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Abstract 

Objective:  We aim to propose a deep learning-based method of automated segmentation of eight brain anatomi-
cal regions in head computed tomography (CT) images obtained during positron emission tomography/computed 
tomography (PET/CT) scans. The brain regions include basal ganglia, cerebellum, hemisphere, and hippocampus, all 
split into left and right.

Materials and methods:  We enrolled patients who underwent both PET/CT imaging (with an extra head CT scan) 
and magnetic resonance imaging (MRI). The segmentation of eight brain regions in CT was achieved by using con-
volutional neural networks (CNNs): DenseVNet and 3D U-Net. The same segmentation task in MRI was performed 
by using BrainSuite13, which was a public atlas label method. The mean Dice scores were used to assess the per-
formance of the CNNs. Then, the agreement and correlation of the volumes of the eight segmented brain regions 
between CT and MRI methods were analyzed.

Results:  18 patients were enrolled. Four of the eight brain regions obtained high mean Dice scores (> 0.90): left 
(0.978) and right (0.912) basal ganglia and left (0.945) and right (0.960) hemisphere. Regarding the agreement and 
correlation of the brain region volumes between two methods, moderate agreements were observed on the left (ICC: 
0.618, 95% CI 0.242, 0.835) and right (ICC: 0.654, 95% CI 0.298, 0.853) hemisphere. Poor agreements were observed on 
the other regions. A moderate correlation was observed on the right hemisphere (Spearman’s rho 0.68, p = 0.0019). 
Lower correlations were observed on the other regions.

Conclusions:  The proposed deep learning-based method performed automated segmentation of eight brain ana-
tomical regions on head CT imaging in PET/CT. Some regions obtained high mean Dice scores and the agreement 
and correlation results of the segmented region volumes between two methods were moderate to poor.
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Introduction
Positron emission tomography/computed tomogra-
phy (PET/CT) provides both functional and anatomi-
cal information of the human body in a single scan and 
has been widely used in clinical practice [1, 2]. PET 

imaging extracts the metabolic information of the body 
with 18F-fluorodeoxy-glucose (FDG) while CT imag-
ing captures the anatomical information since it has a 
higher spatial resolution than PET. For the application 
of brain segmentation, using PET-only images is chal-
lenging because of the low spatial resolution and high 
noise level in PET data [3]. A few fusion methods have 
been proposed to combine the complementary informa-
tion from PET/CT to perform brain tissue segmentation 
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[2–5]. However, one downside of these fusion methods 
is the unreasonable use of the inconsistent information 
from different imaging modalities [1]. Thus, how to take 
advantage of the complementary information from PET/
CT remains to be explored.

Compared to using PET-only images or PET/CT 
images, brain segmentation in magnetic resonance imag-
ing (MRI) or CT has been more widely studied and MRI 
has always been used because of its superior soft tissue 
contrast [6]. There are various segmentation tasks and 
objectives, e.g., the classification of white matter (WM), 
grey matter (GM), and cerebrospinal fluid (CSF) [7]. 
There are also studies that focus on certain pathologies, 
such as neonatal brain development [8–10], traumatic 
brain injury (TBI) [11], and brain tumor segmenta-
tion [12]. Deep learning methods have gained increas-
ing attention in the field in the past few years [13, 14]. 
For clinical scenarios where MRI cannot be performed, 
e.g., emergency situations, patients with metal implants 
or claustrophobia, and cost issues, CT imaging can 
be an alternative modality. The advantages of CT over 
MRI include faster acquisition, lower cost, and wide 
availability.

However, studies on brain segmentation in CT have 
been sparse compared to those in MRI. A systematic 
review by Lenchik et  al. [15] showed that 94% of the 
neurologic segmentation studies were using MRI and 
only 5% were using CT. Wang et  al. [16] applied sparse 
representation techniques and proposed a novel patch-
driven level set method for neonatal brain segmentation 
in MRI. Zhang et al. [17] proposed to use deep convolu-
tional neural networks for isointense stage brain tissue 
segmentation using multi-modality MRI. More recently, 
Zhang et al. [18] proposed a novel task-structured brain 
tumor segmentation network (TSBTS net) to perform 
brain tumor segmentation. Besides, a novel cross-modal-
ity deep feature learning framework [19] was proposed 
to segment brain tumor by taking advantage of mining 
rich patterns across the multi-modality data. Despite the 
limited numbers, Hu et  al. [20] proposed an algorithm 
to determine WM and GM from CT head volumes with 
large slice thickness based on thresholding and brain 
mask propagation. Lee et  al. [21] presented the combi-
nation of different approaches for the segmentation of 
abnormal regions, CSF, and brain matter. Manniesing 
et al. [22] presented an automated segmentation method 
to classify WM and GM in contrast-enhanced 4D CT 
images. More recently, Qian et  al. [23] presented an 
active contour model for the segmentation of CSF in CT 
images. With the advances of deep learning and machine 
learning methods, Zhao et al. [6] proposed using a deep 
learning method to synthesize MR images from CT 
images and then used the synthetic MR images for whole 

