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Abstract

Reinfection and multiple viral strains are among the latest challenges in the current COVID-

19 pandemic. In contrast, epidemic models often consider a single strain and perennial

immunity. To bridge this gap, we present a new epidemic model that simultaneously consid-

ers multiple viral strains and reinfection due to waning immunity. The model is general,

applies to any viral disease and includes an optimal control formulation to seek a trade-off

between the societal and economic costs of mitigation. We validate the model, with and

without mitigation, in the light of the COVID-19 epidemic in England and in the state of Ama-

zonas, Brazil. The model can derive optimal mitigation strategies for any number of viral

strains, whilst also evaluating the effect of distinct mitigation costs on the infection levels.

The results show that relaxations in the mitigation measures cause a rapid increase in the

number of cases, and therefore demand more restrictive measures in the future.

Introduction

Also known as COVID-19, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is believed to have appeared at the end of 2019 in Wuhan, China [1]. This new, highly

transmissible virus spread rapidly around the globe, causing significant loss of life and possibly

long-lasting economic consequences. The ensuing pandemic highlighted the need for compre-

hensive epidemic models to help shape public policy [2]. One important challenge is to recon-

cile inaccurate data reports and conflicting information from distinct studies [3]. Another

challenge is to find general modelling frameworks to address newly discovered characteristics,

such as reinfection and multiple viral strains [4–6].

Parsimonious models, such as the classical SEIR (Susceptible, Exposed, Infected, Removed),

are invaluable for forecasting epidemic spread and to support decision making [7]. Indeed,

SEIR belongs to the class of compartmental models introduced in the first half of the 20th cen-

tury to describe the spread of transmissible diseases [8, 9]. Simple and easy to use, they were

able to predict the spread of COVID-19 in US states [7] and to fit historical data of the 1918 flu
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epidemic in the US [10]. Works such as [11] proved to be very useful in predicting the spread

of COVID-19 in different countries and regions.

Many mathematical models and data analytics tools have been proposed to understand the

evolution of the COVID-19 pandemic throughout the world, generally based on the SEIR clas-

sical compartmental model (see [12] for an overview of mathematical modelling applications

to COVID-19). We found in the literature different models for COVID-19, developed mainly

to study the influence of social distancing and non-pharmaceutical interventions on disease

progression [13, 14]. The study in [2] promoted non-pharmaceutical interventions, whereas

[15] assessed the effect of such measures in Europe. Researchers evaluated the effectiveness of

long-term on-off lock-down policies [16], and pursued optimal trade-offs between economics

and healthcare concerns [17]. Like most of the literature, these works did not consider the pos-

sibility of reinfection or multiple viral strains. Similarly, these possibilities were also disre-

garded in investigations of optimal strategies to exit lock-down, which also neglected the

possibility of multiple waves of infection [18, 19].

To shape public policy, we also need a thorough understanding of the pandemic. This

includes mapping the genomics of viral strains [20, 21]. Indeed, researchers recently mapped

new COVID-19 strains in the United Kingdom [22] and South Africa [23], which have rapidly

spread around the globe. In Brazil, initial studies revealed more than 100 COVID-19 viral

strains [6, 24, 25], three of which survived. Such a reduction in genetic diversity has been

attributed to the social isolation measures in that country [26]. Recently, a variant known as

P.1 (lineage 501Y.V3 or Brazilian variant) has become prevalent in Brazil. Sequencing results

from the state of Amazonas, Brazil—where the variant was first detected—identified P.1 in

about 42% of the samples tested in December 2020 [27]. This variant is believed to have a high

potential for reinfection [6].

Another important challenge to modellers is that the immune response to COVID-19 is not

uniform [28], may reportedly wane over time [29–31] and reinfection is possible [4, 5]. Fur-

thermore, the same patient may be infected by different strains of the virus [32, 33]. As stated

in [34], a thorough understanding of reinfection is essential for understanding the spread of

the disease, as future global challenges include containing epidemics with reinfection [35].

For data-based modelling, we refer the interested reader to [36]. This work utilised available

databases and the classical SIR (Susceptible, Infected, Recovered) framework to estimate the

number of COVID-19 reinfections from empirical data. Additionally, [37] discusses the chal-

lenges of applying data-science to COVID-19, which include reconciling conflicting and inac-

curate reports, partly due to asymptomatic infections and insufficient testing.

