
META-RESEARCH ARTICLE

Can cancer researchers accurately judge

whether preclinical reports will reproduce?

Daniel Benjamin1, David R. Mandel2, Jonathan Kimmelman1*

1 Biomedical Ethics Unit/STREAM, McGill University, Montreal, Canada, 2 York University, Department of

Psychology, Toronto, Canada

* jonathan.kimmelman@mcgill.ca

Abstract

There is vigorous debate about the reproducibility of research findings in cancer biology.

Whether scientists can accurately assess which experiments will reproduce original findings

is important to determining the pace at which science self-corrects. We collected forecasts

from basic and preclinical cancer researchers on the first 6 replication studies conducted by

the Reproducibility Project: Cancer Biology (RP:CB) to assess the accuracy of expert judg-

ments on specific replication outcomes. On average, researchers forecasted a 75% proba-

bility of replicating the statistical significance and a 50% probability of replicating the effect

size, yet none of these studies successfully replicated on either criterion (for the 5 studies

with results reported). Accuracy was related to expertise: experts with higher h-indices were

more accurate, whereas experts with more topic-specific expertise were less accurate. Our

findings suggest that experts, especially those with specialized knowledge, were overconfi-

dent about the RP:CB replicating individual experiments within published reports;

researcher optimism likely reflects a combination of overestimating the validity of original

studies and underestimating the difficulties of repeating their methodologies.

Author summary

Science is supposed to be self-correcting. However, the efficiency with which science self-

corrects depends in part on how well scientists can anticipate whether particular findings

will hold up over time. We examined whether expert researchers could accurately forecast

whether mouse experiments in 6 prominent preclinical cancer studies conducted by the

Reproducibility Project: Cancer Biology would reproduce original effects. Experts generally

overestimated the likelihood that replication studies would reproduce the effects observed

in original studies. Experts with greater publication impact (as measured by h-index) pro-

vided more accurate forecasts, but experts did not consistently perform better than trainees,

and topic-specific expertise did not improve forecast skill. Our findings suggest that experts

tend to overestimate the reproducibility of original studies and/or they underappreciate the

difficulty of independently repeating laboratory experiments from original protocols.

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002212 June 29, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Benjamin D, Mandel DR, Kimmelman J

(2017) Can cancer researchers accurately judge

whether preclinical reports will reproduce? PLoS

Biol 15(6): e2002212. https://doi.org/10.1371/

journal.pbio.2002212

Academic Editor: Lisa Bero, University of Sydney,

Australia

Received: February 12, 2017

Accepted: May 18, 2017

Published: June 29, 2017

Copyright: © 2017 Benjamin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: Canadian Institutes of Health Research

http://www.cihr-irsc.gc.ca/e/193.html (grant

number EOG 201303). Received by JK. The funder

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pbio.2002212
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2002212&domain=pdf&date_stamp=2017-06-29
https://doi.org/10.1371/journal.pbio.2002212
https://doi.org/10.1371/journal.pbio.2002212
http://creativecommons.org/licenses/by/4.0/
http://www.cihr-irsc.gc.ca/e/193.html


Introduction

Approximately 90% of new drugs entered into clinical development on promising preclinical

findings fail to yield sufficient efficacy and safety to receive a Food and Drug Administration

(FDA) license [1]. Such high rates of discordance between preclinical reports and clinical

effects have prompted mounting scrutiny of the design, reporting, and reproducibility of pre-

clinical research.

Being unable to reproduce preclinical findings can impede medical progress and misallo-

cate intellectual capital. For example, laboratories attempting to reproduce original findings

might squander limited research resources because they are not attuned to subtle techniques

needed to reproduce an original finding. Of even greater concern is the prospect of launching

clinical investigations on the backs of invalid preclinical reports. Scientists’ judgments about

an experiment’s reproducibility influence how they go about designing similar studies, as well

as which findings are utilized for the design of subsequent studies. Accurate judgment about

reproducibility therefore affects how efficiently science self-corrects.