brain segmentation and labeling. Cai et al. [24] developed 
a deep learning model that performed segmentation of 
intracranial structures on head CT images.

Previous approaches primarily focused on the segmen-
tation of three brain tissue types: WM, GM, and CSF 
[20–22]. However, there are considerably more brain 
tissue types and brain anatomical regions or structures 
that are of physiological and pathological significance, 
such as cerebellum, brain stem, and basal ganglia [25]. 
Even though only a limited number of studies performing 
brain segmentation in CT using deep learning methods 
have been published, they showed promising results.

In our study, we aim to propose a deep learning-based 
segmentation method in CT to classify eight brain tissue 
regions: basal ganglia, cerebellum, hemisphere, and hip-
pocampus, all split into left and right. We use deep neural 
networks to perform the task. Although there have been 
more efforts into the brain segmentation with CT meth-
ods [20–24, 26, 27], we could not find a public and well-
established CT atlas-based method or tool to serve as 
the comparison reference. Thus, results are compared to 
those obtained in MRI images with a conventional atlas-
label method. The atlas-based method in BrainSuite13 
[30] has been a well-established, widely used tool in the 
field and it can segment the same eight brain anatomi-
cal regions as our proposed method does, which quali-
fies to be the comparison reference. Also, the comparison 
between CT and MRI has been conducted in previous 
studies [6, 27]. The additional systematic error due to the 
registration error between CT and MRI is a topic that is 
worth further investigation. However, it is not within the 
scope of this study.

Materials and methods
Patients and imaging protocol
We retrospectively enrolled patients who underwent 
both PET/CT and MRI at the Peking Union Medical 
College Hospital. The PET/CT scan was performed on 
a Siemens BioGraph PET/CT scanner (Siemens Health-
ineers, Erlangen, Germany). The whole-body PET/CT 
scanning protocol was described in a previous study 
[28]. A separate head CT imaging was also performed, 
and a full head coverage from vertex to skull base was 
achieved. The voltage output of the X-Ray generator was 
120 kVp and the X-Ray tube current was 300 mAs. The 
head CT images had the voxel spacing (resolution) of 
0.6 × 0.6 × 1.5 mm3 with dimensions of 512 × 512 × 148. 
The MRI scan was performed on a Toshiba Vantage 
Titan 3  T scanner (Canon Medical Systems, Tochigi, 
Japan). Both T1-weighted (T1-w) and T2-weighted 
(T2-w) MR images were acquired. T1-w images were 
obtained using the sequence with the following param-
eters: TR 2100  ms, TE 10  ms, TI 900  ms. T2-w images 
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used these parameters: TR 4650 ms, TE 95 ms. For both 
T1-w images and T2-w images, the dimensions were 
640 × 640 × 24 and the voxel spacing was 0.36 × 0.36 × 6 
mm3. During post-processing, both CT images and MR 
images were reconstructed to have the same resolution 
of 1 × 1 × 2 mm3, resulting in a single voxel volume of 2 
mm3.

MRI segmentation with an atlas label method
Shattuck et  al. [29] proposed a new MRI analysis tool, 
BrainSuite, that produced cortical surface representation 
with spherical topology from human head MR images. 
The tool could perform accurate brain segmentations in 
a single package based on a sequence of low-level opera-
tions. The operations included skull and scalp removal, 
image nonuniformity compensation, voxel-based tis-
sue classification, topological correction, rendering, and 
editing functions. Later, Shattuck et  al. [30] proposed 
BrainSuite13, a collection of software tools for jointly 
processing and visualizing structural and diffusion MRI 
of the human brain.

