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Abstract: Plant cells undergo massive orderly changes in structure, biochemistry, and gene expression
during cell senescence. These changes cannot be distinguished from the hydrolysis/degradation
function controlled by the ubiquitination pathway, autophagy, and various hydrolases in cells. In this
mini-review, we summarized current research progress that the human HECT (homologous to the
E6AP carboxyl terminus)-type ubiquitin E3 ligases have non-redundant functions in regulating
specific signaling pathways, involved in a number of human diseases, especially aging-related
diseases, through the influence of DNA repair, protein stability, and removal efficiency of damaged
proteins or organelles. We further compared HECT E3 ligases’ structure and functions between plant
and mammalian cells, and speculated new aspects acting as degrading signals and regulating signals
of HECT E3 ligase in cell senescence and the cell death of plants.
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1. Introduction

Cell senescence is the final step of organ development, which is a specific form of programmed
cell death (PCD) in plants. Cell senescence exists somewhere and sometime during plant development,
including the death of root-cap cells, aerenchym formation following hypoxia, senescence of leaves
and flowers, leaf sculpturing, terminal treachery element differentiation, tapetal layer degeneration,
floral organ abortion, megaspore abortion, degeneration of the suspensor, aleuronat degeneration,
and localized cell death following the assault of the pathogen [1]. Cell senescence is triggered by
internal and external factors, which is controlled by genetic materials and characterized by degradation
and remobilization of cell material to growing tissues and organs. The main and visible changes in plant
senescence is the yellowing of leaves, which is a result of chloroplast damage. In fact, besides the damage
of the chloroplast, the other organelles have a great alteration at the molecular level and structural
level. All of these occur 30% at the transcriptional regulation level and 25% at the macromolecule
degradation level in Arabidopsis leaf senescence [2,3]. The effective degradation of the macromolecule
is important for the senescence process and successful reproduction. Therefore, the ubiquitination
pathway, autophagy, and various hydrolases in cells play major roles in cell senescence. Although 26S
proteasome-related protein degradation has been well reported, there are still many questions left to
be answered regarding the function of ubiquitination in cell senescence. In fact, the ubiquitination
not only involves the degradation of substrates, but also acts as a post-translational modification to
regulate the activity of substrates, such as histone ubiquitination in mammalian cells [4].

As one component of ubiquitination pathway, the Homologous to the E6AP Carboxyl Terminus
(HECT)-type E3s have been implicated in a wide variety of cellular processes including gene expression,
nuclear organization, DNA repair, epigenetic modification, and chromosomal stability in animals,
which lead to the development of diseases and cancers [5,6]. The HECT E3s family is one of ubiquitin
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ligases (E3s) family in all eukaryotes, which is characterized by having a C-terminal HECT domain [7].
Although the mechanisms of HECT E3s in animal cells have been revealed, it is still rarely reported
in plants. Compared with human HECT E3s, Arabidopsis thaliana HECT E3s family has only seven
members, which have been divided into five subfamilies, and all of them have their own counterparts
(that have the same ancestors, and a similar N-terminal domain) in human HECT E3s [8,9]. Therefore,
in this case, we summarize research progress of human HECT E3s in the multiple-physiologically
procedure of mammalian cells, including their physiological functions. Regarding the mechanism
of substrate recruitment, and regulation of their catalytic activity, we compare HECT E3s ligases’
structure and functions in plant and mammalian cells. Lastly, we speculate the new aspects working as
a degrading signal and a regulating signal of HECT E3 ligase in cell senescence and cell death of plants.

2. The HECT E3s Family in Plants and Human Being

Similar to the Really Interesting New Gene (RING) E3s family, the HECT E3s widely exist in all
organisms, including in animals and plants. There are 28 members of HECT E3s in human beings and
seven members in Arabidopsis thaliana [5,6,8]. According to their sequences and protein structures,
human HECT E3s are divided into three subfamilies, while there are six subfamilies in plants (five of
them exist in Arabidopsis thaliana) (Table 1) [9]. Except for the HECT domain, there are various
domains in the N-terminal of HECT E3s, such as the regulator of chromatin condensation 1(RCC1)-like
domains (RLDs) in the HECT and the regulator of chromatin condensation 1(RCC1)-like (HERC)
domain subfamily, C2 and WW domain in the neural precursor cell expressed developmentally
down-regulated protein 4 (Nedd4) family, and a variety of domains in the N-terminal of the other
HECTs family. The plant HECT E3s (also called Ubiquitin Protein Ligases (UPLs) family have the same
sequence module. It consists of various domains in the N-terminal determining the specific recognition
and conjugation of substrates, and the HECT domain in the C-terminal contained the activated cysteine
residue (Table 1).

