial value problem (IVP).

Throughout this paper we make the following assumptions.

(i) The system (7) has a unique positive steady state 𝑧∗;
that is, there is a unique 𝑧

∗
= (𝑧
∗

1
, 𝑧
∗

2
, . . . , 𝑧

∗

𝑑
) with

𝑧
∗

𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑑 such that 𝑔(𝑧∗) = 0.

(ii) The steady state 𝑧∗ is asymptotically stable; that is, for
any solution 𝑧(𝑡) of the system (7) through a positive
initial point 𝑧

0
, lim
𝑡→+∞

𝑧(𝑡) = 𝑧
∗.
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The most frequently used algorithms for the system (7)
are the so-called Runge-Kutta methods which read

𝑍
𝑖
= 𝑧
𝑛
+ ℎ

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝑔 (𝑍
𝑗
) , 𝑖 = 1, . . . , 𝑠,

𝑧
𝑛+1

= 𝑧
𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏
𝑖
𝑔 (𝑍
𝑖
) ,

(8)

where 𝑧
𝑛
is an approximation of the solution 𝑧(𝑡) at 𝑡

𝑛
, 𝑛 =

0, 1, . . ., 𝑎
𝑖𝑗
, 𝑏
𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑠, are real numbers, 𝑠 is the number

of internal stages𝑍
𝑖
, and ℎ is the step size.The scheme (8) can

be represented by the Butcher tableau:

𝑐 𝐴

𝑏
𝑇 =

𝑐
1

𝑎
11

. . . 𝑎
1𝑠

...
... d

...
𝑐
𝑠

𝑎
𝑠1

. . . 𝑎
𝑠𝑠

𝑏
1

. . . 𝑏
𝑠

(9)

or simply by (𝑐, 𝐴, 𝑏(])), where 𝑐
𝑖
= ∑
𝑠

𝑗=1
𝑎
𝑖𝑗
for 𝑖 = 1, . . . , 𝑠.

Two of the most famous fourth-order RK methods have the
tableaux as follows (see [13]):

0

1/2 1/2

1/2 1/2

1 0 0 1

1/6 2/6 2/6 1/6

0

1/3 1/3

2/3 1

11 1

1/8 3/8 3/8 1/8

−1

−1/2 (10)

which we denote as RK4 and RK3/8, respectively.

3.2. Splitting Methods. Splitting methods have been proved
to be an effective approach to solve ODEs. The main idea
is to split the vector field into two or more integrable parts
and treat them separately. For a concise account of splitting
methods, see Chapter II of Hairer et al. [14].

Suppose that the vector field 𝑔 of the system (7) has a split
structure

𝑧

= 𝑔
[1]

(𝑧) + 𝑔
[2]

(𝑧) . (11)

Assume also that both systems 𝑧 = 𝑔
[1]
(𝑧) and 𝑧


= 𝑔
[2]
(𝑧)

can be solved in closed form or are accurately integrated and
their exact flows are denoted by 𝜑[1]

ℎ
and 𝜑[2]

ℎ
, respectively.

Definition 1. (i) The method defined by

Ψ
ℎ
= 𝜑
[2]

ℎ
∘ 𝜑
[1]

ℎ
,

Φ
ℎ
= 𝜑
[1]

ℎ
∘ 𝜑
[2]

ℎ

(12)

is the simplest splitting method for the system (7) based on
the decomposition (11) (see [13]).

(ii) The Strang splitting is the following symmetric ver-
sion (see [21]):

Ψ
ℎ
= 𝜑
[1]

ℎ/2
∘ 𝜑
[2]

ℎ
∘ 𝜑
[1]

ℎ/2
. (13)

(iii) The general splitting method has the form

Ψ
ℎ
= 𝜑
[2]

𝑏
𝑚
ℎ
∘ 𝜑
[1]

𝑎
𝑚
ℎ
∘ ⋅ ⋅ ⋅ ∘ 𝜑

[2]

𝑏
2
ℎ
∘ 𝜑
[1]

𝑎
2
ℎ
∘ 𝜑
[2]

𝑏
1
ℎ
∘ 𝜑
[1]

𝑎
1
ℎ
, (14)

where 𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, . . . , 𝑎

𝑚
, 𝑏
𝑚
are positive constants satisfying

some appropriate conditions. See, for example, [22–25].