Although COVID-19 reinfection and multiple viral strains have received increased atten-

tion in the literature, mathematical modelling that incorporates these characteristics is still

scarce. A general two-strain model searched for stability conditions and assessed a quarantine

strategy to curb COVID-19 in Morocco [38]. More generally, viral reinfection is often studied

with emphasis on stability conditions and disease-free equilibrium [39]. Specifically, [40] fea-

tured a SEIR model for swine influenza and evaluated prescribed vaccination strategies.

Finally, a simpler SIR model studied the dynamics of two viral strains, considering that the

second strain appears after the first strain reaches equilibrium [41]. In general, whilst these

models examine long-term stability, they do not incorporate decision support tools and

optimisation.

To support decision making, optimal control approaches have been proposed to promote

compromises between COVID-19 infection levels and economic consequences of non-phar-

maceutical interventions [17, 42, 43]. The control may comprise a proportional reduction in

infection [17, 43] or include quarantine, isolation, and public health education [42]. Although

these models do not consider reinfection and multiple viral strains, they do provide interesting
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insights. An interesting insight is that, to preserve healthcare systems and leverage control

options late in the epidemics, we need high levels of control from the outset [43]. This is con-

sistent with the empirical results in [16], which combined the SEIR model with on/off lock-

down policies to assess the impact of spreading the outbreak across several waves of decreasing

amplitude. The results showed that there would exist multiple waves requiring flattening over

time in the absence of effective medication, an appropriate vaccine, or the development of

herd immunity.

Whereas models considering multiple viral strains are rare, the literature contains optimal

control approaches based on classical epidemiological models for two viral strains [44, 45].

These are general epidemiological models, i.e. not specifically tailored for a given epidemic,

that do not consider reinfection. A limiting feature of the model in [44], however, is that it

relies on curative treatment. In contrast, the discrete network-based model in [45] relies on

separate control measures for each strain.

To the best of our knowledge, this is the first paper to simultaneously consider multiple

viral strains, reinfection, and optimal control. Amongst the novel contributions of this work,

we generalise the preceding literature [38, 44, 45] by considering not only two but any number

of viral strains. Based on the SEIR framework, the model innovates by considering waning

immunity over time, as well as reinfection, which can considerably increase the infection lev-

els. Finally, we propose a novel optimal control approach whereby a proportional reduction of

the infection rate by mitigation measures (such as non-pharmaceutical interventions) incurs

an exponentially increasing cost. This approach is more realistic than assuming linear or qua-

dratic costs [42, 43], once it is increasingly difficult—and therefore costlier—to reduce trans-

mission after mitigating measures are already in place. The proposed approach seeks a

compromise between the overall number of deaths and the intervention costs over a pre-

scribed horizon.

In addition to the methodological innovations, we also contribute by providing a more real-

istic framework for epidemic modelling that avoids the sometimes optimistic assumptions of

perennial immunity and a single viral strain. The framework also includes an optimal control

formulation that enables decision makers to define a compromise between loss of life and eco-

nomic consequences over a prolonged time horizon. It is worth emphasising that, although

the COVID-19 pandemic is certainly a motivation, we propose a general framework for a real-

istic modelling of the spread of viral diseases. As such, it includes the possibility of reinfection

due to waning immunity, as well as multiple viral strains and optimal control.

The remainder of this paper is organised as follows. We firstly introduce the proposed

multi-strain model with reinfection and analyse its equilibrium points and the reproductive

number. Then, we propose a novel optimal control formulation for the multi-strain model,

which is solved to derive the optimal control strategy over a prescribed time horizon. Next, we

propose a series of experiments designed to illustrate the system’s behaviour in the presence of

two strains, with and without mitigation. The experiments consider the largely unmitigated

COVID-19 spread in the state of Amazonas, Brazil [3, 46, 47], where the epidemic gave rise to

two distinct viral strains in 2020 [27]; started in April 2021, the vaccination had no effect on

the first two waves. Furthermore, the estimated 75% attack rate during the first wave [46]

implies the second peak is mainly due to the second strain. For the unmitigated epidemic, the

model’s results are compatible with the observed outbreak and explain the attack rate observed

in a serological study. To further validate our model, we apply it to the second and third waves

of COVID-19 in England, where distinct mitigation measures were applied. The results are

compatible with the infection levels observed in the country. We also derive and interpret opti-

mal control strategies for the Amazonas epidemic, over a two-year horizon and under distinct

mitigation costs and two viral strains. Finally, we present our concluding remarks.
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Preliminaries

Introduced in the first half of the 20th century [8], the classical SEIR model divides the popula-

tion into four compartments: susceptible (S), exposed (E), infected (I) and removed (R). The

system’s dynamics follows the equations below and is illustrated in Fig 1, which depicts the

transitions among the compartments.