Table 1. The members of HECT E3s in humans and plants.

Species Subfamily Members Main Domain

In humans
(28 members)

HERC family
(6 members)

HERC1, HERC2, HERC3, HERC4,
HERC5, HERC6 RLDs, HECT domain

Nedd4 family
(9 members)

Nedd4/Nedd4-1,
NEDD4L/Nedd4-2, Smurf1,

Smurf2, Itch/AIP4, WWP1/AIP5,
WWP2, NEDL1/HECW1,

NEDL2/HECW2

C2, WW, HECT domain

other HECTs family
(13 members)

HACE1, HECTD1, HUWE1 a,
UBE3A/E6-AP, UBE3B, UBE3C,

UBR5/EDD1, G2E3, TRIP12,
KIAA0317, HECTD3,

HECTX/KIAA0614, HECTD2,

ANK, Arm-like, UBA,
WWE, IQ, ZnF, PABC,
PHD, RING, Filamin,

DOC, HECT domain, etc.

In Arabidopsis thaliana
(7 members)

Subfamily I UPL3, UPL4 Arm, HECT domain

Subfamily II UPL7 IQ, HECT domain

Subfamily III UPL6 IQ, HECT domain

Subfamily V UPL1, UPL2, UPL8
(lost in Arabidopsis thaliana)

Arm, UBA, UIM, HECT
domain

Subfamily VI UPL5 UBL, C-type lectin, LZ,
HECT domain

a The same color was a counterpart in plants and humans. HERC: the regulator of chromatin condensation
1(RCC1)-like domains (RLDs) in the HECT, Nedd4: the neural precursor cell expressed developmentally
down-regulated protein 4, SMURF1: Smad Ubiquitylation Regulatory Factor 1, AIP4: atrophin-1 interacting
protein 4, UBA: the ubiquitin-associated, WWE: after three of its conserved residues, W and E residues (tryptophans
and glutamate respectively), HUWE1: animal HECT, UBA and WWE Domain Containing 1, UBE3: Ubiquitin-protein
ligase E3, TRIP12: thyroid hormone receptor interactor 12, ANK: Ankyrin, Arm: armadillo, PHD: plant homeodomain,
IQ: isoleucine-glutamine, UIM: Ubiquitin-interacting motif, UBL: Ubiquitin-like domains, LZ: Leucine zipper domain.
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According to previous studies [8,9], there are five subfamilies in Arabidopsis thaliana, including
UPL1/UPL2 (subfamily V), UPL3/UPL4 (subfamily I), UPL5 (subfamily VI), UPL6 (subfamily III),
and UPL7 (subfamily II) subfamilies, which have counterparts in animals, except UPL5. There are
similar N-terminal domains, which are involved in the specific recognition and conjugation of
the substrate and involved in the type of ubiquitin chain, between the counterparts, such as the
ubiquitin-associated (UBA) domain (for plant UPL1/UPL2 and animal HECT, UBA and WWE Domain
Containing 1 (HUWE1), the armadillo (Arm) repeats (for plant UPL1/UPL2/UPL3/UPL4 and animal
thyroid hormone receptor interactor 12 (TRIP12 or ULF)), and the isoleucine-glutamine (IQ) motif
(for plant UPL6/UPL7 and UBE3B/3C) [8]. It supports the structural basis for the similar function and
mechanism between plant and animal HECT E3 ligases [9,10].

