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Angiogenesis and tissue formation 
driven by an arteriovenous loop in 
the mouse
Richard Wong1, Roberto Donno2, Christopher Y. Leon-Valdivieso3,4, Urmas Roostalu1,5, 
Brian Derby   3,4, Nicola Tirelli2,6 & Jason K. Wong1,7

The rapid vascularisation of biomaterials and artificial tissues is a key determinant for their in 
vivo viability and ultimately for their integration in a host; therefore promoting angiogenesis and 
maintaining the newly formed vascular beds has become a major goal of tissue engineering. The 
arteriovenous loop (AVL) has been an extensively studied platform which integrates microsurgery with 
cells scaffolds and growth factors to form neotissues. Most AVL studies to date are limited to larger 
animal models, which are surgically easier to perform, but have inherent limits for the understanding 
and interrogation of the underlying in vivo mechanisms due the paucity of transgenic models. Here, 
we demonstrate for the first time in a mouse model the utility of the AVL in the de novo production 
of vascularized tissue. We also present the combined use of the model with 3D printed chambers, 
which allow us to dictate size and shape of the tissues formed. This novel platform will allow for an 
understanding of the fundamental mechanisms involved in tissue generation de novo.

The viability of replacement tissues and organs lost through trauma, infection, malignancy or congenital abnor-
mality depends on the presence of a functional circulatory system with a capillary network providing nutrient 
and gas exchange. One of the challenges of tissue engineering is to develop rapidly perfusable vascularized tissue 
by mimicking natural vascular architecture and rebuilding microvascular networks, that is surgically compati-
ble1–3. One potential solution is the pre-fabrication of scaffolds with cells, a vascular network and large vessels. 
The arteriovenous shunt loop (AVL), an anastomosis between an artery and a vein that shunts arterial blood 
into the vein, has been shown to spontaneously generate blood vessels in vivo1. Along with angiogenesis, the 
AVL has also been shown to stimulate de novo tissue formation when enclosed within an artificial chamber4 
filled with poly(lactide-co-glycolide) (PLGA), Matrigel or fibrin5 as extracellular matrix mimicking materials. 
Angiogenesis and tissue development can be further enhanced with addition of angiogenic growth factors like 
vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF)6. It is thought that following 
surgical creation of the AVL, cells like pericytes, macrophages, fibroblasts and neutrophils, migrate/differentiate 
into the peripheral tissues three days after loop implantation creating a hypoxic gradient between regions adjacent 
to the loop and the matrix boundary7. This hypoxic environment exists in the first week following implantation 
of an AVL8, but disappears once an intrinsic vascular network establishes after 4–6 weeks9. It is unclear whether 
hypoxia is the main driver for angiogenesis but it has been shown that shear stress from arterially pressured 
blood within vein vessels is important10–12. Thus, the precise mechanisms that underlie this vascular assembly are 
uncertain.

Most investigations of the AVL have been limited to the rat model with a few studies in larger models such 
as rabbits13, goats14 and sheep15,16. In this paper, we demonstrate for the first time, the creation of an AVL in the 
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mouse with dictation of size and shape of the constructs using 3D printed scaffolds. The benefits of establishing 
the AVL in the mouse is that we may take advantage of the vast transgenic mouse libraries that are already estab-
lished. Thus, allowing us to investigate candidate pathways and further identify important regulators of angiogen-
esis and tissue formation in a wound healing and tissue engineering context.

Results
Macroscopic appearance, viability and weight.  We collected chambers and visually examined the con-
tents after 4, 21 and 28 days (Supplementary Fig. S1). There were some remnants of blood from the AVL proce-
dure after 4 days, but this blood was no longer apparent at 21–28 days. At 28 days, controls without AVL retained 
an appearance similar to day 0 (Fig. 1F), AVL chambers contained soft tissue in a roughly spherical shape, with 
regions of possible blood vessel development where the AVL was placed (Fig. 1G), and finally, AVL controls 
without flow showed reduced fibrin matrix but little tissue or blood vessel formation had occurred to replace the 
matrix (Fig. 1H). Instead, the chambers were difficult to open and a fibrous scar-like encapsulating layer, which 
was found on the surface of all spheres at 28 days, was found inside of these controls as well.

