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OBJECTIVE—Type 1 diabetes results from an immune-
mediated destruction of (-cells, likely to be mediated by T
lymphocytes, but the sensitivity, specificity, and other measures
of validity of existing assays for islet autoreactive T-cells are not
well established. Such assays are vital for monitoring responses
to interventions that may modulate disease progression.

RESEARCH DESIGN AND METHODS—We studied the abil-
ity of cellular assays to discriminate responses in patients with
type 1 diabetes and normal control subjects in a randomized
blinded study in the U.S. and U.K. We evaluated the reproduc-
ibility of these measurements overall and to individual analytes
from repeat collections.

RESULTS—Responses in the cellular immunoblot, U.K.-ELIS-
POT, and T-cell proliferation assays could differentiate patients
from control subjects with odds ratios of 21.7, 3.44, and 3.36,
respectively, with sensitivity and specificity as high as 74 and
88%. The class II tetramer and U.S. ELISPOT assays performed
less well. Despite the significant association of the responses
with type 1 diabetes, the reproducibility of the measured re-
sponses, both overall and individual analytes, was relatively low.
Positive samples from normal control subjects (i.e., false posi-
tives) were generally isolated to single assays.

CONCLUSIONS—The cellular immunoblot, U.K.-ELISPOT, and
T-cell proliferation assays can distinguish responses from pa-
tients with type 1 diabetes and healthy control subjects. The
limited reproducibility of the measurements overall and of re-
sponses to individual analytes may reflect the difficulty in detec-
tion of low frequency of antigen-specific T-cells or variability in
their appearance in peripheral blood. Diabetes 58:2588-2595,
2009
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ype 1 diabetes is caused by T-cell-mediated

destruction of B-cells (1). Despite this under-

standing, there are few tools to identify and

track cells that mediate the disease in humans.
Several assays that can distinguish antigen-specific re-
sponses in patients from normal control subjects have
been reported (2-7); however, some of these have not
performed well in larger blinded studies (8-10), and their
reproducibility has not been systematically studied in a
masked workshop.

A means of monitoring cellular responses involved in
type 1 diabetes is needed to understand the action of
immune therapies and to effectively apply therapies in the
clinical setting (11). A biomarker that responds to an
effective therapy could be used to rapidly screen candidate
therapies for use in a further study to examine effects on
longer-term clinical outcomes, such as preservation of
B-cell function. A highly sensitive and specific biomarker
might also potentially function as a surrogate for clinical
outcomes that take a longer time to observe and require a
larger number of subjects to study.

In a previous blinded study, Seyfert-Margolis et al. (8)
reported that two different assays that measured T-cell
proliferative responses to antigens were able to distin-
guish responses in subjects with type 1 diabetes from
those in healthy normal control subjects. However, that
study used a single collection from each subject and could
not evaluate the reproducibility of the measurements that
is needed to assess their utility in clinical trials. Moreover,
only the two assays that used fresh cells showed signifi-
cant discriminant validity (i.e., ability to distinguish par-
ticipants with type 1 diabetes from normal control
subjects). Therefore, the present study was conducted to
assess the discriminant ability of five T-cell assays with
fresh blood samples. We also assessed the reproducibility
of the measurements from repeat collections in individual
subjects, both qualitatively with respect to the classifica-
tion of each subject (positive vs. negative) and quantita-
tively for the different analytes used in each assay.

RESEARCH DESIGN AND METHODS

Subjects. Sixty-eight control subjects with type 1 diabetes were enrolled, 35
in North America and 33 in the U.K., along with 96 control subjects without
type 1 diabetes, 63 in North America and 33 in the U.K. (Table 1). Collections
from North American sites were split and distributed among the North
American laboratories; those from the UK. were assayed by the U.K.
laboratory.