3. The Patterns of HECT E3s’ Substrate Recruitment and Catalytic Activity Regulation

As we knew, the ubiquitination pathway mainly transfers the activated ubiquitin to the
corresponding target protein through three significant enzymes: E1, E2, and E3 [11]. The specificity
of ubiquitination is mainly determined by ubiquitin-protein E3 ligases (E3s). In the third step of
ubiquitination, there are some questions that need to be answered, including how the E3s specifically
recognize the substrates, how substrates are recruited to E3s, how E3s control their catalytic activities
during ubiquitination, and how E3s determine what kind of ubiquitin chain needs to be formed. At this
point, RING E3s do not have catalytic activity, but are able to assist the substrate to be ubiquitinated by
E2s, acting as allosteric activators of E2s [12]. On the contrary, HECT E3s have a conservative C-terminal
HECT domain, which consist of the N-lobe and C-lobe (where a catalytic cysteine residue is located) [13].
It can form an E3~Ub intermediate product by the catalytic cysteine residue, and then transfer ubiquitin
to the substrate [14]. Therefore, HECT E3s are directly involved in the homo-linkage-type of the
ubiquitination chain, mono-ubiquitination, or various linkage polyubiquitination. Additionally,
there are various domains in the HECT E3s N-terminal, which not only determines its subcellular
localization and specific recognition of substrates, but also involves substrate recruitment, catalytic
activity regulation, and intermolecular and intramolecular interactions of HECT E3 ligases [15].
The mechanism of interaction between the substrate and HECT E3s not only simply adapt direct
binding (Figure 1a), it also provides various ways to regulate HECT E3s’ recruitment and catalytic
activity (Figure 1a–f) [15].

The prominent mechanism that regulates the specific recognition and conjugation of substrate
is completed by adaptor proteins, which interact with HECT E3s and recruit E3s to their substrates
(Figure 1b). For example, the E6 oncoprotein is a classic HECT adaptor protein in mammalian cells,
which can interact with E6AP ligase and recruit E6AP to p53 for ubiquitination and degradation.
Previous studies showed that E6 bound to the LxxLL motif was located in the N-terminal domain of
E6AP and utilized the activity of HECT domain to ubiquitinate p53, which made p53 degradation
by the 26S proteasome [16,17]. Individual E6AP or E6 cannot bind to p53. It reveals that the adaptor
protein acts as an allosteric activator of HECT E3s, supporting the function of their recognition and
interaction [18].

HECT E3s not only utilize the adaptor protein to recruit substrate to E3s, but also recruit E2s
to E3s (Figure 1b). Meanwhile, there are inhibitors that prevent HECT E3s for interacting with E2s
(Figure 1c). For example, SMAD7 (mothers against DPP homolog 7), as an adaptor for SMURF1 (Smad
Ubiquitylation Regulatory Factor 1) and SMURF2, interacts with the WW domains of the SMURF
E3s, and recruits these E3s to their substrate for ubiquitination and degradation [19,20]. On the other
hand, the E2-binding domain of SMURF2 has an inherent low affinity for its E2s, UbcH7 (ubiquitin
conjugating enzyme E2 L3). To facilitate the UbcH7-SMURF2 interaction, the adaptor protein SMAD7
binds to the HECT domain of SMURF2 and the N-terminal domain of UbcH7 [21]. To prevent the
E2-E3 interaction, ISG15 (a ubiquitin-like protein) acts as an inhibitor of NEDD4.1, and then reduces
ubiquitination of the Ebola virus VP40 (the viral protein), which blocks viral budding [22–26].
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HECT E3s are often regulated by intramolecular or intermolecular interactions (Figure 1d–f). Some
HECT E3s control the activity of their own catalytic domain through the intramolecular interactions
between the N-terminal region and the HECT domain (Figure 1d,e). This action makes the HECT E3s
stay in a default state of auto-inhibition. The typical examples are atrophin-1 interacting protein 4
(AIP4) or ITCH (due to an itchy phenotype) and SMURF2, which belong to the NEDD4 subfamily. They
consist of the C2 and WW domain in the N-terminal region, and the HECT domain in the C-terminal
domain. The WW2-WW3 domain of ITCH interacts with its own HECT domain and then blocks
access to the catalytic site [27,28]. In the default state of SMURF2, the C2 domain offers the surface
for an intramolecular interaction with the HECT domain [28]. On the other hand, although the same
subfamily member, SMURF1, has C2 and WW domains, they adapt intermolecular interactions to
control their own catalytic domains (Figure 1f) [29]. We found that the Arm domain of AtUPL3 in
Arabidopsis can bind its Arm domain to the yeast two hybrid system, which may support the finding
that the Arabidopsis thaliana HECT E3s also adapt the intermolecular interactions between UPL3s or
among UPL3, UPL4, UPL1, or UPL2 including which of them has the Arm domain in the N-terminal
region, to affect its catalytic activity. The counterparts of UPL1/UPL2 in animals, HUWE1, showed
that they can form an auto-inhibitory homodimer where both intermolecular and intramolecular
interactions are involved in the inhibition [30]. Whether this auto-inhibitory homodimer existed in
UPLs in Arabidopsis remains to be further confirmed.
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Figure 1. The pattern of HECT E3s’interaction. (a). the model that HECT E3s directly interact
with substrate or E2 (b). The model that the adaptor recruits HECT E3s to its substrate or E2 (c).
The model that the inhibitor inhibits HECT E3s to interact with substrate or E2 (d,e). The model of
HECT E3s intramolecular interaction (f). The model of HECT E3s intermolecular interaction. E2,
ubiquitin-conjugating enzymes. N-lobe, the region that locate in the N-terminal of HECT domain.
C-lobe, the region that locate in the C-terminal of the HECT domain. HECT: HECT (homologous to the
E6AP carboxyl terminus) domain. E2: Ubiquitin-conjugating enzymes, E3: Ubiquitin ligase.
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4. The Roles of HECT E3s in Cell Senescence/Aging