_SðtÞ ¼ � bSðtÞIðtÞ
_EðtÞ ¼ bSðtÞIðtÞ � sEðtÞ
_IðtÞ ¼ sEðtÞ � ð m þ g ÞIðtÞ
_RðtÞ ¼ gIðtÞ

As observed in the equations above and in Fig 1, healthy individuals are susceptible to the

disease and can acquire it upon encountering infected individuals. The total number of

encounters is SI and the rate of transmission per encounter is β. Hence, susceptible individuals

become exposed to the disease at an overall rate βSI. Exposed individuals have acquired the dis-

ease in a latent state; the disease is not manifested nor can be transmitted while the latency

period lasts. As the duration of the latency period is
1

s
, exposed individuals become infected at

an overall rate σE. The infection lasts
1

g
units of time, therefore infected individuals become

removed at an overall rate γI. Alternatively, infected individuals may die, at rate μ. Finally,

removed individuals have acquired immunity through infection and can no longer be affected

by the illness.

Observe in Fig 1 that the dynamics of the classical SEIR model imply perennial immunity,

as removed individuals can no longer be affected by the disease. Another important character-

istic of the model is that it considers a single viral strain. In the next section, we will introduce

a generalised model that considers multiple strains, waning immunity and a control variable

u(t) to account for mitigation measures.

Proposed mathematical model

Let V = {1, . . ., n} be the set of virus strains circulating in the population, and let j 2 V denote a

particular strain. For each j 2 V and time t� 0, let Sj(t), Ej(t), Ij(t) and Rj(t) respectively denote

the number of susceptible, exposed, infected and removed (recovered and immune) individu-

als in the population at time t. In addition, P(t) denotes the total population at time t� 0.

Fig 1. The classical SEIR model.

https://doi.org/10.1371/journal.pone.0257512.g001
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The susceptible population Sj(t) includes all individuals that are not immune to strain j 2 V
at time t� 0 and therefore can catch the disease. In turn, Ej(t) comprises all individuals that

have been recently contaminated by strain j but are currently in the latency period and there-

fore have not yet manifested the disease and become infectious. Finally, Ij(t) counts all individ-

uals that have caught and manifested the strain j and are still suffering from it, whereas Rj(t)
denotes the total number of individuals that are recovered and immune to strain j at time t.

The proposed multi strain model follows Eqs (1)–(5) below:

_PðtÞ ¼ �
Xn

j¼1

mjIj ð1Þ

SjðtÞ ¼ PðtÞ � EjðtÞ � IjðtÞ � RjðtÞ ð2Þ

_EjðtÞ ¼ ð 1 � uðtÞ ÞbjSjðtÞIjðtÞ � sjEjðtÞ; ð3Þ

_IjðtÞ ¼ sjEjðtÞ � ðmj þ gjÞIjðtÞ; ð4Þ

_RjðtÞ ¼ gjIjðtÞ � djRjðtÞ; ð5Þ

where Sj(0)� P(0), 8j 2 V.

Consider the dynamics of a given strain j 2 V. Observe from Eq (3) that susceptible individ-

uals can contract this strain when in contact with a contagious carrier belonging to the infected

population. The rate of infection is βj> 0 and u(t) 2 [0, 1] emulates the mitigation effect at

time t� 0: u(t) = 1 indicates 100% effective mitigating measures and u(t) = 0 represents the

absence of non-pharmaceutical interventions, whereas u(t) 2 (0,1) indicates partially effective

measures to limit the spread of the disease. The first term in the right hand side of (3) repre-

sents the formerly susceptible individuals that have just been infected, whereas the second

term indicates the exposed individuals that have just manifested the once latent disease. The

latter enter the infected compartment in the right hand side of Eq (4). The second term in the

right hand side of (4) represents infected individuals that recover—at rate γj> 0, or die—at

rate μj� 0. Finally, each newly recovered individual moves to the removed compartment—

first term of the right hand side of (5). The second term in the right hand side of (5) represents

the loss of immunity over time. Finally, Eq (2) keeps track of the individuals that are currently

susceptible to strain j 2 V, whereas Eq (1) monitors the evolution of the total population over

time. Table 1 describes the system’s parameters.