Theorem 5.6 in ChapterII of Hairer et al. [14] gives the
conditions for the splitting method (14) to be of order 𝑝.

However, in most occasions, the exact flows 𝜑[1]
ℎ

and 𝜑
[2]

ℎ

for 𝑔[1] and 𝑔
[2] in Definition 1 are not available. Hence, we

have to use instead some approximations or numerical flows
which are denoted by 𝜓

1
and 𝜓

2
.

3.3. Splitting Methods for Genetic Regulatory Networks Based
on Their Characteristic Structure. For a given genetic reg-
ulatory network, different ways of decomposition of the
vector field 𝑓 may produce different results of computation.
Thus a question arises as follows: which decomposition is
more appropriate or more effective. In the following we take
the system (1) for example. The analysis of the p53-mdm2
pathway (6) is similar. Denote 𝑧(𝑡) = (𝑟(𝑡), 𝑝(𝑡))

𝑇. Then
the 𝑁-gene regulatory network (1) has a natural form of
decomposition:

𝑔
[1]

(𝑧) = (
−Γ 0

𝐾 −𝑀
)𝑧, 𝑔

[2]
(𝑧) = (

𝐹 (𝑝 (𝑡))

0
) . (15)

Unfortunately, it has been checked through practical test that
the splitting methods based on this decomposition cannot
lead to effective results. To find a way out, we first observe
that a coordinate transform 𝑥(𝑡) = 𝑟(𝑡) − 𝑟

∗
, 𝑦(𝑡) = 𝑝(𝑡)−𝑝

∗

translates the steady state (𝑟
∗
, 𝑝
∗
) of the system (1) to the

origin and yields

�̇� (𝑡) = −Γ𝑥 (𝑡) + 𝐹

(𝑝
∗
) 𝑦 (𝑡) + 𝐺 (𝑦 (𝑡)) ,

̇𝑦 (𝑡) = 𝐾𝑥 (𝑡) − 𝑀𝑦 (𝑡) ,

(16)

where 𝐹

(𝑝
∗
) is the Jacobian matrix of 𝐹(𝑝) at point 𝑝∗

and 𝐺(𝑦(𝑡)) = 𝐹(𝑝
∗
+ 𝑦(𝑡)) − 𝐹


(𝑝
∗
)𝑦(𝑡) − 𝐹(𝑝

∗
).
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We employ this special structure of the system (16) to reach
the decomposition of the vector field:

𝑔
[1]

(𝑧) = (
−Γ 𝐹


(𝑝
∗
)

𝐾 −𝑀
)𝑧, 𝑔

[2]
(𝑧) = (

𝐺 (𝑦 (𝑡))

0
) ,

(17)

where 𝑧(𝑡) = (𝑥(𝑡), 𝑦(𝑡))
𝑇. The system �̇� = 𝑔

[1]
(𝑧) here is

called the linearization of the system (1) at the steady state
(𝑟
∗
, 𝑝
∗
). 𝑔[1] in (17) is the linear principal part of the vector

field 𝑔 which has the exact flow 𝜑
[1]

ℎ
= exp(ℎ ( −Γ 𝐹(𝑝∗)

𝐾 −𝑀
)).

However, it is not easy or impossible to obtain the exact
solution of 𝑔[2](𝑥

𝑖
(𝑡), 𝑦
𝑖
(𝑡)) due to its nonlinearity. So we have

to use an approximation flow 𝜓
[2]

ℎ
and form the splitting

method:

Ψ
ℎ
= 𝜓
[2]

ℎ
∘ 𝜑
[1]

ℎ
. (18)

When 𝜓
[2] is taken as an RK method, then the resulting

splitting method is denoted by Split(Exact:RK). Hence we
write Split(Exact:RK4) and Split(Exact:RK3/8) for the split-
ting methods with𝜓[2] taken as RK4 and RK3/8, respectively.