4.1. The Homeostasis of Substrate Proteins

The main function of ubiquitination is to maintain the homeostasis of substrate proteins by the
precise degradation of misfolded protein and short-lived proteins to provide a sound atmosphere for
the normal physiological activity and the growth, development, and senescence/aging of organisms [31].
Up to 50% of the total proteins is turned over in plants every week [32]. In mammals, the disorder of
homeostasis of substrate proteins may lead cells to abnormal amplification, and may become cancer
cells (a state of the cells that broke away from senescence/aging). Thus, the human E3s-deficient cells
(HECT E3s mutants are no exception) often cause cancer-prone syndromes. The HECT E3s mutations
lead to cervical cancer, Angelman syndrome (AS), and lung cancer due to problems of the DNA damage
response, transcription, translation, cell proliferation, apoptosis, and cell differentiation [5,6,33].

In Arabidopsis, based on Arabidopsis eFP Browser dataset (https://bar.utoronto.ca/efp/cgi-bin/

efpWeb.cgi) taken from The Arabidopsis Information Resource (TAIR), all of the Arabidopsis HECT E3s
members have the same expression trend, which are highly expressed in senescent leaves (Figure 2a,c).
In addition, the HECT E3s’ expression level is higher in the distal half (the elder half) than the proximal
half (the younger half) of the 7th of rosette leaves (Figure 2b). Meanwhile, they are highly expressed in
seed stages 8–10 of siliques, dry seed, and shoot apex-inflorescence (Figure 2e). These results hint that
they are involved in the development, maturity, and production of seeds. Thus, they are supposed
to be involved in the remobilization of nutrients from leaves to reproductive tissues and promote
its maturity. However, the expression levels of UPL1/UPL2/UPL3 are downregulated, and those of
UPL4/UPL5 are slightly upregulated during the maturity of flowers (Figure 2d). These phenotypes
suggest Arabidopsis HECT E3s play a role in the homeostasis of proteins in various organs and at
different development stages, especially the stages of active-protein turnover.
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Figure 2. The expression pattern of Ubiquitin Protein Ligases (UPLs) in Arabidopsis thaliana from
Arabidopsis common eFP Browser data (https://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) of The Arabidopsis
Information Resource (TAIR). The eFP Browser by B. Vinegar, drawn by J. Alls and N. Provart. Data
from Gene Expression Map of Arabidopsis Development [34]. (a) The expression pattern of UPLs in
leaves. (b–e) The expression level of UPLs in rosette leaf (from 2nd to senescent leaf) (b), in the 7th
leaf (c), at different stages of flowering (d), and seeds (e), respectively.