Remark 1 Observe in the system (1)–(5), that an individual is susceptible to all strains j 2 V.

For a particular strain j 2 V, Eq (2) ensures that only the individuals that are currently exposed
to or infected with strain j are left out of the susceptible population for that strain (Sj), as well as

Table 1. Parameters for multi-strain dynamics.

Parameter Description Unit

βj Transmission rate of strain j transmissions/encounter

σj Inverse of the latency period of strain j days−1

γj Recovery rate for strain j days−1

δj Rate of immunity loss for strain j days−1

μj Death rate due to strain j days−1

u(t) Mitigation (lock-down) effect at time t -

https://doi.org/10.1371/journal.pone.0257512.t001
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those currently in the removed compartment of that strain (Rj). The latter have been recently
infected with this strain and are currently immune to it. It is worth reinforcing that this immu-
nity wanes over time at a rate δj—Eq (5).

Remark 2 A key innovation of the model is to consider multiple viral strains. Observe that the
system of Eqs (1)–(5) includes an arbitrary number (n) of viral strains. Another innovation is
the possibility of reinfection due to waning immunity, which is contemplated in the last term of
Eq (5). Therefore, at each time t, a fraction δj Rj of the individuals currently immune to strain j
become susceptible again to this strain and join the susceptible population Sj: as Rj decreases, Sj
increases by the same amount in Eq (2).

The equilibrium points

To simplify our analysis, in this section we assume a constant control, i.e. u(t) = u 2 [0, 1],

8t� 0. A simple inspection to the system of Eqs (1)–(5) yields

_SjðtÞ ¼ � ð 1 � u ÞbjSjðtÞIjðtÞ þ djRjðtÞ �
Xn

i¼1;i6¼j

miIiðtÞ: ð6Þ

Hence, it is not hard to verify that the trivial equilibrium point is the infection free point,

with

Ejð1Þ ¼ Ijð1Þ ¼ Rjð1Þ ¼ 0; Sjð1Þ ¼ Sj � 0; Pð1Þ � 0: ð7Þ

To calculate the non-trivial equilibrium, we start with the case of two strains below.

Theorem 1 Suppose that there are n = 2 viral strains. Then, besides the trivial equilibrium
point in Eq (7), the system has a non-trivial equilibrium point with I1� 0.

From Theorem 1, it follows that the non-trivial equilibrium point of a two-strain model is

biologically infeasible, and therefore of no practical interest. Theorem 2 below generalises this

result for multiple strains, i.e. |V|> 2.

Theorem 2 Suppose that n> 2. Then, besides the trivial equilibrium point in Eq (7), the sys-
tem has a non-trivial equilibrium point with Ij� 0, 8j 2 {1, . . ., n}.

Theorem 2 therefore implies that the non-trivial equilibrium point is biologically infeasible

and of no practical use for any number of different strains. In the remainder of this paper, we

will only consider biologically feasible solutions. The proofs of Theorems 1 and 2 can be found

in Appendix A of S1 Appendix.

Stability

Considering that only the trivial equilibrium points are of biological interest, this section anal-

yses the stability solely with respect to these points.

To prove stability we need to show that the real part of the eigenvalues Jacobian matrix

associated with the system and applied to the trivial equilibrium are negative. From the condi-

tions of stability we can define the reproduction number (see the proof in the Appendix A of

S1 Appendix),

R0 ¼ max
j¼1;:::;n

ð 1 � u Þbj Sj
mj þ gj

: ð8Þ

We can say that the trivial equilibrium point (without infection) is locally asymptotically

stable if R0 < 1. Hence, Eq (8) implies a minimum level of constant lock-down effect u 2 [0, 1]

to stabilise the system. Observe that, since the lock-down effect applies to all viral strains, it suf-

fices to stabilise the system with respect to the most transmissible strain.
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In the next section, we expand the analysis to search for time varying lock-down effects

with a view to optimising the long-term cost of non-pharmaceutical (lock-down)

interventions.