4. Results

In order to examine the numerical behavior of the new
splitting methods Split(Exact:RK4) and Split(Exact:RK3/8),
we apply them to the three models presented in Section 2.
Their corresponding RK methods RK4 and RK3/8 are also
used for comparison. We will carry out two observations:
effectiveness and efficiency. For effectiveness, we first find
the errors produced by each method with different values of
stepsize. We also solve each problem with a fixed stepsize on
different lengths of time intervals.

4.1. The One-Gene Network. Table 1 gives the parameter
values which are provided by Xiao and Cao [18]. This system
has a unique steady state (𝑟

∗
, 𝑝
∗
) = (0.6, 2) where the

Jacobianmatrix has eigenvalues𝜔
1
= −1.2500+2.9767𝑖, 𝜔

2
=

−1.2500 − 2.9767𝑖, where 𝑖 is the imaginary unit satisfying
𝑖
2
= −1. Since the two eigenvalues both have negative real

parts, the steady state is asymptotically stable.
In order to apply the splitting methods Split(Exact:RK4)

and Split(Exact:RK3/8), the vector field of the system (3) is
decomposed in the way of (16) as

𝑔
[1]

(𝑧 (𝑡)) = (
−𝛾 −

2𝛼𝑝
∗
/𝜃
2

(1 + 𝑝∗
2
/𝜃2)
2

𝜅 −𝜇

)(
𝑥 (𝑡)

𝑦 (𝑡)
) ,

𝑔
[2]

(𝑧 (𝑡))

= (

𝛼

1 + (𝑝∗ + 𝑦 (𝑡))
2

/𝜃2
+

2𝛼𝑝
∗
/𝜃
2

(1 + 𝑝∗
2
/𝜃2)
2
𝑦 (𝑡)

0

) .

(19)

The system is solved on the time interval [0, 100] with
initial values ofmRNAand protein 𝑟(0) = 0.6, 𝑝(0) = 0.8 and
with different stepsizes. The numerical results are presented
in Table 2.

Then we solve the problem with a fixed stepsize ℎ = 2

on several lengths of time intervals.The numerical results are
given in Table 3.

4.2. The Two-Gene Network. Table 4 gives the parameter
values which can be found in Widder et al. [19]. This
system has a unique steady state (𝑟

∗

1
, 𝑟
∗

2
, 𝑝
∗

1
, 𝑝
∗

2
) =

(0.814713, 0.614032, 0.814713, 0.614032). Since the four
eigenvalues 𝜔

1
= −1.9611 + 0.9611𝑖, 𝜔

2
= −1.9611−

0.9611𝑖, 𝜔
3
= −0.0389 + 0.9611𝑖, and 𝜔

4
= −0.0389 − 0.9611𝑖

of the Jacobian matrix at the steady state (𝑟
∗
, 𝑝
∗
) all have

negative real parts, the steady state is asymptotically stable.
For this system, the decomposition (16) becomes

𝑔
[1]

(𝑧 (𝑡))

=
(
(
(

(

−𝛾
1

0 0
𝑛
2
𝜆
1
𝜃
𝑛
2

2
𝑝
∗

2

𝑛
2
−1

(𝑝
∗

2

𝑛
2 + 𝜃
𝑛
2

2
)
2

0 −𝛾
2
−
𝑛
1
𝜆
2
𝜃
𝑛
1

1
𝑝
∗

1

𝑛
1
−1

(𝑝
∗

1

𝑛
1 + 𝜃
𝑛
1

1
)
2

0

𝜅
1

0 −𝛿
1

0

0 𝜅
2

0 −𝛿
2

)
)
)

)

×(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

𝑦
1
(𝑡)

𝑦
2
(𝑡)

) ,

𝑔
[2]

(𝑧 (𝑡))

=
(
(
(

(

𝜆
1
(𝑦
2
(𝑡) + 𝑝

∗

2
)
𝑛
2

(𝑦
2
(𝑡) + 𝑝

∗

2
)
𝑛
2

+ 𝜃
𝑛
2

2

−
𝑛
2
𝜆
1
𝜃
𝑛
2

2
𝑝
∗

2

𝑛
2
−1

(𝑝
∗

2

𝑛
2 + 𝜃
𝑛
2

2
)
2
𝑦
2
(𝑡)