So far, it has been reported that plant UPLs, especially UPL3 and UPL5, are involved in
trichrome development, leaf senescence, vascular development, seed size, crop yields, and immunity
response [8,35–39]. The upl5 mutant shows a premature aging phenotype, where the mechanism has
been revealed by Ying Miao and Ulrike Zentgraf that UPL5 protein is able to target the transcription
factor (TF) WRKY53, which is a key senescence transcription factor, for its ubiquitination and
degradation [35]. UPL3 was first reported to play a role in trichrome development [8], despite
there being no direct evidence that UPL3 can ubiquitinate GLABROUS 3 (GL3) and ENHANCER
OF GL3 (EGL3), which are two bHLH transcription factors that positively regulate the trichrome
development and flavonoid biosynthesis in Arabidopsis. It can mediate the proteasome-dependent
degradation of these two transcription factors [36]. Afterward, the upl3 mutation shows larger stem
diameters than WT. UPL3 may play a role in vascular development [37]. Further findings implicate
proteasome-associated HECT-type ubiquitin ligases in the control of plant immune signaling by
facilitating substrate polyubiquitination and proteasomal processivity [38]. Recently, Charlotte Miller
and colleagues show that UPL3 is involved in LEAFY COTYLEDON2 (LEC2) (a key transcriptional
regulator of seed maturation) protein stability, which regulates the seed size and crop yields [39].
In fact, there are other phenotypes in the upls mutation, including response to light, drought, biotic
stress, etc., but we rarely know their action mechanism (Table 2). Additionally, from the annotations of
The Arabidopsis Information Resource (TAIR) (https://www.arabidopsis.org/index.jsp), UPLs family
members are predicted to be located in almost every subcellular region, including the nucleus (all of
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the UPLs, UPL1~UPL7), the mitochondrion (UPL1/UPL2), the cytoplasm (UPL1/2/4/5), the plasma
membrane (only UPL3), and the plasmodesma (only UPL1). The diversity distribution of UPLs in
Arabidopsis thaliana reveals that UPLs may contribute to multi-biological pathways.

Table 2. The phenotypes of upls mutations and their identified targets.

Mutants Targets The Phenotype of Mutants Reference

upl3 a GL3/EGL3 (UPL3-N) Trichrome development [36]
upl3 Unknown Larger stem diameters [37]
upl3 LEC2 Larger seed size [39]
upl5 WRKY53 Premature [35]

upl1, upl3, upl5 Unknown Plant immunity [38]
upl3/upl4 Unknown Seed germination defect Unpublished

upl3, upl3/upl4 Unknown Light response Unpublished
upl2, upl3, upl4, upl6 Unknown Plant senescence Unpublished

a GL3/EGL3: GLABROUS 3 and ENHANCER OF GL3, LEC2: LEAFY COTYLEDON2, UPL3-N: N-terminal of UPL3.

4.2. The Clearance of the Chloroplast or Mitochondrion

Chloroplasts and mitochondria are major sources of reactive oxygen species (ROS) and have
been implicated in plant Programmed Cell Death (PCD) regulation, with the latter organelle playing
an important role in animal PCD [40]. Therefore, effective removal of damaged chloroplasts and
mitochondria is important for preventing Reactive Oxygen Species (ROS)-dependent damage among
cells. Moreover, the chloroplasts contain up to 70% of the leaf protein. Therefore, its effective removal
promotes the reuse and redistribution of proteins during leaf senescence. Although the mitochondrial
integrity and energy status are maintained until the final stages of leaf senescence, the number of
mitochondria significantly decreases, and the mitochondria morphology is altered from the elongated,
branched structures that are formed from interconnected mitochondria to the enlarged, round-shaped
structures [41–43]. The removal of the damaged chloroplast and mitochondria is essential for the
degradation of macromolecules, which is also defined as protein quality control pathways, such as
autophagy, ubiquitination, and the Unfolded Protein Response in the mitochondria (UPRmt) [44–47].
For example, HUWE1 is involved in mitochondrial clearance by targeting Mitofusin 2 (MFN2), which
is an essential component of the mitochondrial outer membrane fusion apparatus, for ubiquitination
and degradation. Their interaction can be regulated by Autophagy And Beclin 1 Regulator 1
(AMBRA1), which is a mitophagy receptor for the selective removal of damaged mitochondria in
mammalian cells [48–50]. Meanwhile, HUWE1 can be located at the mitochondria by interacting with
AMBRA1. HUWE1 can also interact with MCL1, which is a potent inhibitor of AMBRA1-mediated
mitophagy, for ubiquitination and degradation, which are then involved in mitochondria quality
control [51]. These actions demonstrate HECT E3s HUWE1 plays an important role in maintaining
the normality of mitochondria. According to information of The Arabidopsis Information Resource
(TAIR) (https://www.arabidopsis.org/index.jsp), UPL1 and UPL2 are predicted to be located in the
mitochondrion, which may speculate that these two plant HECT E3s may be involved in the degradation
of the mitochondrion. Although four UPL members (UPL1, UPL2, UPL4, and UPL5) are located in
cytoplasm, they have the probability to translocate to the mitochondria or chloroplast by interacting
with the adaptor protein to remove these two organelles.