Optimal mitigation strategies

To control the spread of the disease in the population, the proposed strategy considers an isola-

tion level of the population u(t), t� 0 at any time t. To account for the time-varying control,

let us rewrite the system of Eqs (1)–(6) as follows:

_PðtÞ ¼ �
Xn

j¼1

mjIj ð9Þ

_SjðtÞ ¼ � ð1 � uðtÞÞbjSjðtÞIjðtÞ þ djRjðtÞ �
Xn

i¼1;i6¼j

miIi ð10Þ

_EjðtÞ ¼ ð1 � uðtÞÞbjSjðtÞIjðtÞ � sjEjðtÞ; ð11Þ

_IjðtÞ ¼ sjEjðtÞ � ðmj þ gjÞIjðtÞ; ð12Þ

_RjðtÞ ¼ gjIjðtÞ � djRjðtÞ; ð13Þ

To find a meaningful trade-off between the cost of the control, i.e. lock-down measures or

non-pharmaceutical interventions, and the cost of elevated infection levels to the healthcare

system and the population in general, we define the following functional cost:

JðP; uÞ ¼ c1P � ec2u; 0 � u � 1; ð14Þ

where c1 > 0 and c2 > 0 are scalar parameters.

Recall that in the revised formulation Eqs (9)–(13), u(t) = 0 indicates no lock-down and u
(t) = 1 corresponds to full lock-down. Observe that the cost in (14) grows with the population

size and decreases as a function of the control u. While increasing u decreases the functional, it

also implies a decrease in the number of infections and, therefore, deaths. And less deaths

imply an increased total population, thus increasing the functional. Observe also that the cost

of control increases exponentially in the feasible interval [0, 1], to mimic the fact that extra mit-

igation measures tend to become increasingly costly.

Let ψ = {u(t), t 2 (0, T): u(t) 2 [0, 1]} be a feasible lockdown strategy and letC denote the

set of all feasible strategies. For each control strategy ψ 2C, let

JðcÞ ¼
Z T

0

JðPðsÞ; uðsÞÞ ds ð15Þ

denote the overall cost of the strategy. The optimal control problem then becomes:

Maximise JðcÞ; c 2 C

subject to ð9Þ � ð13Þ:
ð16Þ

The overall objective in (16) is to minimise the number of deaths over time, which is equiv-

alent to maximising the population, whilst also accounting for the cost of lock-down measures

represented by the negative term in (14). Theorem 3, in Appendix B of S1 Appendix,
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guarantees that an optimal solution exists which satisfies (16), and derives the optimal mitiga-

tion strategy.

Numerical experiments

To better understand the long-term behaviour of the system (1)–(5), we performed an experi-

ment -termed Experiment 1—based on the outbreak at the state of Amazonas in Brazil, an

example with reinfection and two viral strains [3]. The experiments used R0 = 3 as estimated

for the state, which yields a 67% overall infection rate [47], just short of the estimate of 76%

from a serological study [46]; as, according to [3], this estimate may have been biased due to

an adjustment of the observed prevalence of 52.5% due to waning immunity. A second strain

called P.1 was detected in the state in December 2020 [27]. Fig 2 depicts the results of Experi-
ment 1 and Table 2 conveys the model parameters and initial conditions.

As the epidemic in Amazonas was largely unmitigated, with a high seroprevalence at the

second peak [3, 46], it is consistent with a two-strain outbreak with reinfection, as demon-

strated in Fig 2. The stability observed after the first wave can be explained by reinfection from

the first strain, whereas at the peak of the second strain more cases are observed as they include

patients with both strains. In the experiment, we assumed that the second strain commenced

six months (180 days) after the epidemic’s outset. It is worth of emphasis that the removed

Fig 2. Dynamic behaviour for two strains in Amazonas, Brazil (Experiment 1).

https://doi.org/10.1371/journal.pone.0257512.g002

Table 2. Parameters for Experiment 1.

Parameter Value

β1 = β2 3.447 � 10−8

σ1 = σ2
1

7
days� 1

γ1 = γ2
1

21
days� 1

δ1 = δ2
1

150
days� 1

μ1 = μ2 1.152 � 10−5days−1

u(t) 0—no mitigation.

Initial Conditions

Strain 1 Strain 2

S1(0) = 4,144,342 S2(t) = 4,144,597, t< 180

E1(0) = 252 E2(t) = 0,8t� 180,

I1(0) = 2 I2(180) = 1, I2(t) = 0,8t< 180

R1(0) = 1 R2(t) = 0,8t� 180

https://doi.org/10.1371/journal.pone.0257512.t002
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population stabilises around 50%, in line with the antibody prevalence of 52.5% observed in

[46].