Light sheet fluorescent imaging demonstrated that there was no visible perfusion of the chambers without 
AVLs but perfusion of the AVL of tissues in the chamber was evident in all animals (N = 3). At 1 week the loop 
was easily defined but by 4 weeks the loop was hard to define due to the fluorescence from the whole tissue 
(Fig. 2A–C). Confocal microscopy at higher resolution confirmed that the vascularised tissue was patent as the 
large and small vessels were perfused with FITC dextran after 28 days (Fig. 2D). This indicates that the vascular 
channels formed from the AVL, function for blood delivery. H&E sections of the chambers showed the fibrin 
matrix that is visible at 4 days and 7 days is gradually colonized by cells between 14 and 28 days (Fig. 3C–G), 
with less cells observed in controls (Fig. 3H–L). We measured the density of cells (Fig. 3B) found in the AVL 
samples, and significant increases from day 7 (7.3 ± 2.4%) to day 14 (29.5 ± 7.3%) and from day 21 (39.5 ± 6.2%) 
to day 28 (73.9 ± 5.6%) were observed. Whereas in the controls without an AVL, we observed significantly less 
cells with a maximum of 15.0 ± 6.5% cell area at day 21. These findings reflected the change in weight of the 

Figure 1.  We show the AVL in the mouse (A) compared with the AVL in the rat (B). The artery is denoted by 
“A”, vein by “V” and graft by “G”; arrows denote site of anastomosis. There is no graft for the mouse AVL. (C) 
3D-printed sphere chambers for mouse AVL. For (A–C) each division on the scale represents 1 mm. (D) Mouse 
AVL in the chambers containing fibrin matrix. (E) AVL pedicle with no flow as a control. We also show the 
contents after 28 days for a control (F) that contained fibrin matrix only and no AVL; (G) a mouse AVL within 
fibrin matrix (arrow denotes region of possible blood vessel development); and (H) a mouse AVL pedicle with 
no flow as a control.
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content inside the chambers over time (Fig. 3A). We found that the AVL significantly increased the average 
weight from 22.9 ± 0.3 mg at day 0 to 45.6 ± 5.7 mg at 28 days, while the controls without AVL did not signif-
icantly change (23.4 ± 0.6 mg to 23.5 ± 2.5 mg). No flow controls significantly increased to a lesser degree from 
23.4 ± 0.7 mg at day 0 to 26.9 ± 1.4 mg at 28 days. In the AVL cohorts, the average weight increased significantly 
from 0 (22.9 ± 0.3 mg) to 4 days (39.8 ± 2.2 mg), followed by a decrease in the weight at 7 days (33.5 ± 2.6 mg), 
followed by a significant increase from 14 to 28 days (36.0 ± 2.9 mg to 45.6 ± 5.7 mg).

Angiogenesis.  From immuno-staining for α-SMA (vessel walls), CD31 (endothelial cell adhesion), and 
laminin (basement membrane) (Fig. 4), we observe a significantly greater level of blood vessels in the AVL com-
pared to no AVL controls from day 14 onwards (Table 1). At day 7 the AVL samples showed a higher level of 
markers, but the difference with the controls was not statistically significant. We also see less blood vessel devel-
opment in no AVL controls (Supplementary Fig. S2) and ligated no-flow AVL controls at day 28 (Supplementary 
Fig. S3). Observing blood vessel development within AVL samples, we found blood vessels to significantly 
increase (approximately double) between day 14 and day 28: α-SMA (P = 0.0392), CD31 (P = 0.0062) and 
laminin (P = 0.048). We counted the number of individual blood vessel structures (stained by CD31) in centre 
histological sections of chambers and observed that no blood vessels formed on day 7 but was observed from day 
14 onwards in the AVL cohort (Supplementary Fig. S4). Furthermore, blood vessels were significantly greater 
(mean 486 vs 301, P = 0.0112) in the venous side of the AVL compared to the arterial side on day 28. Blood ves-
sels were found only on day 28 in no AVL controls (mean 42 vessels), and these had ingressed from the outside 
through the pores of the chambers.