A greater number of control subjects were studied to provide adequate
numbers of subjects with HLA-DR3 and/or DR4 genotypes (12). Two collec-
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TABLE 1
Characteristics of subjects enrolled in North America and the U.K. who contributed an evaluable specimen
North America UK.
Diabetes Normal Diabetes Normal

n 35 59 29 31
Age (years) 15.0 = 3.98 26.5 = 5.65 24.2 * 6.6 24755
Sex (male) 22 (62.9) 26 (44.1) 19 (65.5) 13 (41.9)
Type 1 diabetes duration (months) 6.4 = 3.05 — 3.3 + 3.88 —
Whites (%) 79.4 86.4 96.6 90.3
Collections (%) 66 113 51 58

1 only 35 59 29 31

2 only 31 54 22 27
Days between collections

2-7 8 (25.8) 18 (33.3) 5 (22.7) 14 (51.9)

8-14 14 (45.2) 15 (27.8) 9 (40.9) 7(27.9)

15-21 4(12.9) 9 (16.7) 6 (27.3) 2(74)

21-28 5(16.1) 12 (22.2) 29.1) 4(14.8)
Autoantibody positive

ICAb12 23 (65.7) 0 (0) 14 (50) 0(0)

GADG65 22 (62.9) 0(0) 20 (71.4) 0(@0)

ICA 25 (71.4) 5 (8.6) 13 (46.4) 0

One 7 (20) 5 (8.6) 7(24.1) 0(0)

Two or more 24 (68.6) 0 () 15 (51.7) 0 ()
HLA type

DR3 7 (20) 16 (27.1) 4 (13.8) 11 (35.5)

DR4 14 (40) 23 (39.0) 16 (65.2) 17 (54.8)

DR3/4 11 (31.4) 9 (15.3) 9(31) 3(9.7)

Neither 3 (8.6) 11 (18.6) — —

Data are means = SD and n (%).

tions were obtained from each subject on different days, the second within the
subsequent 2-28 days.

Participants ranged from 8—35 years of age, weighed at least 40 kg (88 1bs),

and were free of conditions or treatments that would affect the immune
system. Women were not pregnant or lactating. Control subjects with type 1
diabetes were diagnosed within the past 12 months before the first collection;
control subjects did not have a first- or second-degree relative with type 1
diabetes.
Laboratory methods. The specimens were collected between 8:00-10:00 A.m.
after an overnight fast, with fasting plasma glucose level between 70-180
mg/dl (3.9-10 mmol/l), and without an injection of short-acting insulin. Fresh
blood samples were collected and air-shipped by overnight courier (North
American sites) or same-day courier (U.K. site) at ambient temperature to
each T-cell laboratory, volume permitting. Before the first visit, control
participants were screened for their HLA genotypes at a central laboratory
from a buccal swab. Biochemical autoantibodies (GAD-65, ICA-512, microin-
sulin autoantibody) were measured centrally using a radio-immunobinding
assay and islet cell antibodies (ICA) using indirect immunofluorescence from
frozen serum collected at the first visit (13-16). Microinsulin autoantibody was
not used in this analysis because all subjects were treated with exogenous
insulin. The responses in the T-cell assays were classified as positive (diag-
nostic of type 1 diabetes), negative (diagnostic of control status), or
indeterminate.

The laboratories were masked to the status of the subject, the identity of
each subject, and the sequence of visits. Detailed laboratory methods and
analytes for each assay are presented in the online appendix available
at http://diabetes.diabetesjournals.org/cgi/content/full/db09-0249/DC1. Herein
acronyms are used to refer to specific analytes, such as “MDR4GAD274” to
refer to the DR4-GAD274-286 tetramer stimulated with the DR4 binding
peptide pool. The description of each analyte is presented in the online
appendix, and brief methods follow.

Cellular immunoblotting. Human islets were subjected to preparative 10%
SDS-PAGE, the gels were electroblotted onto nitrocellulose, nitrocellulose
particles prepared, and the nitrocellulose particles used to stimulate periph-
eral blood mononuclear cells (PBMNCs) in vitro (7). Eighteen blot sections of
decreasing size were analyzed. A stimulation index (S;) > 2.0 indicated
positive proliferation for a blot, and a sample with four or more positive blots
was designated as positive (diagnostic of type 1 diabetes).