𝜆
2
𝜃
𝑛
1

1

(𝑦
1
(𝑡) + 𝑝

∗

1
)
𝑛
1

+ 𝜃
𝑛
1

1

+
𝑛
1
𝜆
2
𝜃
𝑛
1

1
𝑝
∗

1

𝑛
1
−1

(𝑝
∗

1

𝑛
1 + 𝜃
𝑛
1

1
)
2
𝑦
1
(𝑡)

0

0

)
)
)

)

.

(20)

The system is solved on the time interval [0, 100] with
the initial values 𝑟

1
(0) = 0.6, 𝑟

2
(0) = 0.8, 𝑝

1
(0) = 0.6, and

𝑝
2
(0) = 0.8 andwith different stepsizes.Thenumerical results

are presented in Table 5.
Then we solve the problem with a fixed stepsize ℎ = 2

on several lengths of time intervals.The numerical results are
given in Table 6.

4.3. The p53-mdm2 Network. Table 7 gives the parame-
ter values which are used by van Leeuwen et al. [20].
For simplicity, we take the small function 𝑆(𝑡) ≡ 0.
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Table 1: Parameter values for the one-gene network.

𝛼 = 3 𝛾 = 1 𝜇 = 1.5 𝜅 = 5

This system has a unique steady state (𝑃
∗

𝐼
,𝑀
∗
, 𝐶
∗
, 𝑃
∗

𝐴
) =

(9.42094, 0.0372868, 3.49529, 0). Since the eigenvalues 𝜔
1
=

−38.4766, 𝜔
2
= −0.0028 + 0.0220𝑖, 𝜔

3
= −0.0028 − 0.0220𝑖,

and 𝜔
4
= −0.2002 of the Jacobian matrix at the steady state

all have negative real parts, the steady state is asymptotically
stable.

For this system, decomposition (16) becomes

𝑔
[1]

(𝑧 (𝑡)) = 𝐽(

𝑧
1
(𝑡)

𝑧
2
(𝑡)

𝑧
3
(𝑡)

𝑧
4
(𝑡)

) ,

𝑔
[2]

(𝑧 (𝑡)) = (

−𝑘
𝑐
𝑧
1
(𝑡) 𝑧
2
(𝑡)

𝜐 (𝑡)

𝑘
𝑐
𝑧
1
(𝑡) 𝑧
2
(𝑡)

0

) ,

(21)

where

𝐽 =
(
(
(

(

−𝑘
𝑐
𝑀
∗
− 𝑑
𝑝

−𝑘
𝑐
𝑃
∗

𝐼
𝑗
𝑐

𝑗
𝑎

𝑠
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∗

𝐴
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2
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𝑐
𝑀
∗

−𝑑
𝑚
− 𝑘
𝑐
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𝑐

𝑠
𝑚2

(𝑃
∗

𝐼
+ 𝐾
𝑚
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𝐼
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∗

𝐼
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𝐴
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𝑚
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2

𝑘
𝑐
𝑀
∗

𝑘
𝑐
𝑃
∗

𝐼
− (𝑗
𝑐
+ 𝑘
𝑢
) 0

0 0 0 − (𝑗
𝑎
+ 𝑑
𝑝
)

)
)
)

)

,

𝜐 (𝑡) = 𝑠
𝑚0

+
𝑠
𝑚1

(𝑧
1
(𝑡) + 𝑃

∗

𝐼
) + 𝑠
𝑚2

(𝑧
4
(𝑡) + 𝑃

∗

𝐴
)