4.3. The Transcriptional Regulation of Senescence-Related Genes via the Chromatin Remodeling and Epigenetic
Modification

Besides the degradation functions, the ubiquitination modification also acts as one of epigenetic
modification by ubiquitinating the histone or other epigenetic factors. Although, until now, it did
not report the changes of histone ubiquitination during plant senescence/aging, it has been known
that the histone modifications (including acetylation and methylation) and small noncoding RNAs
(ncRNAs) play important roles in leaf senescence [52–54]. During cell senescence, most genes undergo

https://www.arabidopsis.org/index.jsp
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up-expression (1432 genes) or down-expression (964 genes), which are regulated by the cross network
between chromatin-mediated regulation, transcriptional regulation, posttranscriptional regulation,
and post-translational regulation [53,55]. ChIP-seq and RNA-seq data show a significant correlation
between histone modifications and gene transcription. Additionally, 786 genes show a significant
change of H3K4me3 within the region from the TSS to 500 bp downstream during leaf senescence.
Among them, 56% gain the H3K4me3 mark that occurred in senescence upregulation genes, and 63%
loss-of H3K4me3 mark occurred in senescence downregulation genes [53]. The key transcript factor
WRKY53 suppresses the expression of key negative regulators of senescence by recruiting Histone
Deacetylase 9 (HDA9) and a SANT domain-containing protein POWERDRESS (PWR) to its target
sites and promoting the removal of H3Ac by HDA9 [56]. Up to date, although there is no evidence
showing a correlation between the histone ubiquitination and cell senescence in plants, more studies
support histone ubiquitination directly influenced on DNA replication, DNA damage response, gene
expression controlling, and DNA/Histone methylation events. All of these may increase the risk of
cancer in mammalian cells [57–60]. The human HECT E3s HUWE1 and HERC2 are involved in histone
ubiquitination by directly or indirectly. On the one hand, HUWE1 could directly ubiquitinate histone,
while HERC2 can target USP16, RNF8, or RNF168 to influence H2A ubiquitination, which is critical
to regulate the DNA damage response [61–64]. On the other hand, mammalian HECT E3s influence
the chromatin stage via ubiquitination and degradation of epigenetic modulators (including histone
deacetylase and the ubiquitin ligase). HUWE1/Mule specifically targets HDAC2 (histone deacetylases 2)
for ubiquitination and degradation. Therefore, HUWE1/Mule-deficient cells increase the accumulation
of HDAC2, which leads to compromised p53 acetylation and crippled p53 transcriptional activation,
accumulation, and the apoptotic response upon DNA damage [65].

4.4. E4 Ligase-Like Activity

Except for the ubiquitination substrate by direct degradation when HECT E3s work as E3, the HECT
E3s also act as E4s to specially mediate the ubiquitin chain elongation of substrates. Five ubiquitin
ligases associated with the mammalian proteasome have been identified, including Ube3a/E6-AP,
Ube3c/Hul5, Rnf181, Huwe1, and Ubr4 [66]. These proteasome-associated ubiquitin ligases have two
general roles on the proteasome. On the one hand, they could modify the ubiquitinated substrates
to elongate Ub chains (define as E4s function). On the other hand, they modify the proteasome to
regulate its function. Among these ubiquitin ligases, Ube3c/Hul5, which is one of mammalian HECT
E3s, has been confirmed that it can elongate the ubiquitin chains of substrates bound to the proteasome
to promote their degradation [67,68]. Meanwhile, Ube3c/Hul5 can also extensively and selectively
polyubiquitinate the recognized polyubiquitinated protein 13 (Rpn13), which is a subunit of 19S, when
proteolysis is even partially inhibited in cells or purified 26S proteasomes with various inhibitors.
Rpn13 functions as ‘receptors’ for Ub chains, which is initially bound by ubiquitinated proteins [69].
Its ubiquitination strongly decreases the proteasome’s ability to bind and degrade ubiquitin-conjugated
proteins [66].