There is widespread debate about the scope of the reproducibility problem in many sci-

entific fields, including biomedical research. Most scientists (52%) think there is a “signifi-

cant” reproducibility crisis, whereas the remainder think there is, at worst, a “slight” crisis

[2]. Some direct efforts at reproducing preclinical and basic science findings have suggested

that many original findings may be spurious. For example, researchers at Amgen were

unable to reproduce 89% of cancer preclinical studies provided to them by academic scien-

tists; similar challenges were reported by Bayer scientists [3]. However, community-wide

beliefs are somewhat measured, since 31% of researchers believe a result still might be true

even in light of a failed replication attempt [2]. Indeed, many commentators have ques-

tioned the efforts and expertise of those conducting replication studies [4,5]. Uncertainty

about the extent, causes, and impact of the “reproducibility crisis” has led to calls for more

systematic assessments of the problem [6]. The Reproducibility Project: Cancer Biology

(RP:CB) is currently conducting 29 direct replication studies to evaluate the replication rate

in cancer biology [7].

By collecting subjective probability forecasts on outcomes that can be unambiguously

dichotomized, one can score the accuracy of individuals’ strength of belief using well-estab-

lished methods from the decision sciences [8]. For example, in a study examining economists’

predictive judgments about replication studies, forecasts significantly correlated with replica-

tion results and beat a matched prediction market about the same replication studies [9]. In

contrast, psychologists’ forecasts did not significantly correlate with replication results, and

their forecasts were beaten by a similar, matched prediction market [10].

Here, we report forecasts and their accuracy for the first 6 mouse-model replication studies

conducted by the RP:CB. We set out primarily to determine the extent to which expert cancer

researchers can accurately predict the probability of replicating significance levels and effect

sizes from specific original studies in the RP:CB. We close by discussing our findings in light

of the many complexities of conducting and interpreting replication studies, including the par-

ticular experiments used in our surveys.

Results

Sample demographics

We recruited a sample of 196 participants, including 138 experts and 58 novices, to perform

forecasts for our study (Table 1 summarizes the sample demographics). Experts were predomi-

nantly male, whereas there were slightly more female than male novices. Our expert sample
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showed a somewhat lower mean h-index compared with nonresponders (25.6 versus 32.4)—

based on an equally sized random sample of nonresponders.

The average expert had published 89.5 (SD = 109.0) papers and been cited 4,546.1

(SD = 7,932.4) times. A third of the sample (27% of experts and 44% of novices) had not heard

of the RP:CB, while 9% (10% of experts and 7% of novices) were actively awaiting results. The

expert sample believed they had reasonable expertise pertaining to the studies in our survey.

The mean expertise rating was 4.2 (SD = 1.9) on a 7-point scale (with 1 representing minimal

expertise and 7 representing maximal expertise). A plurality of expert participants (45%) rated

their expertise above the scale’s midpoint, and 33% below the midpoint. The mean expertise

rating for the novices was 2.9 (SD = 1.5), with only 15% of novice expertise ratings above the

midpoint and 65% below. Both the experts and novices rated high confidence in their fore-

casts, 77% versus 76% respectively. For both groups, 84% of confidence ratings were above

50%, and only 3% were below.

Table 2 shows the publications used in this forecasting study and summaries of forecasts for

each [11–16]. Disease indications in xenograft studies included prostate, lung, renal cell, and

breast cancer, as well as myeloma, leukemia, and melanoma, and the experiments used a vari-

ety of outcome measures, including disease-free survival, tumor weight and volume, organic

phase absorbance, and bioluminescence. Studies were preselected by the RP:CB using a stan-

dardized search method [7].

Table 1. Sample demographics by rank of participants.