Considering that the two strains are similar, the result in Fig 2 is intuitive. We observe that

the second strain is simply a delayed version of the first outbreak, which makes sense given the

similar parameters. The important feature here is that the second strain will add to the burden

on the healthcare system, generating a second peak, increasing the levels of contamination and

eventually doubling the burden. Notice, however, that at the peak of the second strain, most of

the infections will be from this strain before the system eventually stabilises. Observe also the

reduction of the population, which significantly increases after the second strain, as we accu-

mulate deaths from both viral variants. We argue that this should be considered to inform the

decision makers. Indeed, strategies to prevent different strains from entering a given territory

by enforcing testing upon arrival can be an important part of mitigation policies.

The results corroborate those found in a genetic study in the state of Amazonas, from

March 2020 to January 2021 [48]. The study reveals the prevalence of three correlated viral lin-

eages (B.1.1.95, B1.1.28 and B.1.1.33) up to the emergence of variant P.1. Whilst reinfection

due to the persistence of the first lineages was the motor of the sustained infection levels up to

December 2020, it was the genetically diverse variant P.1 that drove the second wave that

started in December 2020.

An example with control: The case of England

To further validate the proposed approach, Experiment 1a is based on the second and third

COVID-19 waves in England, from September 2020 to April 2021. Variant Alpha was first

detected in the end of September (https://www.gov.uk/government/publications/covid-

19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data). To

calibrate the model, we used the results of the weekly survey conducted in England since mid-

2020 (https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/

conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/previousReleases).

The survey provides weekly estimates of the COVID-19 infection levels in the country, as well

as a 95% confidence interval, which is depicted in Fig 3 for the selected period. Table 3 features

the parameters and initial conditions of the experiment. The R [49] code used to simulate the

example is available as supplementary material.

Observe in Fig 3 that the overall number of infections from the model is consistent with the

infection levels observed in the COVID-19 survey in England. The model is able to follow the

estimated number of infections whilst also accounting for the varying mitigation measures

observed within the time horizon. The values of u(t) in Table 3 can be seen as estimates of the

overall effect of the mitigation measures in place. The larger values correspond to the two

Fig 3. Infected population for Experiment 1a.

https://doi.org/10.1371/journal.pone.0257512.g003
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lock-down periods observed from September 2020 to April 2021: a one-month lock-down in

October and another lock-down period starting in late December, which was still in place in

April 2021.

For the sake of completeness, Fig 4 details the evolution of the exposed, infected, and

removed populations for Experiment 1a. As expected, one can observe two steep increases

between lockdown periods and two periods of steady decrease as the lock-downs were put in

place.

Optimal mitigation strategies

This section provides insights into the effect of the optimal control policy derived in Theorem

3 into the dynamics of the system over a two-year horizon. The first simulation is Experiment
2, which introduces optimal control at the outset of the epidemic; the parameters of the first

strain appear in Table 2. For this experiment, we use c1 = 1 and c2 ¼
ln ðPð0ÞÞ

2
in the functional

in Eq (14). Depicted in Fig 5, the results show that the optimal control prevents about 60% of

Table 3. Parameters for Experiment 1a.

Parameter Value

β1 = β2 2.55 � 10−9

σ1 = σ2
1

7
days� 1

γ1 = γ2
1

21
days� 1

δ1 = δ2
1

150
days� 1

μ1 = μ2 1.152 � 10−5days−1

u(t) 0:18; 0 < t < 60

0:82; 60 � t < 90

0:20; 90 � t < 116

0:85; t � 116

8
>>>>><

>>>>>:

Initial Conditions

Strain 1 Strain 2

S1(0) = 55,932,799 S2(t) = 56,000,000, t < 30

E1(0) = 16,800 E2(30) = 11200, E2(t) = 0,8t� 180

I1(0) = 50,400 I2(30) = 28000, I2(t) = 0,8t< 30

R1(0) = 1 R2(t) = 0,8t� 30

https://doi.org/10.1371/journal.pone.0257512.t003

Fig 4. Dynamic behaviour for two strains in England (Experiment 1a).

https://doi.org/10.1371/journal.pone.0257512.g004
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the contacts in the early stages and slowly decreases with time. It curbs the epidemic from the

outset and therefore inhibits the emergence of the second strain.