Similarly, recent studies in plant HECT E3s show that upl3 mutants exhibit markedly reduced
levels of total cellular polyubiquitination. The ubiquitination of Rpn10, a subunit of 19S in Arabidopsis
and the other ‘receptors’ for Ub chains [69], is also reduced [38]. This phenomenon suggests that UPL3
may modify the proteasome subunits to regulate its activation, and functions as E4s to mediate the
form of polyubiquitination, like the mammalian HECT E3s Ube3c/Hul5. E4s-deficiency can block
the polyubiquitination of substrates and then reduce its degradation rate, which may reduce and
effectively reuse and redistribute nitrogen.

5. Conclusions

Cell senescence is accompanied by changes in transcriptional regulation, histone-associated
epigenetic processes, posttranslational modification, and macromolecules/organelles degradation.
HECT E3s have a conservative C-terminal HECT domain combined with various domains, which
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determine the pattern of HECT E3s’substrate recruitment and their catalytic activity, resulting in
multiple roles in cell senescence of mammalian and plants. The establishment of HECT E3s action
mechanism comprise a complicated network at the protein level to regulate various senescence
phenotypes and modulate multiple senescence–associated pathways.

Revealing the mechanism of cell senescence is important for controlling the cell life span and
improving plant biomass yields and organ sizes. HECT E3s play an important role in protein fate and
protein function during the senescence process. Although animal studies have shown the diversity of
mechanism of HECT E3s functions and catalytic activity regulation, plant HECT E3s’ are still a blank
sheet. In this case, based on the understanding of animal HECT E3s function and the existing evidence
of plant HECT E3s, we summarize that HECT E3s regulate plant cell senescence by “degradation
signal” and “regulation signal” control. 1) The homeostasis of senescence-related substrate proteins
by balance of ubiquitin E3s and deubiquitin enzyme (DUBs). 2) E4 ligase-like activity by elongating
the ubiquitin chains to proteasome and making proteasome subunit signature. 3) The clearance of
the chloroplast or mitochondrion by working as regulatory signal coordination with autophagy or
the unfolded protein. 4) Transcriptional regulation of senescence associated genes (SAGs) via the
chromatin remodeling and epigenetically modification with histone and epigenetic factors (Figure 3).Plants 2019, 8, x FOR PEER REVIEW 9 of 13 
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ubiquitinating WRKY53 for degradation [35] and improving the degradation rate of GL3, EGL3,
and LEC2 [36,39], respectively. 2. E4 ligase-like activity. Loss of UPL3 markedly reduced the total
cellular polyubiquitination and the ubiquitination of Rpn10, which it hints that UPL3 may function as E4s
to mediated the elongation of polyubiquitination and the activity of proteasome [38]) 3. The clearance
of chloroplast or mitochondrion. Mammalian HECT E3s are involved in maintaining the balance of
mitochondria [48–51] by coordinating with autophagy and unfolding protein. UPL1/2/4/5 are predicted
to dually locate in cytoplasm and mitochondrion or plastid, which may involve the clearance of
the chloroplast or mitochondrion. 4. Transcriptional regulation via the chromatin remodeling and
epigenetically modification. The three members of UPLs protein are also predicted to be located in the
nucleus, which may target transcription factors (TFs) [35,36,39], histone, histone deacetylase, etc. to
mediate the gene expression [56,59–65]. E4: A new class of ubiquitylation enzyme, a ubiquitin chain
assembly factor.

With the development of biochemical label-free ubiquitination proteome techniques and
phase-separation technique, a global analysis of ubiquitination will illustrate the mechanism of
HECT-E3s for the homeostasis of proteins in cells. The phase-separation of complicate protein
complexes under various cell environments will address the real-time action module of HECT-E3s in
plants. The aspect of the “degradation signal” and “regulation signal” of HECT-E3s in plants may
modulate multiple senescence-associated pathways simultaneously and lead to a better control of
plant development and plant production biomass and quality.
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