U.K.-ELISPOT. PBMNCs producing interferon-y (IFN-y) in response to
stimulation with synthetic peptides representing naturally processed and
presented epitopes of IA-2) GAD65, and proinsulin were detected by cytokine
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ELISPOT as described (5). Only samples from HLA-DR3 or DR4+ subjects
were used. Single peptides were tested at 10 pmol/l, and the pool was tested
at 3 pmol/l and 10 pmol/l (final concentration of individual peptide compo-
nents). A stimulation index (S;, derived as number of spots in test analyte
wells/number in negative control wells) of =3.0 was designated as a positive
response to an analyte. Samples showing a response to one or more analytes
were classified as positive.

T-cell proliferation assay. This assay measured antigen-induced prolifera-
tion of PBMNCs in microcultures by up to 20 individual test antigens including
type 1 diabetes-relevant and -irrelevant peptides and proteins (3,8). Antigen
responses were normalized as stimulation indexes, and samples with three or
more T-cell pools that target type 1 diabetes-relevant antigens/epitopes (17)
were designated as positive.

Tetramer. The construction of the expression vectors for generation of
soluble DR0401 (DRA*0101/DRB1*0401), DR0404 (DRA1*0101/DRB1*0404),
or DR0301 (DRA1*0101/DRB1*0301) molecules has been described previously
(18). CD4+ T-cells from PBMNC from HLA-DR3 and/or 4+ control subjects
were expanded with peptides. On day 14, the cells were stained using 10 pg/ml
of PE-labeled HLA-DR0401/04 or 0301 tetramers containing a specific or a
negative control peptide and then with anti-CD3-FITC and anti-CD4-PerCP
antibodies. Cells were analyzed on a fluorescence-activated cell sorter calibur
flow cytometer with FloJo software.

U.S.-ELISPOT. The methods described above for the U.K.-ELISPOT assay
were followed. The difference in the assays included the following: 1) Those
in the U.K. were processed on the day of blood draw whereas those in the
U.S.-ELISPOT were air-shipped overnight. 2) Because of lower overall re-
sponses noted in the shipped samples compared to fresh control samples, a .S;
of =2.0 was designated as a positive response to an analyte. 3) Test analytes
did not include the DR4-restricted GAD65;;, 5.5 peptide. 4) The test peptides
were only tested at the 10 wmol/l concentration.

Statistical methods. Only evaluable specimen results were used. A sample
was declared nonevaluable if the number of viable cells was inadequate or the
sample was discarded because of poor quality as indicated by hemolysis
before processing or dye exclusion after processing, if the yield of PBMNCs
was <0.5 X 10%ml blood, or there was no response (S; < 3.0) to Pediacel (for
U.K.-ELISPOT).

Standard measures of diagnostic accuracy were used (19). The assay
results are either + (diagnostic of type 1 diabetes) or — for each analyte or for
the completed assay. The sensitivity (proportion of patients with type 1
diabetes who test positive) and specificity (proportion of control subjects who
test negative) are presented. Because it was planned that about half the
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FIG. 1. The percentage of subjects with positive autoantibodies. The
data show the percentage of subjects with 0-3 positive autoantibodies.

subjects with DR3/4 would have diabetes (D), the positive predictive value
(PPV) = P(D +) = sensitivity/(sensitivity + «) and the negative predictive
value (NPV) = P(D +) = specificity/(specificity + ). The proportion cor-
rectly classified (PCC) = (sensitivity + specificity)/2. A generalized estimating
equation (GEE) logistic model (20) provided estimates of sensitivity and
specificity, allowing for multiple collections for each subject, and of the odds
ratio of a specimen being from a subject with diabetes given a positive
classification from the assay.

The k agreement statistic (21) assessed the reproducibility of the repeated
qualitative assays (positive or negative) from the pair of collections from each
control subject. A constant of 0.5 was added to all frequencies when there was
a zero cell in the corresponding 2 X 2 table. The Cochran test of homogeneity
tested the differences between the k values among subgroups (22). An entropy
R? measure of association (the uncertainty coefficient) described the correla-
tion of the repeated assays (23).