In our study, we used BrainSuite13 to perform the 
brain segmentation task in MRI. First, full-head T1-w 
MR images were processed to achieve automated corti-
cal surface extraction. Then, the generated cortical mesh 
models were registered spatially to a labeled brain atlas, 
which included eight different brain anatomical struc-
tures, i.e., hemisphere, hippocampus, basal ganglia, and 
cerebellum, all split into left and right. The atlas was from 
a single subject and the registration was performed using 
a combined surface/volume procedure [31]. After the 
registration, the labels of the surface and volume were 
transferred from the atlas to the subject, segmenting the 
subject MRI into the delineated region of interest (ROI). 
For the ROI boundaries to conform to the bottoms of the 
sulcal valleys, cortical surfaces were refined locally at the 
mid-cortical surface using geodesic curvature flow [32].

CT segmentation with convolutional neural networks
In this study, we utilized two convolutional neural net-
works (CNNs) (the DenseVNet and the 3D U-Net) 
to accomplish the segmentation of brain anatomical 
regions in CT. First, 90 patients with non-contrast com-
puted tomography (NCCT) images were enrolled. The 
CNNs were trained and tested on this 90-patient data 
set. Then, the CT images of 18 patients, whose acquisi-
tion details were described in chapter  2.1, were used as 
an independent testing data set. Later, the segmentation 
results obtained on this 18-patient CT data set with the 
trained CNN model, in addition to the MRI segmenta-
tion results of the same 18 patients, were used to conduct 
head-to-head volumetric comparisons. The trained CNN 
was embedded into the NovoStroke Kit (NSK) software 

(research-only prototype, GE Healthcare, China). The 
details of data acquisition, data preprocessing, and model 
training and testing are discussed below.

Data acquisition
To train the CNNs, 90 patients were enrolled from two 
separate stroke centers. All enrolled patients underwent 
both non-contrast computed tomography (NCCT) and 
computed tomography perfusion (CTP). NCCT images 
were used for the brain segmentation task. 44 NCCT 
datasets from center A were acquired on a GE Revolution 
CT scanner (voltage: 120 kVp, current: 225 mAs) with a 
voxel spacing of 0.5 × 0.5 × 2.5 mm3 and dimensions of 
512 × 512 × 64. 46 datasets from center B were acquired 
on a GE Revolution CT scanner (voltage: 120 kVp, cur-
rent: 174 mAs) with a voxel spacing of 0.5 × 0.5 × 5 mm3 
and dimensions of 512 × 512 × 32. 90 patients were split 
into the training set with 81 patients and the testing set 
with 9 patients.

The ground truth was defined by manual annotation by 
a neuroradiologist with more than 20 years of experience. 
Each axial slice was annotated, resulting in a segmenta-
tion of eight brain anatomical regions: basal ganglia, cer-
ebellum, hemisphere, and hippocampus, all split into left 
and right. The same regions were segmented in the MRI 
atlas method. The annotation was performed by using 
the Medical Imaging Interaction Toolkit 2018 (MITK 
2018) software.

Data preprocessing
Before training and testing, all 90 datasets were pre-
processed by several operations. Firstly, all 3D image 
data were resampled to obtain the same voxel spacing 
of 0.5 × 0.5 × 5 mm3 by linear interpolation. Secondly, a 
Gaussian filter with sigma = 0.5 was utilized to remove 
the noise in CT images. Thirdly, we used skull-stripping 
to eliminate the skull region of the head so only the soft 
brain tissues remained [33]. Finally, the brain paren-
chyma was refined by threshold method. All CT values 
which were not in the range of [0, 120] were reset to zero.

Model training and testing
The CNNs used were the DenseVNet [34] and 3D U-Net 
[35]. Figure  1 shows the network architecture of the 
DenseVNet used in our study. It consisted of 5 key fea-
tures, including batch-wise spatial dropout, dense fea-
ture stacks, V-network downsampling and upsampling, 
dilated convolution, and an explicit spatial prior. Struc-
ture of the 3D U-Net can be found in [35].