Cell proliferation and tissue formation.  A high number of proliferative cells was observed at 14 days 
(Fig. 5) with most of the proliferation occurring at the border between the newly formed tissue and the fibrin 
matrix. The tissue that has formed may have arisen from an advancing wave of proliferative cells from the AVL. 
While very little proliferation was found in the AVL at day 7 (0.85 ± 0.05%), a significant (P = 0.0234) number 
was found at day 14 (5.87 ± 1.2%) followed by an insignificant (P = 0.3757) decrease at day 28 (3.90 ± 2.6%). 
This level of proliferation was not observed in the no-AVL controls and was significantly different at 14 days 
(1.75 ± 0.23%, P = 0.0038). Laminin staining (Fig. 4G–I) suggests that there is an abundant level of basement 
membrane and extracellular matrix formed over time.

Extracellular matrix formation was reflected when we measured for the presence of Hsp47, a chaperone of 
collagen synthesis (Fig. 6A–D) and for collagen fibres with picrosirius staining (Fig. 6E–H). The density of Hsp47 
staining in the AVL chambers was found to be greatest at 14 days (6.25 ± 2.3%) and significantly greater than 
no-AVL controls (1.83 ± 0.24%). There was a decreasing trend of collagen synthesis at 21 days (5.56 ± 1.2%) and 
28 days (4.21 ± 2.1%); whereas Hsp47 staining remained low in the no-AVL controls. The density of collagen 

Figure 2.  Top. Light sheet imaging fluorescent microscopy of the contents of mouse chambers. (A) Contents of 
chamber with no AVL control after 7 days. (B) AVL after 7 days. (C) AVL after 28 days. Scale bar 1 mm. Bottom. 
Confocal imaging of day 28 AVL tissue. (D) FITC Dextran perfusate of vascular channels in chamber. (E) CD31 
labelling of endothelium. (F) Merged image of colocalised perfusate and endothelial channels. Scale Bar 100 µm.
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fibres significantly increased with time in AVL chambers with 0.78 ± 0.16% at day 7, 15.5 ± 3.9% at day 14, 
19.1 ± 4.3% at day 21 and 38.5 ± 9.7% at day 28.

Discussion
The AV shunt loop model has been successful used to promote angiogenesis to vascularize bone17,18, muscle19,20, 
liver21,22, functioning cardiac tissue23,24, fat25,26, pancreas27,28 and thymus tissue with de novo T-cell production29. 
Despite this promise, there is a limit to the new vessel formation and the size of tissue generated30,31. In a clinical 
trial, three out of four patients failed to generate sufficient volumes of fat for breast reconstruction (Neopec)32,33, 
suggesting the clinical translation of this technology has some fundamental unknowns that require dissection. 
Thus, if we could extend our understanding of the mechanism underlying angiogenesis, we may be able to gen-
erate clinically relevant volumes of tissue for therapy. Most mouse models described in the literature are limited 
to the flow-through model34–36,37 but the AVL model has been shown to produce the most vascularized tissue in 
comparison38. It is important to the field of tissue engineering that a mouse model for the AVL is developed to 
characterize the mechanisms that underlie the angiogenesis phenomenon.

Mouse models of microvascular research pose a particular technical challenge, and requires considerable 
microsurgical experience to establish. However, the advent of supermicrosurgery and the growing experience 
of microsurgery research laboratories mean that the reliability of these procedures is increasing, with numer-
ous examples of how these techniques can be adopted. Hind limb39 and facial40 transplantation in mice is now 
achievable, and the vessels repaired in AVL are of a similar calibre. We found in our hands the intrastent tech-
nique described by Narushima et al. works best41 however techniques such as the cuff technique is also a reliable 
option42.

We have demonstrated that the mouse AVL model is achievable and that the vasculature remains patent, and 
that it promotes spontaneous angiogenesis to generate vascularized tissue. We observed that very little angiogen-
esis or tissue generation occurs at early time-points (between 4–7 days), but increased dramatically by 14 days 
and entirely fills the chamber space replacing the fibrin matrix with cells and extracellular matrix by 28 days. The 
corresponding weight measurements support this increase in tissue over time. Some vessel in-growth into the 
chamber occurs via its pores at 28 days, but as reported in rats9, the majority of the newly formed blood vessels 