For each assay, 30 subjects with type 1 diabetes and 30 or more control
subjects provides 85% power with a one-sided test at the 0.05 level to detect
a difference in the proportions positive of 0.675 among those with diabetes
versus 0.325 (one — specificity) among those without, or an odds ratio of 4.31.

RESULTS

Study subjects. Table 1 describes the characteristics of
the 94 subjects from North America and the 60 from the
U.K. who contributed an evaluable specimen as defined in
the online appendix. Of these, 9 in North America and 15
in U.K. withdrew after collecting the first sample. North
American patients were pediatric, whereas U.K. patients
were adult with somewhat lower prevalence of autoanti-

TABLE 2

bodies. Although sensitivity for any single autoantibody
ranged from 59-67%, 61% of subjects with type 1 diabetes
were positive for two or more autoantibodies versus 0% of
the control subjects (Table 1, Fig. 1). These observations
place the test subjects well within the expected serologic
ranges (15).

Discriminant validity. Table 2 presents the fraction of
specimens that were evaluable for autoantibodies and
each assay. Antibodies were evaluable in virtually all of
the specimens. The cellular immunoblot was evaluable in
68% and T-cell proliferation (TCP) in 84% of all specimens.
The other assays were only conducted in specimens from
DR3 or DR4 subjects, and of these the tetramer was
evaluable in 77%, U.S.-ELISPOT in 57%, and the U.K.-
ELISPOT in 100%. Indeterminant specimens for which the
assay did not provide a clear positive or negative response
were frequent with the tetramer assay (27% of those
otherwise evaluable), less so for the cellular immunoblot
(5%) and U.K.-ELISPOT (7%), and none for the other two
laboratories.

For the analysis herein, indeterminate specimens are
counted as a negative response (see the online appendix).
Table 2 presents the summary measures of diagnostic
accuracy for each assay. The summary measures for each
analyte within each assay are presented in the online
appendix.

The cellular immunoblot assay provided sensitivity of
74%, specificity of 88%, and 81% correctly classified (Table
2), somewhat lower than provided by autoantibodies
alone. Of those classified positive, 86% (the PPV) actually
had type 1 diabetes, and of those classified as negative,
77% (NPV) were actually control subjects. The odds ratio
(21.7) was highly statistically significant (P < 0.0001).
Figure 2A shows the distribution of the number of positive
blot sections within each group. Among control subjects,
the percent with 0—3 blots positive was higher than among
those with diabetes. Most of the false-positive control
samples had four positive responses and were borderline
for overall positivity.

The U.K.-ELISPOT assay also showed a statistically
significantly odds ratio (3.44, P = 0.0026), with a sensitiv-
ity and specificity of 61 and 69%, respectively (Table 2).

Numbers of specimens assayed and measures* of the ability to discriminate between subjects with and without type 1 diabetes for

autoantibodies alonef and each T-cell assay

Positive ~ Negative

Specimens Correct predictive predictive Odds

evaluablef Indeterminant§ Sensitivity Specificity classification value value ratiol| P
Autoantibodies (one

or more) 296 (99.7) — 83 92 88 91 84 56.9 <0.0001

Anti-GAD65 296 (99.7) — 68 98 83 98 76 124.8 <0.0001
Anti-ICA512 296 (99.7) — 58 99 78 98 70 119.3  <0.0001
Anti-ICA 296 (99.7) — 59 94 76 91 69 22.6  <0.0001
Cellular immunoblot 122 (68.2) 6 (4.9) 74 88 81 86 7 21.7  <0.0001
T-cell proliferation 151 (84.4) 0 60 69 64 66 63 3.36  0.0041
Tetramer 117 (76.5) 32 (27.4) 46 72 59 63 57 2.10  0.076
U.S.-ELISPOT 87 (56.8) 0 35 65 50 51 50 1.09  0.95
U.K.-ELISPOT 109 (100) 8(7.3) 61 69 65 66 64 344  0.0026