We trained the network on the framework of Nif-
tynet 1.0.4 version. The graphic card used for training 
was NVIDIA Quadro P3200, which had 8  GB memory. 
The spatial window size was set as 200 × 200 × 64 for 
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DenseVNet and as 96 × 96 × 96 for 3D U-Net. The win-
dow size was kept the same for training and testing for 
both network models. Also, the batch size was set as 1 for 
both network models. In addition, we chose the Adam 
gradient descent algorithm to reduce the training errors. 
For the first 2000 epochs, we chose 0.001 as the learning 
rate and 50 datasets for training. In the next 2000 epochs, 
we adapted the learning rate as 0.00025 and used the rest 
31 datasets for training. The whole training costed nearly 
7 h for DenseVNet and 4 h for 3D U-Net. This strategy 
was used for both networks and we used it to elevate the 
performance of segmenting the left and right hippocam-
pus. A comparative experiment (on DenseVNet only) 
was conducted where the performance was compared 
between this strategy and the one using 4000 epochs and 
the constant learning rate of 0.001. The performance of 
CNN was evaluated by using the Dice similarity score 
[36].

Evaluation of the CT segmentation method and volumetric 
comparison to MRI results
We assessed the performance of the CT segmentation 
method by using an independent testing set, which was 
described in the patients and imaging protocol section. 
Performance metrics identical to those during the train-
ing and testing phase were recorded. The CNN with 
superior results would be used as the CT segmentation 
method for the following experiments. Since enrolled 
patients were required to undergo both MRI and PET/

CT, we then performed a head-to-head comparison 
of the voxel volumes of the segmented brain structures 
between the CT method and the MRI method. The MRI 
results were used as references. Correlation was assessed 
by conducting non-parametric correlation (Spearman’s 
rho). For interpreting correlation coefficients, values less 
than 0.4, between 0.4 and 0.7, between 0.7 and 0.9, and 
greater than 0.9 are indicative of weak, moderate, strong, 
and very strong correlation, respectively [37]. Intraclass 
correlation (ICC) was calculated to assess the agree-
ment based on a two-way mixed, absolute agreement, 
single measures model [38]. Based on the 95% confident 
interval (CI), values less than 0.5, between 0.5 and 0.75, 
between 0.75 and 0.9, and greater than 0.9 are indicative 
of poor, moderate, good, and excellent reliability, respec-
tively [38]. Besides, Student’s t test or the Wilcoxon Rank 
Sum Test was also conducted to verify the difference 
between two methods, depending on if the data were 
normally distributed.

Statistical analysis was performed on MedCalc 19.1 
(Ostend, Belgium). Statistical significance was considered 
for a p value less than 0.05.

Results
Performance of CNNs during training and testing process
Figure  2 shows representative segmentation results of 
eight brain anatomical regions of one subject from the 
testing set. Figure 2a–c shows the axial, coronal, and sag-
ittal section of the CT images with segmentation labels 
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Fig. 1  Convolutional neural network, DenseVNet, used in this study. It consisted of 5 key features, including batch-wise spatial dropout, dense 
feature stacks, V-network downsampling and upsampling, dilated convolution, and an explicit spatial prior
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obtained from the DenseVNet model, respectively. Fig-
ure  2d–f show the same sections of the same subject 
with labels of the ground truth. Figure  2g–i show the 
results from the 3D U-Net model. Eight regions were 
color-coded and marked on the right side of the figure. 
The results showed overall high consistency by naked eye 
between the DenseVNet model and the ground truth. 
The results of the 3D U-Net model showed overall con-
sistency to the ground truth, but we can observe some 
missed labels at the bottom of Fig.  2h, i. Table  1 shows 
the mean Dice scores obtained during the training and 
testing process. The results of comparing two strategies 
for DenseVNet are shown. One the testing set, we can see 
the Dice scores of the left and right hippocampus with 
the varying learning rate strategy was increased from 
0.676 to 0.711 and 0.743 to 0.758, respectively. Mean-
while, the performance on the other regions were almost 
equivalent. For comparing the results of two CNNs, 

DenseVNet obtained better results than 3D U-Net did. 
For the training set with DenseVNet, all Dice scores were 
larger than 0.90 except for left and right hippocampus. 
However, with 3D U-Net, Dice scores were larger than 
0.90 only in left and right hemisphere. For the testing set 
with DenseVNet, all Dice scores were larger than 0.90 
except for left and right hippocampus, and right cer-
ebellum. However, with 3D U-Net, all Dice scores were 
smaller than 0.90.