Figure 3.  Analysis of the chambers containing AVL and no AVL over time. (A) The weight of contents within 
chambers of AVL (black) vs. no AVL controls (white). (B) The cell density (expressed as a percentage of the total 
chamber area, mean ± SD) over time. ***P < 0.001, *P < 0.05. The cell density was obtained by analyzing H&E 
sections in (C–G) AVL compared to (H–L) no AVL control chamber at day 4 (C,H) 7 (D,I) 14 (E,J) 21 (F,K) 
and 28 (G,L). Magnified views are included for AVL time-points at days 7, 14 and 28. Arrows V = vein and 
A = artery. Scale bar = 1 mm. Scale bar within magnified view = 300 µm.
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Figure 4.  Sections from AVL chambers for blood vessel markers. (A–C) α-SMA (blood vessel wall), (D–F) 
CD31 (endothelial cell), (G–I) laminin (basement membrane) were stained at day 7 (left column), day 14 
(middle), day 28 (right). Increasing numbers of blood vessels (dark brown structures) appear with increasing 
time. Scale bar = 500 µm. The areas of staining for (J) α-SMA (K) CD31 (L) laminin were then measured and 
expressed as a percentage of the total chamber area, mean ± SD in AVL (black) compared to no AVL controls 
(white) over time. ***P < 0.0001, **P < 0.001, *P < 0.05. Larger magnifications can be found in Supplementary 
Fig. S5A–F.

7 days 14 days 21 days 28 days

α-SMA (%) 1.06 ± 0.38
(0.27 ± 0.12)

6.32 ± 2.64
(2.21 ± 0.07)

7.89 ± 2.11
(4.35 ± 1.77)

12.35 ± 4.29
(3.58 ± 3.02)

p-value
(AVL vs. no AVL) 0.1029 0.0208 0.0231 0.0037

CD31 (%) 3.27 ± 3.75
(0.90 ± 0.35)

8.42 ± 2.52
(0.91 ± 0.35)

12.82 ± 3.27
(2.86 ± 2.78)

18.45 ± 5.83
(2.49 ± 0.85)

p-value
(AVL vs. no AVL) 0.3159 0.0041 0.0219 0.0002

Laminin (%) 1.37 ± 0.44
(0.85 ± 0.58)

9.60 ± 1.63
(3.76 ± 0.74)

13.02 ± 1.47
(5.71 ± 1.00)

17.55 ± 3.43
(1.85 ± 0.68)

p-value
(AVL vs. no AVL) 0.2815 0.0099 0.0035 0.0001

Table 1.  Markers for blood vessels (expressed as a percentage of the total chamber area, mean ± SD) in AVL 
(above) and no AVL controls (below). P-values are given below for t-test comparisons between AVL and 
controls.
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stems from the AVL itself. Our data also showed that a greater number of vessels had formed on the venous side of 
AVL than the arterial side (Supplementary Fig. S4), supporting the notion that arterially-pressured blood within 
thinner vein walls may trigger greater angiogenesis10–12. We also observed vessel in-growth via the pores of the 
chamber in the no AVL and ligated AVL controls at day 28 but we do not see the same extent of angiogenesis 
or tissue formation (Supplementary Figs S2 and S3). It may be that pores in the 3D printed chamber allow for 
wound-healing molecules and other substrates to diffuse from the surrounding environment into the chamber43,44 
or alternatively, allows movement or flow out of the scaffold hence promoting a gradient of growth away from the 
loop. Without pores, there may be an intrinsic pressure within the chamber that prevents cell growth towards to 
the periphery, thus reducing the level of tissue generated43. Further experiments are required to explain the role of 
scaffold pores in the AVL model. At 14 days, we see the tissue generated encroach into the matrix from the AVL 
with an expanding wave of proliferating cells towards the periphery in a radial fashion. This is most likely due to 
gradients of chemoattractants from the AVL44, which can be appreciated completely in the mouse model because 
of the scale. Analysis of the collagen bundles using picrosirius staining and rotated polarized light, together with 
the measurements of Hsp47 and laminin suggests that the tissue produced by the AVL increasingly resembles 
extracellular matrix over time. Although the abundance of collagen increased proportionally with time, synthesis 
of the collagen occurred the most at 2 weeks. Red and green birefringence can be used to determine collagen type 
I and type III41 but its specificity is questionable45,46. The use of picrosirius red has been more accurately used to 
determine fibre thickness, with green birefringence relating to thinner fibres, and red to thicker46. Using a similar 
technique, we observed at earlier time-points, the collagen to be predominantly thick fibred but there was a signif-
icant increase in thin bundles at 28 days. This is unlike scar or capsular fibrosis, which has a distinct polarity to its 
organization47. Electron microscopy and collagen type I/type III immunohistochemistry may allow us to deter-
mine further the composition of this collagen matrix. Tissue loss as a consequence of trauma, infection, malig-
nancy, or congenital abnormality is a significant clinical problem. Surgical solutions include autologous tissue 
reconstruction in the form of local and free tissue transfer introduces donor site morbidity48–51, surgical risk52 and 
has significant consequences in cases of flap thrombosis53, infection54 and total failure55. Tissue engineering solu-
tions, such as allogeneic scaffolds require blood vessel formation to insure its survival and incorporation. Thus, 
promoting endogenous vascularization processes to prevascularize scaffolds prior to cell injection and implanta-
tion are essential to building replacement tissues and organs. The processes and mechanisms that underlie new 
blood vessel formation are currently unclear. By developing the AVL in the mouse, it provides a platform through 
genetic manipulation to investigate which mechanisms are important to angiogenesis and tissue formation.