Data are n (%) or percent unless otherwise indicated. *Sensitivity and specificity estimated from a GEE model using all collections in all
subjects. TAll subjects from both North America and the U.K. combined. iThe number and percent of all specimens received that were
considered evaluable among 154 subjects and 297 collections in North America and the U.K. combined (for autoantibodies); among 179
collections for cellular immunoblot and T-cell proliferation; and 183 DR3 and/or DR4 in North America (tetramer and U.S.-ELISPOT) and 109
in the U.K.-ELISPOT. §The number and percent of evaluable specimens for which the assay failed to provide a clearly positive or negative
result. |The odds ratio that a specimen is from a subject with type 1 diabetes for a positive assay vs. that for a negative assay.
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FIG. 2. The frequency of positive analytes within T-cell assays. The
number of positive analytes for each of the assays are shown for
patients with type 1 diabetes and healthy control subjects. A: Com-
bined immunoblot assay; B: U.K.-ELISPOT assay; C: TCP assay.

Figure 2B shows the distribution of the number of positive
responses in each group. Among the control subjects, over
80% of the collections had zero or one analyte positive.
Among those with diabetes, two-thirds were positive for
one or more analytes.

The TCP assay provided sensitivity of 60% and specific-
ity of 69% and a statistically significant odds ratio (3.36,
P = 0.0041, Table 2). Figure 2C shows the distribution of
the number of positive responses within each group. A
higher fraction of control subjects was positive for 1-3
antigens than were subjects with diabetes, whereas a
higher fraction of those with diabetes was positive to 10 or
more analytes than were control subjects.

The odds ratios for the tetramer (2.1) and U.S.-ELISPOT
(1.09) assays were not statistically significant (Table 2). In
this analysis, the sensitivity was <50% for both assays,
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whereas the specificity was comparable to the other
assays (Table 2).

Influence of HLA status. The major histocompatability
complex genotype likely affects the performance of assays
and, by design, the tetramer and ELISPOT assays. The
tetramer assay relies upon HLA-restricted presentation of
selected autoantigenic epitopes presented by HLA-DR3 or
DR4, and the ELISPOT was optimized using epitopes pre-
sented by HLA-DR4 (DRB1#0401) with the exception of
GADGbB555 555, @ sequence known to be HLA-DR3 restricted
(24). Therefore, we compared responses in type 1 diabetic
patients and control subjects among these genotypes
(Table 3). The sensitivity and specificity of each assay
varied among HLA classes, but there was not a significant
relationship between HLA genotype for any of the assays
or autoantibodies. The cellular immunoblot assay had a
higher specificity (100%) among samples from subjects
with DR3 alone than those with DR4 (79% alone, 81%
heterozygous). The U.K.-ELISPOT assay showed some-
what better specificity (78%) among samples from subjects
with DR4 alone than subjects with DR3 (57% alone, 60%
heterozygous) as previously reported (5). There was a low
sensitivity (17%) but a high specificity (93%) of the tet-
ramer assay in HLA-DR4 individuals. The small number of
non-DR3 or -DR4 subjects with diabetes (only three with
type 1 diabetes in North America) precluded a comparison
to those with HLA-DR3 or four in the cellular immunoblot,
TCP, and autoantibody assays.

Qualitative reproducibility of assays. Table 4 presents
the qualitative reproducibility of the assay classifications
from the repeat collections in each subject. Negative
values indicate agreement less frequent than expected by
chance. For example, the cellular immunoblot had 82.22%
agreement for the 45 subjects with evaluable specimens on
the two collections, both type 1 diabetes and normal
together. The proportion positive on average for the two
collections is 40%, and the corresponding level of agree-
ment by chance alone is 51.6%. Thus, k is (0.8222 —
0.0.5616)/(1 — 0.516) = 0.633, a modest improvement over
chance agreement alone but somewhat below a desirable
level of 0.8 or more. The level of agreement and « for
autoantibodies was only slightly greater than that of the
cellular immunoblot assay.