𝑧
1
(𝑡) + 𝑃

∗

𝐼
+ 𝑧
4
(𝑡) + 𝑃

∗

𝐴
+ 𝐾
𝑚

− 𝑑
𝑚
𝑀
∗
+ 𝑘
𝑐
𝑧
1
(𝑡) 𝑧
2
(𝑡) + 2𝑘

𝑐
𝑧
1
(𝑡)𝑀
∗

− 𝑘
𝑐
𝑃
∗

𝐼
𝑀
∗
−
𝑠
𝑚1

(𝑃
∗

𝐴
+ 𝐾
𝑚
) − 𝑠
𝑚2
𝑃
∗

𝐴

(𝑃
∗

𝐼
+ 𝑃
∗

𝐴
+ 𝐾
𝑚
)
2

𝑧
1
(𝑡) −

𝑠
𝑚2

(𝑃
∗

𝐼
+ 𝐾
𝑚
) − 𝑠
𝑚1
𝑃
∗

𝐼

(𝑃
∗

𝐼
+ 𝑃
∗

𝐴
+ 𝐾
𝑚
)
2

𝑧
4
(𝑡)

+ (𝑘
𝑢
+ 𝑗
𝑐
) 𝐶
∗
.

(22)

The system is solved on the time interval [0, 100] with
initial values 𝑃

𝐼
(0) = 9.42 nM, 𝐶(0) = 0.037 nM, 𝑀(0) =

3.49 nM, and 𝑃
𝐴
(0) = 0 nM and with different stepsizes. The

numerical results are presented in Table 8.
Then we solve the problem with a fixed stepsize ℎ = 2

on several lengths of time intervals.The numerical results are
given in Table 9.

5. Conclusions

In this paper we have developed a new type of splitting
algorithms for the simulation of genetic regulatory networks.
The splitting technique has taken into account the special
structure of the linearizing decomposition of the vector
field. From the results of numerical simulation of Tables
2, 5, and 8, we can see that the new splitting methods
Split(Exact:RK4) and Split(Exact:RK3/8) are much more
accurate than the traditional Runge-Kutta methods RK4 and
RK3/8. For large steps when RK4 and RK3/8 completely lose
effect, Split(Exact:RK4) and Split(Exact:RK3/8) continue to
work verywell. On the other hand, Tables 3, 6, and 9 show that
for comparatively large steps, RK4 and RK3/8 can solve the
problem only on short time intervals while Split(Exact:RK4)
and Split(Exact:RK3/8) work for very long time intervals.

We conclude that, for genetic regulatory networks
with an asymptotically stable steady state, compared with

the traditional Runge-Kutta, the new splitting methods have
two advantages.

(a) They are extremely accurate for large steps. This
promises high efficiency for solving large-scale sys-
tems (complex networks containing a large number
of distinct proteins) in a long-term simulation.

(b) They work effectively for very long time intervals.
This makes it possible for us to explore the long-
run behavior of genetic regulatory network which is
important in the research of gene repair and gene
therapy.

The special structure of the new splitting methods
and their remarkable stability property (see Appendix) are
responsible for the previous two advantages.

6. Discussions

The splitting methods designated in this paper have opened
a novel approach to effective simulation of the complex
dynamical behaviors of genetic regulatory network with a
characteristic structure. It is still possible to enhance the
effectiveness of the new splitting methods. For example,
higher-order splitting methods can be obtained by recursive
composition (14) or by employing higher order Runge-Kutta
methods; see II.5 of [13]. Another possibility is to consider
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Table 2: One-gene network: average errors for different stepsizes.

Stepsize RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
1.2 1.7733 × 10

0
6.2404 × 10

−1
1.3910 × 10

−3
1.3910 × 10

−3

1.5 3.2171 × 10
17

1.2337 × 10
1

1.1862 × 10
−3

1.1862 × 10
−3

2.0 3.3619 × 10
59

6.0455 × 10
47

5.4651 × 10
−4

5.4651 × 10
−4

10.0 8.7073 × 10
62

7.6862 × 10
62

1.1451 × 10
−7

1.1451 × 10
−7

Table 3: One-gene network: average errors for fixed stepsize ℎ = 2 on different time intervals.