Experiment 3 assumes stabilisation of the first strain around the values observed in Experi-
ment 1, as well as the emergence of a second strain. In other words, this simulates a delayed

mitigation policy that starts shortly after the emergence of strain 2. We use the parameters

from Table 2 and the initial conditions in Table 4, and make c1 = 1 and c2 ¼
ln ðPð0ÞÞ

2
in Eq

(14). Observe in Fig 6 that the optimal control starts close to one (full lockdown) to stabilise

the first strain; it is continuously reduced over time as the epidemic is effectively mitigated. It

is also noteworthy that the control dissipates strain 2 from the outset, as it starts with lower

infection levels. Note also that the population remains close to the original levels, indicating

Fig 5. Optimal control policy from the epidemic’s outset (Experiment 2), with c1 = 1 and c2 ¼
ln ðPð0ÞÞ

2
.

https://doi.org/10.1371/journal.pone.0257512.g005

Table 4. Initial conditions for Experiment 3.

Initial Conditions

S1(0) = 2,238,082 S2(0) = 4,144,342

E1(0) = 41446 E2(0) = 252

I1(0) = 207230 I2(0) = 2

R1(0) = 1657839 R2(0) = 1

https://doi.org/10.1371/journal.pone.0257512.t004

Fig 6. Optimal control policy and system evolution for Experiment 3, with c1 = 1 and c2 ¼
ln ðPð0ÞÞ

2
.

https://doi.org/10.1371/journal.pone.0257512.g006
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the optimal policy’s effective prevention of deaths with respect to the unmitigated scenario in

Experiment 1.

Varying parameter c1 and c2. We now consider the effects varying parameters c1 and c2
in the following experiments, under the same initial conditions and parameters in Experiment
3. The cost parameters tested appear in Table 5.

Fig 7 depicts the results for Case A in Table 5. As expected, doubling the cost of control (c2)

with respect to Experiment 3 in (Fig 6) results in a decrease of the control levels, which start at

around 0.6 and slowly decrease over time. That results in a slower stabilisation of the first

strain, with higher levels of infection over time. Nonetheless, the control suffices to curb the

epidemic and prevent the spread of the second strain, which remains under control over the

entire horizon.

Fig 8 depicts the results for Case B. It uncovers the effect of doubling c1 with respect to case

A, maintaining the same value for c2. We observe a slight increase in the control levels, as the

relative importance of the control costs is decreased. The increase results in slightly lower lev-

els of infections over time for strain 1. The susceptible population therefore increases slightly

Table 5. Cost parameters c1 and c2 to be evaluated.

Case A B C D E

c1 1 2 1 3 3

c2 ln(P(0)) ln(P(0)) lnðPð0Þ Þ
3

ln(P(0)) lnð Pð0Þ Þ
3

https://doi.org/10.1371/journal.pone.0257512.t005

Fig 7. Results for Case A, with c1 = 1 and c2 = ln(P(0)).

https://doi.org/10.1371/journal.pone.0257512.g007

Fig 8. Results for Case B, with c1 = 2 and c2 = ln(P(0)).

https://doi.org/10.1371/journal.pone.0257512.g008
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with respect to Case A, whereas the removed population slightly decreases. As in Case A, strain

2 remains under control for the entire horizon.

Fig 9 depicts the results for Case C. It uncovers the effect of reducing c2 to a third of that in

Case A, maintaining the same value for c1. We observe maximum control levels (i.e. full lock-

down) for about 60 days to contain the first strain more rapidly, as the relative cost of control

decreased. The control is then gradually relaxed as time elapses. The increased control levels

result in the near extinction of both strains after about 125 days. Mitigation is then maintained

to avoid a resurgence of the disease, as even small levels of infection can lead to another wave.

In practice, policy makers may choose more targeted approaches after the infection levels

reach a sufficiently small threshold. In that case, the optimal policy will provide guidance as to

the desired mitigating effect of such measures to prevent an additional outbreak.

Case D sees c1 triple with respect to Case A, maintaining the same value of c2. The results in

Fig 10 see a slight increase in control with respect to Cases A and B, with a corresponding

slight decrease in infection levels. Therefore, the susceptible population experiences a slight

growth with respect to Cases A and B, whereas the removed population slightly falls. As before,

strain 2 remains controlled over the entire horizon.

Finally, Case E triples c1 with respect to Case A while reducing c2 by two thirds. As depicted

in Fig 11, this results in a maximum level of control until both strains are virtually extin-

guished. Then, the control is quickly reduced to about 0.6 and from there it is slowly reduced

to prevent a resurgence. With respect to Case C, we notice a longer time in full lockdown, as

the cost of control is decreased, although both strategies quickly extinguish the disease. Once

again, the optimal control levels after stabilisation can guide decision makers as to the desired

level of mitigation of possibly more targeted prevention policies to prevent resurgence after

the epidemic is controlled.