Variable Rank N Mean SD Skew Median Min Max

Age Expert 134 47.0 11.4 0.4 45.5 20 81

% Male Expert 133 80.5%

h-index Expert 130 25.6 20.2 1.7 20 0 113

% Editors Expert 115 31.3%

Age Novice 56 29.3 5.5 0.8 29 19 47

% Male Novice 58 44.8%

Classes/Labs Novice 45 19.2 18.4 2.4 16 0 100

“% Editors” refers to the percentage of individuals in the expert subsample who are or have been journal editors. “Classes/Labs” refers to the number of

semesters spent in a cancer class or lab that studies cancer.

https://doi.org/10.1371/journal.pbio.2002212.t001

Table 2. Study references and forecast sample sizes.

Study

#

First

Author

Title Journal Year Significance Effect Size

Expert Novice Expert Novice

15 Sugahara Coadministration of a tumor-penetrating peptide enhances the efficacy of

cancer drugs

Science 2010 59 50 59 50

21 Sirota Discovery and preclinical validation of drug indications using compendia of

public gene expression data

Science 2011 59 53 59 53

44 Berger Melanoma genome sequencing reveals frequent PREX2 mutations Nature 2012 60 54 59 54

19 Delmore BET bromodomain inhibition as a therapeutic strategy to target c-Myc Cell 2011 72 N/A 71 N/A

29 Dawson Inhibition of BET recruitment to chromatin as an effective treatment for MLL-

fusion leukaemia

Nature 2011 70 N/A 69 N/A

39 Willingham The CD47-signal regulatory protein alpha (SIRPa) interaction is a

therapeutic target for human solid tumors

PNAS 2012 69 N/A 67 N/A

N/A, not applicable; PNAS, Proceedings of the National Academy of Sciences.

https://doi.org/10.1371/journal.pbio.2002212.t002
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Forecast properties

Experts used the whole spectrum of belief (see Fig 1). They tended to believe replication studies

would demonstrate statistical significance, since 73% of forecasts were above 50%, and 49%

were above 75%. Only 18% of forecasts were below 50%. In contrast, experts gave lower fore-

casts (centered near 50%) for effect size, with forecast patterns suggesting community uncer-

tainty (median forecast of 50% for 4 studies and the other 2 suggesting doubt (median

forecasts of 25% and 40%).

Our question about effect sizes could be interpreted differently, resulting in high variability

in forecasts. To corroborate interpretation of effect size forecasts, we asked forecasters the like-

lihood of a perfect replication study producing effect sizes as large or larger than the original, if

an original finding were reproducible. We then compared these figures with an individual’s

forecasts (see S3 Fig in the Supporting Information). A total of 17% of experts offered forecasts

equal to their idealized replication, while 56% provided forecasts that were lower than their

ideal, suggesting a degree of doubt about these studies and/or the RP:CB methods.

Forecast accuracy

None of the 5 reproducibility studies in our survey successfully replicated the original studies

using either significance or effect-size criteria [17–21]. Thus, accurate forecasting would

require a strongly pessimistic response pattern. Table 3 displays experts’ forecast accuracy by

outcome and expertise types. Experts were extremely overconfident about the replication rate,

especially for significance. The specificity of all expert forecasts was 0.39, meaning 39% of fore-

casts (excluding fence-sitting 50% forecasts) were in the correct direction. The specificity of

significance forecasts was 0.20, showing that the experts were substantially overoptimistic

about significance replicability. The specificity of effect size forecasts was better, 0.64. There-

fore, experts were more accurate (and pessimistic) about the replicability of effect sizes than

significance levels.

Forecasters’ mean Brier score was 0.40, 95% CI (0.38–0.45), indicating forecasting skill was

significantly worse in our expert sample than guessing 50% each time (the latter would have

generated a Brier score of 0.25) (see Fig 2). A fifth of experts (21%) had mean Brier scores less

than 0.25. Among experts, Brier scores were worse for significance than for effect-size forecasts

(median = 0.58 and 0.25, respectively), with 11% of experts scoring better than 0.25 (4% for

significance forecasts and 30% for effect-size forecasts).