Time interval RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
[0, 100] 3.3619 × 10

59
6.0455 × 10

47
5.4917 × 10

−4
5.4917 × 10

−4

[0, 500] 4.5549 × 10
299

2.0782 × 10
240

1.1158 × 10
−4

1.1158 × 10
−4

[0, 1000] NaN NaN 5.5903 × 10
−5

5.5903 × 10
−5

[0, 1500] NaN NaN 3.7294 × 10
−5

3.7294 × 10
−5

Table 4: Parameter values for the two-gene network.

𝜆
1
= 1.8 𝛾

1
= 1 𝜅

1
= 1 𝛿

1
= 1 𝜃

1
= 0.6542 𝑛

1
= 3

𝜆
2
= 1.8 𝛾

2
= 1 𝜅

2
= 1 𝛿

2
= 1 𝜃

1
= 0.6542 𝑛

2
= 3

Table 5: Two-gene network: average errors for different stepsizes.

Stepsize RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
0.1 9.8188 × 10

−2
9.3019 × 10

−2
9.9338 × 10

−4
9.9338 × 10

−4

1.2 2.5157 × 10
−1

5.5798 × 10
−2

7.6803 × 10
−3

7.6803 × 10
−3

1.5 4.3953 × 10
0

2.9958 × 10
0

9.5832 × 10
−3

9.5832 × 10
−3

2.0 4.1821 × 10
24

7.5238 × 10
17

1.6686 × 10
−2

1.6686 × 10
−2

5.0 1.9692 × 10
69

3.2225 × 10
68

3.1227 × 10
−2

3.1227 × 10
−2

Table 6: Two-gene network: average errors for fixed stepsize ℎ = 2 on different time intervals.

Time interval RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
[0, 500] 4.4414 × 10

0
1.5342 × 10

0
1.9352 × 10

−3
1.9352 × 10

−3

[0, 1000] 4.4396 × 10
0

1.0172 × 10
0

9.6936 × 10
−4

9.6936 × 10
−4

[0, 1500] NaN 2.3844 × 10
95

1.1409 × 10
−3

1.1409 × 10
−3

[0, 2000] NaN NaN 8.5613 × 10
−4

8.5613 × 10
−4

[0, 2500] NaN NaN 6.8520 × 10
−4

6.8520 × 10
−4

Table 7: Parameter values for the p53-mdm2 pathway.

𝑠
𝑚0

= 2 × 10
−3 nMmin−1 𝑘

𝑎
= 20min−1 𝑗

𝑎
= 0.2min−1 𝛾 = 2.5

𝑠
𝑚1

= 0.15 nMmin−1 𝑘
𝑐
= 4min−1 nM−1 𝑗

𝑐
= 2 × 10

−3min−1

𝑠
𝑚2

= 0.2 nMmin−1 𝑘
𝑢
= 0.4min −1 𝑑

𝑚
= 0.4min−1

𝑠
𝑝
= 1.4 nMmin−1 𝐾

𝑚
= 100 nM 𝑑

𝑝
= 2 × 10

−4min−1

Table 8: p53-mdm2 network: average errors for different stepsizes.

Stepsize RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
0.05 3.7686 × 10

−5
3.7046 × 10

−5
1.2091 × 10

−6
1.2065 × 10

−6

0.08 4.6118 × 10
0

4.5057 × 10
0

2.1383 × 10
−6

2.1290 × 10
−6

0.10 NaN 5.3550 × 10
0

2.8098 × 10
−6

2.7945 × 10
−6

0.12 NaN NaN 3.4986 × 10
−6

3.4762 × 10
−6

5.00 NaN NaN 7.3001 × 10
−4

3.8208 × 10
−4
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Table 9: p53-mdm2 network: average errors for fixed stepsize ℎ = 10 on different time intervals.

Time interval RK4 RK3/8 Split(Exact:RK4) Split(Exact:RK3/8)
[0, 100] NaN NaN 6.8810 × 10

−2
6.6940 × 10

−2

[0, 500] NaN NaN 2.1634 × 10
−2

2.0911 × 10
−2

[0, 1000] NaN NaN 1.1625 × 10
−2

1.1214 × 10
−2

[0, 1500] NaN NaN 7.8314 × 10
−3

7.5529 × 10
−3

[0, 2000] NaN NaN 5.8881 × 10
−3

5.6786 × 10
−3
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Figure 1: (a) Stability region of RK4 (left) and (b) stability region of RK3/8 (right).
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Figure 2: (a) Stability region of Split(Exact:RK4) (left) and (b) stability region of Split(Exact:RK3/8) (right).

embedded pairs of two splitting methods which can improve
the efficiency; see II.4 of [13].