Patient demographics
In total, 18 patients who underwent PET/CT, head CT, 
and MRI were enrolled (10 women, 8 men, age: 50 ± 13.7 
(mean ± SD) years, minimum age 21, maximum age 70). 
From the PET/CT scans, 5 patients showed no abnor-
mal metabolic activity on the brain. 13 patients showed 
certain levels of abnormal metabolic activity. How-
ever, brain anatomical structures were examined by the 
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Fig. 2  Representative segmentation results of one subject from the testing set. a Axial, b coronal, and c sagittal section of the CT images with labels 
obtained from the DenseVNet model. d Axial, e coronal, and f sagittal section of the CT images with ground truth labels. g Axial, h coronal, and i 
sagittal section of the CT images with labels obtained from the 3D U-Net model. Eight brain anatomical regions (all split into left and right): basal 
ganglia, cerebellum, hemisphere, and hippocampus are color-coded and marked on the right
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neuroradiologist to make sure segmentation could be 
performed.

Segmentation results of CT CNNs and MRI atlas method
Figure  3 shows the representative segmentation 
results of one subject from the independent testing 

set, including (a) the input CT image, (b) the ground 
truth labels with the input CT image, (c) the segmen-
tation labels of DenseVNet with the input, and (d) the 
segmentation labels of 3D U-Net with the input. (e) 
The input MRI image and (f ) the segmentation labels 
of the MR atlas method are also included. Overall, the 

Table 1  Dice scores of eight brain anatomical regions during the training and testing process with different deep learning models

LR learning rate

Dice scores

Basal ganglia Cerebellum Hemisphere Hippocampus

Left Right Left Right Left Right Left Right

Training

DenseVNet
4000 epochs, LR = 0.001

0.944 0.932 0.939 0.919 0.963 0.961 0.872 0.864

DenseVNet
2000 epochs, LR = 0.001
2000 epochs, LR = 0.00025

0.943 0.937 0.938 0.917 0.963 0.960 0.888 0.854

3D U-Net 0.855 0.755 0.802 0.797 0.921 0.915 0.723 0.571

Testing

DenseVNet
4000 epochs, LR = 0.001

0.927 0.908 0.911 0.892 0.957 0.956 0.676 0.743

DenseVNet
2000 epochs, LR = 0.001
2000 epochs, LR = 0.00025

0.926 0.912 0.909 0.884 0.956 0.953 0.711 0.758

3D U-Net 0.891 0.745 0.808 0.812 0.866 0.839 0.544 0.565

Le� basal ganglia

Le� hemisphere

Right basal ganglia

Right hemisphere

(a) (b) (c)

(e) (f)

(d)

Le� hippocampus

Right hippocampus

Fig. 3  Representative segmentation results of one subject from the independent testing set, including a the input CT image, b the ground truth 
labels with the input CT image, c the segmentation labels of DenseVNet with the input CT image, d the segmentation labels of 3D U-Net with the 
input CT image, e the input MRI image, and f the segmentation labels of the MR atlas method with the MRI image
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segmentation labels shown in Fig. 3c, d, f indicated that 
the left and right hemisphere matched well between 
different methods. However, there were observable dif-
ferences on the basal ganglia and hippocampus regions. 
Firstly, the differences might be due to the inherent dis-
tinction between the ground truth in CT and that in 
MRI. Secondly, by comparing Fig.  3b–d, we observed 
that the segmentation using CNNs introduced varia-
tions as well.

The mean Dice scores on the 18 subjects are shown in 
Table 2. It should be emphasized that this was the inde-
pendent testing set so the models had not seen these 
data before. Again, DenseVNet obtained better results 
than 3D U-Net did. Thus, the trained DenseVNet 
model was used as the CT segmentation method for 
the following head-to-head volumetric comparisons. 
To look at the results with DenseVNet, four anatomical 
regions including left and right basal ganglia, left and 
right hemisphere obtained high Dice scores (> 0.90). 
Other regions including left and right cerebellum, left 
and right hippocampus obtained low Dice scores, espe-
cially left hippocampus.