It is possible that these k values represent biological
variation over the interval 2-28 days between collections,
rather than laboratory reproducibility. Thus, for each
laboratory, separately among those with diabetes and
control subjects, k was calculated for those retested
within 2-7 days, 8—14 days, and 15-28 days, and a test of
homogeneity conducted. The detailed results are pre-
sented in the online appendix. Although the k values
showed nominally significant heterogeneity for four of the
laboratories, there was trend toward decreasing levels of k
as the elapsed time increased only for the TCP and
tetramer labs. Those for autoantibodies did not vary.

Kk is not a measure of correlation between the two
collections. Thus, Table 4 also presents the entropy R*
between the two collections for each laboratory. This is a
measure of the proportion of variation in values from one
collection that is explained by variation in the other
collection, directly analogous the square of a correlation
coefficient for quantitative variables. As for k, the R? is
highest for the cellular immunoblot lab followed by TCP
and the others.

Agreement between assays. Table 5 presents the k and
the R? values for agreement between laboratories. The
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TABLE 5

Indexes of agreement between each pair of laboratories in North America for the designation of positive vs. negative for each subject
based on the first visit for which each pair of labs both provided a result

Cellular
Autoantibodies immunoblot TCP Tetramer U.S.-ELISPOT
Autoantibodies — 0.51 (64) 0.10 (81) 0.11 (59) 0.11 (45)
Cellular immunoblot 0.20 — 0.25 (67) 0.14 (563) —0.012 (46)
TCP 0.008 0.05 — 0.09 (63) 0.03 (55)
Tetramer 0.009 0.015 0.007 — —0.29 (47)
U.S.-ELISPOT 0.009 0.0001 0.001 0.07 —

Data are k (n of concurrent evaluations) and entropy R% k < 0 designates worse-than-chance agreement.

assays to distinguish responses in participants with type 1
diabetes from normal healthy control subjects. We also
assessed the qualitative reproducibility of the overall
measurement of positivity and the quantitative reproduc-
ibility of measured responses to individual assay analytes
to understand the nature of the responses to diabetes
antigens. The CI, TCP, and U.K.-ELISPOT assays could
distinguish between persons with type 1 diabetes from
control subjects with sensitivity and specificity ranging
between 60-74% and 69-88%, respectively. We did not find
a significant effect of HLA genotypes on responses in the
combined immunoblot and TCP assays. The ELISPOT
assay utilized DR4-restricted peptides predominantly and
showed a trend for greater specificity among DR4+ indi-
viduals. The tetramer assay was less discriminatory but
showed high specificity in DR4+ individuals, possibly
reflecting the selection of peptides for binding to this
genotype.

Several explanations could account for the differences
between the ELISPOT assay results in the U.K. and Den-
ver, Colorado. The U.K. subjects were older and had
shorter disease duration. Samples were transported to the
U.K. lab on the day they were drawn, whereas the Denver
samples were air-shipped, exposed to temperature varia-
tion, and more laboratory personnel were involved. These
technical details highlight the challenges in replicating
bioassays at different laboratory sites.

The performance characteristics with these biologic
assays are similar to other biologic assays and interest-
ingly not markedly different from the biochemical autoan-
tibody assays (25,26). Of note, the study design tested the
reproducibility of assay results from the same subjects and
not the reproducibility of measurements in the same
samples. In this regard, the qualitative and quantitative
reproducibility of assays in individual subjects between
the two samplings and the individual analyte reproducibil-
ity were lower than desirable, with the maximum «k
agreement statistic of 0.63 and maximum R? of 0.34, both
for the cellular immunoblot assay. The reasons for this
variation are not clear; they could reflect variation in the
assay or in procedures used to ship or process samples,
but they could also reflect biological variation in individ-
uals over time. This is further suggested by 0.7 k for the
autoantibodies, whereas in split duplicates, the k values
were 0.89 and 0.93 for anti-GADG65 and ICA512. Nonethe-
less, a systematic decline in the k statistics as a function of
elapsed duration was only seen in two laboratories. Thus,
if biological mechanisms explain the variation, they must
take place within days.