Factors associated with greater forecasting skill

A possible explanation for low Brier scores is that forecasters might have lacked expertise in

the specific studies in our sample. We probed the relationship between expertise and forecast-

ing skill in several ways.

First, we tested whether forecasters performed better on the studies for which we had iden-

tified them as experts. Forecasts with identified expertise were more likely to use high extreme

values (63% of forecasts were� 75% compared to 51% with general expertise, a difference of

12%, 95% CI [0.02 to 0.22]) and less likely to give forecasts near the low extreme (8% of fore-

casts were� 25% compared to 15% with general expertise, a difference of 7%, 95% CI [−0.13

to −0.002]), suggesting greater optimism about reproducibility in one’s own research area. The

mean Brier score for significance forecasts was marginally greater for identified expertise

(0.61, 95% CI [0.54 to 0.66]) than for general expertise (0.52, 95% CI [0.49 to 0.58] for a mean

difference of 0.09, 95% CI [−0.01 to 0.15]). Effect-size forecasts centered around 50% (in terms

of median and mode) for both identified and general expertise. Forecasts from general exper-

tise were more likely to use extreme low values: 36% of forecasts in the lowest quartile
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compared to 27% for identified expertise (a difference of 9%, 95% CI [−0.01 to 0.18]). Experts

performed better when they were not identified as having expertise, possibly indicating that

experts are overconfident when they are more knowledgeable and/or more doubtful about oth-

ers’ research.

A second way we probed the relationship between expertise and forecasting skill was by

comparing experts to a sample of trainees in competitive molecular biology programs. We rea-

soned that if experts outperformed novices, then forecasting success is associated with exper-

tise; if novices outperformed experts, then there is evidence that expertise is associated with

Fig 1. Expert forecasts by identified expertise and by study. The gray histogram represents the forecasts of significance (panel A) and effect size

(panel B) with bins of 5%. A 100% forecast and a 0% forecast would indicate certainty that an event will occur and will not occur, respectively; 50%

would indicate maximum uncertainty. The red lines represent forecasts for the studies in which each forecaster was identified during sampling via

either citations or a “similar articles” search (“identified expertise”). The blue lines represent the forecasts made by experts on studies that did not lead

to their identification in sampling (“general expertise”). The lower panels are violin (probability density) plots for each outcome type (panel C for

significance and panel D for effect size) and each study by both identified (in red) and general (in blue) expertise. Box plots are contained within each

violin plot.

https://doi.org/10.1371/journal.pbio.2002212.g001
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overconfidence. We observed the same general patterns of (a) optimism for significance

forecasts and (b) uncertainty for effect-size forecasts (centered around a mode of 50%) with

a pessimistic leaning (a local mode at 10%) (see S2 Fig in the Supporting Information for a

comparison of expert and novice forecasts). Overall performance did not favor either

group: experts slightly outperformed novices in accuracy (median Brier = 0.32 versus 0.35),

but novices slightly outperformed experts in specificity (0.45 versus 0.43). Experts’ signifi-

cance forecasts were significantly more accurate (mean Brier score 0.43, 95% CI [0.38 to

0.49]) as compared with novices (mean = 0.51, 95% CI [0.48 to 0.60] for a mean difference

of 0.08, 95% CI [−0.18 to −0.02]) and showed better specificity (0.30 versus 0.24). Experts

were more pessimistic (i.e., more likely to offer extremely low forecasts and less likely to use

extremely high forecasts). We observed the opposite pattern for effect-size forecasts.

Median Brier scores (0.17 versus 0.25) and specificity (0.68 versus 0.59) for novices beat

experts.

We also explored the relationship between 4 expert/forecast characteristics and skill scores:

confidence in their forecasts, expertise, age, and h-index (the former 3 were self-reported; see

Fig 3). The most notable impacts on the forecasts were confidence (r = 0.20, p< 0.01) and h-

index (r = −0.15, p< 0.01). High confidence was indicative of poor accuracy, since mean Brier

scores increased (r = 0.36, p< 0.01 for significance forecasts) and specificity decreased as con-

fidence increased for both outcomes. For effect sizes, low confidence was associated with

greater fifty-fifty forecasting, whereas high confidence led to greater variability in the forecasts.