Methods
Surgical procedures.  All animal procedures were approved by the Local Ethical Committee at the 
University of Manchester and complied with British Home Office regulations on the care and use of Laboratory 
animals under PPL 70/8686. 8–10 week old C57/Bl male mice (Harlan Laboratories) were anaesthetized by isoflu-
rane (Abbot Laboratories Ltd, UK) (induction at 4 L/min oxygen with 4% isoflurane, maintained at 2 L/min oxy-
gen with 2% isoflurane during the rest of the procedure). Mice were immobilized on their posterior and the left 
hind limb was shaved up to the arcuate line. Under an operating microscope (Leica MZ7.5, Leica Microsystems, 
Switzerland), the femoral artery and vein between the junction of the tibial veins to the inguinal ligament were 
carefully exposed from surrounding tissues with curved microscissors (SDC-15, Mercian Surgical, UK) and 

Figure 5.  (A) Proliferative cells are labelled by BrdU staining and appear black on images. These are then 
expressed as a percentage of the total chamber area (mean ± SD) for AVL (black bars) compared to no AVL 
controls (white) over time. Images of AVL chambers are shown for (B) day 7, (C) day 14 and (D) day 28. Scale 
bar = 500 µm. Magnified views are included for AVL at days 14 and 28, which indicate that proliferative cells are 
mostly found at 14 days at the boundary between newly formed tissue and the fibrin matrix. Scale bar within 
magnified view = 300 µm.
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forceps (Dumont #5/45, Fine Science Tools, Germany). Vessels feeding into the vein were cauterized (Bovie, 
USA) or ligated with 11–0 sutures (Ethilon, Ethicon, UK). The distal ends of the femoral artery and vein were 
isolated, clamped (Acland B-1 00396V, Mercian Surgical, UK). A 5–0 prolene suture was used as an intravascular 
stent (Ethicon, UK) to allow anastomosis with 12–0 sutures (S&T, Mercian UK) to create an arteriovenous shunt 
loop (AVL) (Fig. 1A and Supplementary Video 1). Our patency rates were 100% for the data presented in this 
study. Patency of flow through the loop was checked by performing an Acland test (S Video 2). No anti-coagulants 
were used.

The AVL was placed into the 3D printed chamber containing fibrin matrix, and the semi-spheres were sutured 
together (Fig. 1D). This single sphere was secured into space created in the left inguinal region with 8–0 sutures 
(Ethilon, B.Braun, Germany), and the skin was closed with two layers of 8–0 sutures. A control sphere that con-
tained only fibrin matrix and no AVL was secured into space created in the right inguinal region. Further controls 
contained fibrin matrix and AVL but ligated to prevent flow were also performed (Fig. 1E). The ligated AVL con-
trols increased the overall time of surgery and could not be practically performed in the contra-inguinal area of 
experimental mice; and additional animals were required to create ligated AVL controls (Table 2). Analysis of 28 
day timepoint ligated AVL controls (Supplementary Fig. S3) suggest these controls were comparable to no AVL 
controls (Supplementary Fig. S2), and ligated AVLs were not performed for the other timepoints.