The experiments show that we can derive an optimal control policy to control the outbreak

whilst considering both reinfection and multiple strains. Experiment 2 in Fig 5 suggests that

Fig 9. Results for Case C, with c1 = 1 and c2 ¼
ln ðPð0ÞÞ

3 .

https://doi.org/10.1371/journal.pone.0257512.g009

Fig 10. Results for Case D, with c1 = 3 and c2 = ln(P(0)).

https://doi.org/10.1371/journal.pone.0257512.g010
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applying an optimal control approach from the outset curbs the epidemic early and hinders

the emergency of additional strains. However, the current pandemic vividly reminded us that

policy makers may be slow to act and that may result in the appearance of multiple strains.

The proposed model provides a general framework to tackle multiple strains and reinfection.

Experiment 3 and Cases A to E demonstrate the potential of the framework to support decision

making under a more general setting with multiple strains and reinfections. It allows us to

derive an optimal policy to mitigate the epidemic considering the spread of each strain and a

prescribed trade-off between societal and economic factors, represented here by cost parame-

ters c1 and c2. Cases A to E illustrate how changes in the trade-off will affect the optimal mitiga-

tion levels, and consequently the infection levels over time; they also illustrate the need for a

proactive policy to prevent the resurgence of the disease after the infection levels are

controlled.

Limitations and future research

The proposed model is devised for emerging epidemics, hence one limitation is that it does

not include vaccination. Even though one cannot count on the possibility of quickly develop-

ing a vaccine for an emerging epidemic, this possibility would include another level of general-

ity to the model and should be considered in future research.

Another limitation that should be addressed in future research is the fact that the model

does not consider cross-immunity between pairs of viral strains. This limitation did not influ-

ence our experiments, as the results are compatible with viral strains with no cross-immunity.

Indeed, the steep increase in the infection levels in England and in Amazonas suggests very lit-

tle or no cross-immunity, as confirmed by the experiments. However, although incorporating

cross-immunity is not a trivial task, future studies should consider this possibility and suggest

ways to include it in the mathematical model.

Concluding remarks

This paper proposed a novel modelling framework based on the classical SEIR model that con-

siders multiple viral strains, reinfections, and optimal control. Whilst general and applicable to

any viral epidemic, the framework was validated in light of the current COVID-19 pandemic,

which has challenged healthcare systems around the globe. We applied the approach to the

outbreak in the state of Amazonas, Brazil and showed that the outbreak is consistent with a

two-strain epidemic with reinfection. The results are interpretable, robust and highlight the

Fig 11. Results for Case E, with c1 = 3 and c2 ¼
ln ðPð0ÞÞ

3
.

https://doi.org/10.1371/journal.pone.0257512.g011
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applicability of the model to contain viral outbreaks whilst considering the spread of multiple

strains and establishing a trade-off between societal and economic impacts.

The results show that, with waning immunity and in the absence of mitigating measures,

each viral strain will reach an equilibrium after the peak of infections. Whilst real-world data

suggest that the peak is not manageable by any healthcare system in the world, it is evident that

even the equilibrium may imply levels of infection that will challenge healthcare resources in

many regions of the world. The results also suggest that, with insufficient mitigation measures,

an epidemic with a second wave includes a second peak of infections that is higher than the

first as it accumulates infections from both strains. Moreover, the number of deaths increases

considerably after the emergence of the second strain.

Finally, we proposed and solved an optimal control problem to derive optimal mitigation

measures whilst considering that the cost of mitigation grows exponentially as a function of

the mitigation effort. Our simulations show that controlling the epidemic from the outset will

quickly curb the outbreak, thereby hindering the emergence of different strains and avoiding

the devastating effects of a prolonged epidemic. However, the current pandemic has shown

that delayed and inadequate mitigation can lead to multiple strains and reinfection. This ren-

ders multi-strain models with reinfection invaluable to support decision making in real-world

situations, where there is no guarantee that an epidemic will subside before multiple strains

appear or that immunity will not wane over time.

We tested our model considering the absence of effective mitigation until the first strain sta-

bilises, exploring the real-world case of the COVID-19 outbreak in the state of Amazonas, Bra-

sil. We found that, when optimal control is activate just after the second strain emerges, it will

stabilise the first strain while preventing an outbreak of the second strain. The long-term levels

of the disease, as well as the magnitude of the mitigation effort will depend upon the perceived

trade-off between societal and economic impacts, in the form of the parameters of the cost

functional.
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