Agreement and correlation of volume results between CT 
and MRI segmentations
Both CT and MRI brain segmentation methods yielded 
voxel-based volume results on each brain region. The 
voxel-based volume distributions, performance of ICC, 
and correlations between two methods are summarized 
in Table 3. For voxel-based volume results, mean ± stand-
ard deviation (SD) was shown if the data were normally 
distributed. And median (quartile 1, quartile 3) was 
shown if the data were not normally distributed. There 
was no statistical difference of the voxel-based volume of 
each region between two methods, except for left basal 
ganglia (p < 0.05). The ICC between two methods was 
moderate for left and right Hemisphere (ICC: 0.618, 95% 
CI 0.242, 0.835; and ICC: 0.654, 95% CI 0.298, 0.853). 
Lower ICC results were observed for the other regions, 
especially the right hippocampus. In terms of the cor-
relation, we found that left hemisphere (Spearman’s rho 
0.591; p = 0.0097), left hippocampus (Spearman’s rho 
0.564; p = 0.0147) and right hemisphere (Spearman’s rho 
0.68; p = 0.0019) obtained moderate correlation between 
CT and MRI methods and were statistically significant. 

Table 2  Dice scores of eight brain anatomical regions on the independent testing data set of 18 subjects with two different deep 
learning models

Dice scores

Basal ganglia Cerebellum Hemisphere Hippocampus

Left Right Left Right Left Right Left Right

Independent testing

DenseVNet 0.978 0.912 0.689 0.867 0.945 0.960 0.089 0.32

3D U-Net 0.524 0.272 0.524 0.612 0.593 0.506 0.089 0.079

Table 3  Agreement and correlation results of the voxel-based volumes by CT and MRI methods

Brain regions CT voxel-based volume MR voxel-based 
volume

p value ICC Spearman’s coefficient Correlation 
p value

Left basal ganglia 45,804.50 (44,319.00, 
47,000.00)

48,837.00 (45,742.50, 
52,271.00)

0.011 0.315 (− 0.097 to 0.662) 0.39 (− 0.094 to 0.725) 0.109

Left cerebellum 89,802.78 ± 5571.08 92,617.67 ± 5391.20 0.133 0.362 (− 0.059 to 0.69) 0.277 (− 0.218 to 0.659) 0.265

Left hemisphere 531,664.00 (483,331.80, 
550,391.80)

504,269.00 (480,361.10, 
539,919.80)

0.376 0.618 (0.242–0.835) 0.591 (0.172–0.829) 0.0097

Left hippocampus 4362.00 (3993.20, 
4784.00)

4066.00 (3801.10, 
4371.60)

0.1 0.574 (0.16–0.899) 0.564 (0.132–0.816) 0.0147

Right basal ganglia 46,390.00 (42,911.75, 
47,000.00)

46,375.00 (43,834.20, 
50,234.80)

0.255 0.084 (− 0.314 to 0.494) 0.146 (− 0.344 to 0.574) 0.5633

Right cerebellum 89,439.00 (84,631.25, 
98,000.40)

95,445.00 (89,421.80, 
98,207.10)

0.091 0.35 (− 0.06 to 0.681) 0.352 (− 0.138 to 0.703) 0.1521

Right hemisphere 508,069.94 ± 36,007.75 516,248.33 ± 41,078.62 0.53 0.654 (0.298–0.853) 0.68 (0.312–0.871) 0.0019

Right hippocampus 5599.28 ± 777.12 5631.67 ± 531.52 0.885 − 0.004 (− 0.497 to 
0.467)

0.009 (− 0.46 to 0.474) 0.971
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No significant correlation was found in the other regions 
(p > 0.05).

Discussions and conclusions
The novelty and potential contributions of our work 
include the following: 1. The clinical significance of our 
study is that we used head CT images obtained during 
PET/CT scans to perform the brain segmentation, which 
would be an initial yet critical step in the combination 
of the complementary information provided by PET/
CT scans. The usage of high-resolution head CT images 
ensured accuracy of the extraction of the brain anatomi-
cal information. Based on that, functional information 
from PET images can be analyzed on the segmented 
brain regions. We thought that this framework might 
take advantage of each imaging modality and combine 
the separate information in a more reasonable fashion. 2. 
Although we didn’t create a novel network architecture, 
we compared two widely used medical imaging segmen-
tation networks (DenseVNet and 3D U-Net) in perform-
ing the segmentation task and presented the results, 
which might be used as a reference for similar studies. 
3. To validate the segmentation results, we specifically 
enrolled patients who underwent both PET/CT scans 
and MRI. Then, we used a publicly available MRI atlas 
method as the reference to provide head-to-head com-
parisons of the volumetric results as another aspect of 
the quantitative performance evaluation of the segmenta-
tion model.