Analgesia (0.1 mg/kg, Vetergesic, Alstoe Animal Health) was administered and animals were allowed to 
recover with 2 L/min oxygen. All animals underwent the surgical procedure well without any major complica-
tions such as extrusion of the chambers, infections or hematomas. The mass of chambers were weighed at harvest-
ing. Vascularity of the AVLs was inspected at time of harvesting and confirmed during histological examination 
– patency of the vasculature determined by absence of organised thrombosis in the vascular channels on histo-
logical review. All AVL constructs analysed were found to be patent. All AVL chambers were found to have vessel 
formation. Intraperitoneal injections (1 mL per 100 g body weight) of bromodeoxyuridine (BrdU) (#RPN201, GE 
Healthcare, UK) were given to animals 4–6 h prior to harvesting AVL.

Figure 6.  Hsp47 staining for collagen synthesis chaperone is shown for (A) Day 7, (B) day 14 and (C) day 28. 
(D) We found the level (percentage of the total chamber area, mean ± SD) of Hsp47 to be significantly greater 
in AVL (black) compared to no AVL controls (white) at day 14 and 21. Sample images of picrosirius staining 
for collagen bundles are shown for (E) day 7, (F) day 14 and (G) day 28. All samples were measured at 0° and 
90° rotations, and the areas of collagen birefringence were calculated as a percentage of the total chamber area 
(mean ± SD). We find that the collagen increases with time, and the greatest increases of collagen were from day 
7 to day 14, and day 21 to day 28. Scale bar = 500 µm. 900 × 327 mm (180 × 180 DPI).

Timepoint (days) 0 4 7 14 21 28

AVL

— PRE = 3 — — PRE = 3 PRE = 3

IHC = 3 IHC = 3 IHC = 3 IHC = 3 IHC = 3 IHC = 4

— — LSFM = 3 — — LSFM = 3

— — WM-IHC = 3 — — WM-IHC = 3

No AVL control Control chambers were placed in the contra-inguinal region of experimental mice.
The number of control chambers will mirror that of AVL chambers.

AVL (ligated no-
flow control) — — — — — IHC = 3

Table 2.  The following table shows the number of mice reserved for preliminary and macroscopic analysis 
(denoted as PRE); histology and immunohistochemistry sectioning (denoted as IHC); FITC-Dextran perfusion 
and light-sheet fluorescent microscopy (denoted as LSFM); and whole-mount IHC (denoted as WM-IHC).
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Chamber production.  Chambers were designed using 3D CAD software (Autodesk Inventor 2015, student 
edition) as 5 mm diameter semi-spheres with 0.5 mm thick walls. 1 mm diameter pores were distributed uni-
formly on the surface. These were printed with a biocompatible acrylic/acrylate modelling material (Veroblue 
RGD840, Stratasys) in an Objet30 3D printer (Stratasys, USA). Following print completion, support material 
(FullCure 705, Stratasys) was removed by immersing in 1% sodium hydroxide solution for 3 h. Chambers were 
washed in distilled water and sterilized by exposure to UV light for 30 min (Fig. 1C).

Fibrin matrix preparation.  Bovine fibrinogen (F8630, MW: 340 kDa), bovine thrombin (T9549, ≥1500 
NIH units/mg protein) and HEPES buffer were purchased from Sigma (Gillingham, UK). CaCl2 and NaCl were 
purchased from Fisher (Loughborough, UK). Stock solutions of fibrinogen, thrombin and CaCl2 were prepared at 
a concentration of 75 mg/mL, 6 U/ml and 120 mM, respectively, in HEPES-buffered saline (HBS: 20 mM HEPES; 
150 mM NaCl, pH = 7.4). Complete dissolution of fibrinogen is achieved after 2 h of incubation at 37 °C under 
shaking (150 rpm, Heidolph Titramax 1000). The precursor solutions were sterile-filtered (0.22 µm PES filters) 
and mixed in appropriate volume ratios to achieve the final concentrations of 25 mg/mL, 1 U/mL and 20 mM, 
respectively for fibrinogen, thrombin and CaCl2. Gels were prepared by mixing CaCl2 solution with thrombin 
solution in equal volumes, obtaining a CaCl2-thrombin solution. The CaCl2-thrombin solution, HBS buffer and 
fibrinogen solution were mixed in a volume ratio equal to 1:1:1. For example, to prepare 600 µL of fibrin gel 
precursor solution: 100 µL of CaCl2 stock solution were mixed with 100 µL of thrombin stock solution. 200 µL 
of fibrinogen stock solution were mixed with 200 µL of HBS buffer. 400 µL of this solution (Fibrinogen + HBS) 
was mixed with 200 µL of CaCl2-thrombin solution. The gelling solution was immediately transferred in the 3D 
printed spheres and gelation was left to occur at room temperature for 10 min.