Specificity and accuracy improved with h-index for both outcome types. For significance,

higher h-indices were associated with pessimistic, and thus more accurate, forecasts (r = −0.18,

p< 0.01). For effect sizes, a low h-index was associated with a high degree of fifty-fifty forecast-

ing, and a high h-index was associated with lower forecasts (r = −0.15, p< 0.01). In fact,

experts with a high h-index did better than “fence-sitting,” with a mean Brier score of 0.17 and

specificity of 0.81. When comparing expertise measures, experts were more accurate when

Table 3. Forecast accuracy by outcome type, identified expertise, and rank.

Outcome Expertise Survey N Mean

Brier

95% CI Median

Brier

Specificity

Lower Upper

All All All 773 0.40 0.38 0.45 0.42 0.39

Significance 389 0.55 0.52 0.61 0.58 0.20

Effect Size 384 0.26 0.23 0.30 0.25 0.64

All Identified All 287 0.44 0.39 0.48 0.45 0.35

General 447 0.38 0.35 0.42 0.41 0.42

Significance Identified 144 0.61 0.54 0.66 0.64 0.13

General 225 0.52 0.49 0.58 0.56 0.24

Effect Size Identified 143 0.27 0.23 0.32 0.25 0.63

General 222 0.25 0.21 0.29 0.24 0.65

All Experts Survey 1 355 0.34 0.30 0.39 0.32 0.43

Significance 178 0.43 0.38 0.49 0.42 0.30

Effect Size 177 0.25 0.21 0.30 0.25 0.59

All Novices 314 0.38 0.35 0.46 0.35 0.45

Significance 157 0.51 0.48 0.60 0.50 0.24

Effect Size 157 0.25 0.21 0.33 0.17 0.68

95% CI refers to a bias-corrected bootstrap 95% confidence interval with 5,000 resamples.

https://doi.org/10.1371/journal.pbio.2002212.t003
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they had general, compared to identified, expertise across h-index levels. The third of experts

with the lowest h-indices were more discrepant, as Brier scores decreased by 0.09 on average

when they had identified expertise, whereas the decrease was only 0.03 for the other two-thirds

of experts.

Finally, we explored whether gender showed a relationship with forecasts and accuracy.

Female experts gave forecasts that were about 8% higher on average than their male counter-

parts for both significance and effect size; female novices’ forecasts were about 6% higher on

average than males for both. As a result, females’ Brier scores were higher than males’ both

on replicability of significance (mean Brier score = 0.48, 95% CI (0.42 to 0.66) versus mean

Brier score = 0.42, 95% CI [0.35 to 0.47]) and effect size (mean Brier score = 0.32, 95% CI

[0.21 to 0.46] versus mean Brier score = 0.25, 95% CI [0.20 to 0.30]). Novice females also

were less accurate than their male counterparts on significance replicability (mean Brier

score = 0.56, 95% CI [0.50 to 0.67] versus mean Brier score = 0.46, 95% CI [0.41 to 0.66]) and

effect size (mean Brier score = 0.28, 95% CI [0.21 to 0.39]) versus mean Brier score = 0.22,

95% CI [0.16 to 0.34]). The gender difference for replicability of effect-size forecasts was sig-

nificant for both experts (0.07, 95% CI [−0.24 to −0.02]) and novices (0.06, 95% CI [−0.18 to

−0.07]).