In a previous study, Seyfert-Margolis et al. suggested
that “false”-positive results in cellular assays may not be
false but a true measure of diabetes antigen—specific
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T-cells in normal individuals because 2 of 4 positive
samples from normal control subjects in the combined
immunoblot were also positive in the TCP assay (8).
However, in the present study, the low concordance
among laboratories in false-positive responses for control
subjects suggests that false positives are assay specific
rather than a true biologic difference in these healthy
individuals. Likewise, the low concordance of false nega-
tives between subjects suggests that they are assay
specific.

Each of the assays measures the T-cell responses in
ways that differ with respect to assay conditions and
antigenic complexity. The combined immunoblot mea-
sures the proliferative responses of peripheral blood cells
to all islet antigens, whereas the ELISPOT, TCP, and
tetramer assays measure responses to a limited repertoire;
only a fraction of the cells may be present in the peripheral
blood at any time (3-5,7,27,28). The responding cell sub-
populations (CD4+, CD8+, or both) also differ between
the assays. Therefore, it is not surprising that there was
not complete agreement between results with each assay.
The relatively higher sensitivity of the combined immunoblot
compared to either the T-cell proliferative, ELISPOT, or
tetramer assays most likely reflects their detection of re-
sponses to the widest array of antigens. A caveat of these
studies is that we have not compared responses in patients
with type 1 diabetes with other autoimmune diseases. In this
exercise, therefore, we cannot distinguish diabetes-specific
responses from an “autoimmune” phenotype.

There are limitations of these assays. First, although the
highest sensitivity and specificity was with the combined
immunoblot assay, it is not clear which antigens are
recognized. The combined immunoblot and TCP assays
identify the number of positive analytes rather than the
responses to each analyte. In this regard, the ELISPOT and
tetramer assays may be more useful for following the
responses of particular antigen-specific cells. Moreover,
the limited reproducibility of the combined immunoblot
and TCP assays to specific analytes, whether this is
because of biological shifts in particular T-cell populations
or technical variability, may present a problem for track-
ing responses to any group of antigen-specific T-cells over
the course of a clinical study. On a practical level, the
volume of blood needed for each of the assays (ranging
between 10-30 ml) may present a problem for repeated
sampling on smaller subjects.

These assays all used fresh rather than frozen PBMNC.
In a previous analysis, assays that used frozen cells did not
perform well, possibly because of variability in cryopreser-
vation procedures, whereas both the combined immuno-
blot and TCP assays that used fresh cells showed good
discriminant ability, particularly when combined (8). Be-
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FIG. 3. Sensitivity and specificity of each of the analytes used in the
T-cell assays. A: Combined immunoblot assay; B: U.K.-ELISPOT assay;
C: TCP assay.

cause using fresh cells limits performance of the assay to
the time of the sampling, the reproducibility of the assay
over time, particularly of the individual analytes, could
complicate the use of these assays in clinical trials. An
analysis of the many thousands of (strictly blinded) TCP
samples processed over years in the TRIGR diabetes
prevention trial may provide new answers to these ques-
tions (29).
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A number of improvements might be made in the future
to enhance the use of these assays in clinical studies.
Clearly optimizing methods for freezing cells and adapting
the assays for use with frozen cells is important since it
would allow the simultaneous measurement of samples
from individual subjects collected at different points in
time. With selection of the most informative analytes, the
volumes of blood needed to run the assays could be
reduced. Importantly, repeated studies over time would
help to understand the appearance and disappearance of
antigen-specific T-cells in the peripheral circulation and
help to understand whether the changes that were seen in
the assay results reflect differences in the handling of the
specimens or reflect a biologic change that may be be-
cause of trafficking of antigen-specific cells through vari-
ous compartments. Nonetheless, our findings provide
highly encouraging results regarding the ability of cellular
assays to identify responses to multiple targets that can
discriminate patients from normal control subjects. Al-
though the discriminatory ability is still superior with a
combination of autoantibody measurements, the cellular
assays provide insights into cells that are thought to be
involved in the disease pathogenesis and are likely to be
affected by new interventions that target immune
responses.
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