FITC-dextran perfusion.  At 7 days and 28 days, mice were perfused with 1 ml of 25 mg/ml FITC Dextran 
(150 kDa) in PBS solution containing 2% porcine gelatin and 1% copper (II) phthalocyanine via intracardiac 
injection as described by O’Ceallaigh et al.56. Briefly, under isolflurane anaesthesia as above, a thoracotomy is per-
formed and the right atria is vented. A 30 gauge needle is inserted into the left ventricle and attached to warmed 
tyrodes buffer and the circulation is flushed at 0.5 mL per minute using a syringe pump (Harvard Apparatus) until 
solution form the right atria vent is clear. 50 mL of FITC-Dextran with gelatin solution is administered into the 
left ventricle at the same rate until the animal circulation is saturated with the dye. The gelatin facilitated vascular 
filling by preventing vessels collapsing, whilst the dye allowed the perfusate to be visualized. The animal is then 
cooled to 4 °C until the gelatin sets prior to harvest of the chambers.

Light-sheet fluorescent microscopy (LSFM).  AVL chambers were removed from animals and fixed 
with zinc fixative for 24 h. Exploratory LSFM showed that the chamber and pores produced scattered images. 
Consequently, the outer 3D printed chamber was removed and only the tissue generated was analysed. For clear-
ing, BABB solution was made before use by mixing 1 part benzyl alcohol with 2 parts benzyl benzoate (both from 
Sigma-Aldrich, St. Louis, MO, USA) in glass bottle. The sample was incubated in 1:1 mix of methanol and BABB 
for 10 minutes, followed by overnight incubation in 100% BABB at 4 °C in a glass vial. Samples were then held 
in place for LSFM by adding 0.5% agarose and allowing it to set within a 1 mL syringe. LSFM was performed on 
samples with a 10x objective in a Zeiss Z.1 Lightsheet Microscope.

Whole-mount immunohistochemistry.  For whole-mount immunohistochemistry the tissue was fixed 
by immersion in 4% paraformaldehyde (PFA), followed by 4 h incubation of the isolated sample in PFA. The AVL 
tissue was carefully dissected out and washed 3 × 5 minutes in PBS and 5 × 5 minute in methanol. The sample 
was thereafter fixed overnight at 4 °C in Dent’s fix, composed of 20% DMSO in methanol. On the second day the 
sample was washed 3 × 5 minutes and 3 × 1 h in PBS. Blocking was carried out overnight in 5% donkey serum 
and 15% DMSO in PBS at ambient temperature. Primary antibody CD31 (1:100, BD Biosciences #550274) incu-
bation was done in blocking solution for 2 days at ambient temperature on horizontal shaker. After removal of 
the primary antibody the sample was rinsed 3 × 5 minutes in PBS and washed 5 × 1 hour in PBS. Secondary anti-
body incubation was carried out similarly to primary antibody, in the same blocking buffer for 2 days (ambient 
temperature, in dark). Following the secondary antibody removal the sample was again briefly rinsed with PBS 
and washed 3 × 1 hour in PBS. It was fixed again in 4% PFA for 1 h, washed 3 × 5 minutes and 3 × 1 h in PBS. The 
sample was then washed with 50% methanol in PBS for 5 minutes and in 100% methanol 4 × 10 minutes. The 
sample was visualized using sequential scanning mode on Leica SP5 inverted confocal microscope on 4 Well 
Glass Bottom µ-Slide (Ibidi Gmbh, Martinsried, Germany, Cat. No. 80427). 3D image analysis was performed 
using Bitplane Imaris 9 software (Bitplane AG, Zurich, Switzerland).