The mean Dice scores of the eight brain regions seg-
mented by our proposed method were generally high 
except for left and right hippocampus. Since an inde-
pendent testing set was used, the Dice results showed 
robustness of the proposed model. The poor Dice scores 
of the left and right hippocampus might attribute to three 
aspects: image quality, size of data set, and parametric 
settings during training. For image quality, the training 
and testing data set of 90 patients was obtained with GE 
Revolution CT scanners (voltage: 120 kVp, current: 225 
mAs / 174 mAs) while the independent testing set of 18 
patients was obtained with a Siemens BioGraph PET/CT 
scanner (voltage: 120 kVp, current: 300 mAs). Although 
appropriate post-processing was applied, image qual-
ity differences could result in variations in the segmen-
tation performance. Also, the relatively small size of the 
training data set might be a limiting factor for the model. 
Lastly, since our task in this study was to perform multi-
label segmentation on head CT, considering the sizes and 
volumes of all labels, we set the spatial window size as 
200 × 200 × 64, which was considerably larger than the 
hippocampus. Thus, the performance on segmenting the 
hippocampus might be compromised. Further studies 

where data sets are of bigger sizes and various spatial 
window sizes are used can be conducted.

Previous studies focusing on whole brain segmenta-
tion on CT images have been sparse, mainly because 
CT images had poor soft tissue contrast. It was not until 
recently that more efforts were made on this topic. A 
recent study by Zhao et al. [6] used a fully convolutional 
network (FCN) to synthesize MR T1-w images from 
NCCT images. Then, a standard pipeline of segmentation 
and labeling was applied on the synthesized T1-w images. 
The mean Dice scores obtained ranged from 0.51 to 0.73. 
In our study, four regions of the targeted brain regions 
obtained Dice scores larger than 0.90, which indicated 
the advantage of our method, which might be because it 
performed direct segmentation instead of conducting a 
synthesizing task first. Cai et al. [24] used a deep learn-
ing method to directly segment intracranial structures on 
brain CT images. Besides a primary dataset that was split 
into the training, validation, and testing sets. Two sec-
ondary datasets were also used to ensure that the model 
learned generalizable features. Performance metrics were 
Dice scores, from 0.74 to 0.96, which exceeded those of 
the existing methods, claimed by the authors. However, 
the study did not perform a comparison between the seg-
mentation results of the proposed method and those of 
an MRI-based method.

Our study has the following limitations. Firstly, since 
CT and MRI are fundamentally different imaging 
modalities, numerous factors could affect the compari-
son of voxel-based volumes between the two methods, 
such as the voxel spacing difference. We tried mitigat-
ing the effect by resampling both CT images and MRI 
to have the same voxel size. Also, we included CT 
images from separate centers with various imaging 
parameters. However, further studies focusing on the 
specific effects of imaging qualities of both CT and MRI 
can be performed. Secondly, the MRI images used as 
the reference had a resolution of 0.36 × 0.36 × 6 mm3, 
whose slice thickness was relatively high. This could 
result in inaccuracy of the segmentation results with 
the MRI atlas method, especially on fine anatomical 
regions such as the hippocampus. The poor agreement 
and correlation results of right hippocampus might be 
because of this resolution issue. Further studies using 
MRI images with finer resolution should be conducted. 
Thirdly, the number of the enrolled patients were lim-
ited because it was required that the patients under-
went PET/CT, head CT, and MRI so we could conduct 
head-to-head comparisons of the volumetric results. 
This limited the generalization of our results. Finally, 
the number of the brain anatomical regions segmented 
in our study was relatively small, which was inten-
tionally aligned with the simpler module within the 
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BrainSuite13 software. We thought this work could lay 
a foundation for future work where a finer segmenta-
tion of regions can be investigated.

Conclusions
Overall, we proposed a deep learning method that used a 
CNN to perform automated segmentation of brain ana-
tomical regions on head CT images and obtained results 
from the aspects of independent testing set as well as 
head-to-head comparisons of region volumes with MRI 
atlas method. Our results indicate that CT images could 
be used to provide precise anatomical information of the 
brain non-inferior to MRI images if proper methods are 
applied.
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