The genetic regulatory networks considered in this
paper are nonstiff. For stiff systems (whose Jacobian pos-
sesses eigenvalues with large negative real parts or with

purely imaginary eigenvalues of large modulus), the pre-
vious techniques suggested by the reviewer are appli-
cable. Moreover, the error control technique which can
increase the efficiency of the methods is an interesting theme
for future work.
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There are more qualitative properties of the genetic
regulatory networks that can be taken into account in the
designation of simulation algorithms. For example, oscil-
lation in protein levels is observed in most regulatory
networks. Symmetric and symplectic methods have been
shown to have excellent numerical behavior in the long-
term integration of oscillatory systems even if they are not
Hamiltonian systems. A brief account of symmetric and
symplectic extended Runge-Kutta-Nyström (ERKN) meth-
ods for oscillatory Hamiltonian systems and two-step ERKN
methods can be found, for instance, in Yang et al. [26], Chen
et al. [27], Li et al. [28], and You et al. [29].

Finally, a problem related to this work remains open.
We observe that, in Tables 3 and 9 for the p53-mdm2
pathway, as the time interval extends, the error produced
by Split(Exact:RK4) and Split(Exact:RK3/8) becomes even
smaller. This phenomenon is yet to be explained.

Appendix

Stability Analysis of Runge-Kutta Methods and
Splitting Methods

Stability analysis is a necessary step for a new numerical
method before it is put into practice. Numerically unstable
methods are completely useless. In this appendix, we examine
the linear stability of the new splitting method constructed
in Section 3. To this end, we consider the linear scalar test
equation:

̇𝑦 = 𝜆𝑦 + 𝜖𝑦, (A.1)

where 𝜆 is a test rate which is an estimate of the principal
rate of a scalar problem, and 𝜖 is the error of the estimation.
Applying the splitting method Φ

ℎ
(18) to the test equation

(A.1), we obtain the difference equation

𝑦
𝑛+1

= 𝑅 (𝑢, V) 𝑦
𝑛
, (A.2)

where 𝑅(𝑢, V) is called the stability function with 𝑢 = 𝜆ℎ and
V = 𝜖ℎ.

Definition A.1. The region in the 𝑢-V plane

R
𝑠
= {(𝑢, V) | |𝑅 (𝑢, V)| ≤ 1} (A.3)

is called the stability region of the method and the curve
defined by |𝑅(𝑢, V)| ≤ 1 is call the boundary of stability region.

By simple computation, we obtain the stability function
of an RK method

𝑅 (𝑢, V) = 1 + (𝑢 + V) 𝑏𝑇(𝐼 − (𝑢 + V) 𝐴)−1𝑒, (A.4)

where 𝑒 = (1, 1, . . . , 1)
𝑇, 𝐼 is the 𝑠 × 𝑠 unit matrix and the

stability function 𝑅(𝑢, V) a splitting method Split(Exact:RK)

𝑅 (𝑢, V) = exp (V) (1 + 𝑢𝑏
𝑇
(𝐼 − 𝑢𝐴)

−1
𝑒) . (A.5)

The stability regions of RK4 and RK3/8 are pre-
sented in Figure 1 and those of Split(Exact:RK4) and

Split(Exact:RK3/8) are presented in Figure 2. It is seen that
Split(Exact:RK4) and Split(Exact:RK3/8) have much larger
stability regions than RK4 and RK3/8. Moreover, the infin-
ity area of the stability regions of Split(Exact:RK4) and
Split(Exact:RK3/8) means that these two methods have no
limitation to the stepsize ℎ for the stability reason but for
the consideration of accuracy, while RK4 and RK3/8 will
completely lose effect when the stepsize becomes large to
some extent. This has been verified in Section 4.
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