Histology.  The whole chamber and loop were immediately placed in zinc fixative solution for 48 h at room 
temperature57. Samples were processed in a Tissue-Tek Vacuum Infiltration Processor (Bayer Diagnostics, 
Newbury, UK), embedded in Paraplast Plus paraffin medium (Leica Biosystems, UK), and serial sectioned 
at 7 µm thickness. Sections were dewaxed in xylene and rehydrated through graded alcohol series prior to 
staining. Sections for immuno-staining were incubated for 20 min at room temperature with blocking serum 
(ImmPRESSTM HRP Kit, Vector Laboratories, UK) before incubating overnight at room temperature with pri-
mary antibody: α-SMA (1:100, Abcam #5694), laminin (1:100, Abcam #11575), CD31 (1:100, BD Biosciences 
#550274), VEGF (1:100, Abcam #46154), BrdU (1:200, Abcam #6326) and Hsp47 (1:50, Abcam #109117). 
Sections for BrdU staining were exposed to 4 M HCL for 10 min and then 5 min of borate buffer prior to 
blocking step. Following 2 × 3 min PBS-T wash, sections were incubated for 30 min with secondary antibody 
(ImmPRESSTM HRP Kit, anti-rabbit #MP7401 or anti-rat #MP7444, Vector, UK). Following 2 × 3 min PBS-T 
wash, sections were incubated for 5–10 min with DAB and nickel (DAB HRP kit, #SK4100, Vector, UK) and 
counterstained with nuclear fast red (Sigma-Aldrich, UK).
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Sections for collagen fibre staining58 were stained for 1 h with 0.1% Sirius red (Sigma-Aldrich, UK) in satu-
rated aqueous picric acid (Sigma-Aldrich, UK).

Data analysis and statistics.  For whole mount staining time points 7 days and 28 days were selected for 
analysis. Time-points at 4, 7, 14, 21 and 28 days were selected for general parameters, histological and immuno-
histochemical analysis. 7 µm thick sections were selected for either H&E, picrosirius red staining or immunohis-
tochemistry at intervals of 112 µm. Data such as vessel counts and staining density for each chamber (N = 3) were 
measured and averaged from a minimum of 4 sections from the centre of each stack.

Slides were mounted and scanned with a 20x objective (Aperio Scanscope, Leica Biosystems, UK) and images 
were screenshot captured for analysis. Immunohistochemistry data were calculated in Fiji ImageJ (v2.0)59 by 
setting a threshold to only show DAB stained areas and then dividing by the total area to obtain a percentage of 
marker presence. Standard deviations (±) are given throughout. Birefringence of collagen bundles were visual-
ized under polarized light (Axio Scope A1, Zeiss, Germany) and images were captured at 0° and 90° rotations with 
a Canon G9 camera and PSRemote capture software (v2.1, Breeze Systems Limited). Images were split to individ-
ual 8-bit RGB channels and a threshold was set to highlight areas of collagen in the red and the green channel. The 
red birefringent collagen was calculated by subtracting the total area highlighted in the red channel by the area of 
yellow/green birefringent collagen.

Blood vessel formation are presented as an average per mm2 for the number of CD31 antibody stained circles 
found in four 250 µm × 250 µm squares positioned 100 µm away from the outer wall of the artery and vein of 
the AVL. In Supplementary Fig. S4, the total number of blood vessels stained by CD31 were counted and then 
averaged from four sections taken from the centre of the stack for each sample. One-way ANOVA with Tukey 
post-hoc multiple comparisons were performed between AVL time-points to assess content weight, vessel count, 
collagen distribution and immunohistochemistry. Student’s t-tests were performed to compare AVL and no AVL 
controls at each time-point. GraphPad Prism 6 software was used to perform statistics.

Ethical statement.  All experiments were performed under the Animals (Scientific Procedures) Act 1986 
and ethical standards were in accordance to UK Home Office guidelines.

Data Availability
The most relevant data generated or analysed during this study are included in this published article (and its 
Supplementary Information Files).
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