Fig 2. Brier scores by outcome type with sensitivity analysis. The gray histograms display Brier scores for the 5 studies with known results. All

experts are displayed in panel A, and they are divided by outcome types in the bottom panels (B for significance and C for effect size). The green lines

represent the probability density of Brier scores if the sixth study replicates each outcome, and the red line represents if it fails to replicate for each.

https://doi.org/10.1371/journal.pbio.2002212.g002
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Sensitivity analysis

The results from Study 29 have not yet been revealed. We performed a sensitivity analysis to

determine how the results would change contingent on the eventual results of that study. The

sensitivity results are shown in Figs 2 and 3 and S5 Table in the Supporting Information. Sig-

nificance forecasts for Study 29 were less optimistic (median of 75%), and effect size forecasts

were more pessimistic (median of 40%) than all but 1 of the other studies.

Overall, Brier scores will improve regardless of whether Study 29 reproduces the original

effect. However, potential gains would be modest and would still underperform a fence-sitting

strategy (Brier score = 0.25): If RP:CB results replicate Study 29, the overall mean Brier score

would improve from 0.41 to 0.38, whereas if RP:CB does not replicate Study 29, it would be

0.40. If RP:CB replicates the results of Study 29, the mean Brier score for significance forecasts

would improve significantly from a mean of 0.57 to 0.48 (95% CI [0.45 to 0.51]) and would

show less improvement if Study 29 does not replicate, to 0.54 (95% CI [0.50 to 0.58]). The

change for effect size forecasts would be smaller, but a positive replication would make the

mean Brier score worse, from 0.26 to 0.29 (95% CI [0.26 to 0.32]), and a nonreplication would

improve it to as good as a fence-sitting strategy (0.25, 95% CI [0.18 to 0.25]). All of the changes

would be significantly different from the current results.

Fig 3. Forecasts and Brier scores by discretized predictors. All graphs show violin plots with embedded box plots and medians. Panels A and B

display forecasts and Brier scores, respectively. Top and bottom rows show results for significance and effect-size forecasting, respectively. The

columns show 4 predictors: self-reported confidence, self-reported expertise, age, and h-index (i.e., mean indices obtained from Scopus and Web of

Science). Predictors were trichotomized to give approximately equal group sizes.

https://doi.org/10.1371/journal.pbio.2002212.g003
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Discussion

Our findings suggest that, on average, preclinical cancer researchers are overly optimistic in

their beliefs about reproducibility. Half of all expert forecasts indicated that the replications

were more likely to replicate original results than not, whereas only one-third indicated greater

likelihood of replication failure. Overconfidence in reproducibility of specific results was par-

ticularly prevalent in significance forecasts, where 73% of expert forecasts favored successful

replications. Forecasters were less certain (and more pessimistic) about replicating effect sizes.

There are several ways of interpreting our findings. Perhaps the most direct interpretation

is that researchers consistently overestimated the validity of original reports. The high degree

of optimism about statistical significance might reflect that experts believe effects in original

studies are “real” (hence, they believe the replication results will also be positive and signifi-

cant) but question the magnitude of treatment effects (hence, they show less optimism about

effect sizes). Researchers may interpret the original significance levels as strong evidence that

the effects are true positives, while they are more open to the possibility of type M (magnitude)

error—which should be expected when samples sizes are small and/or measurements are noisy

[22]. This interpretation implies researchers believe published results tend to be qualitatively

valid but consistently overestimate effect sizes.

A second interpretation of our findings is that researchers were overly optimistic about the

ease with which the original methods could be accurately replicated by independent laborato-

ries or, more specifically, about the ability of these replicating laboratories to perform these

particular replication studies [23]. RP:CB authors have stated that obtaining original protocols

and materials was challenging, and originating labs often had to reconstruct materials that

were unavailable [24]. Since publication of the first RP:CB studies, there has been a vigorous

discussion about whether replication attempts were faithful to original methods, especially

since 2 of the replication studies were deemed uninterpretable [25]. The RP:CB methods have

been criticized for being too rigidly constrained by their registered protocols, preventing

adjustment to challenges that arose while implementing original protocols [24–26]. Xenograft

studies—which were the focus of our forecasting exercise—have come under particular criti-

cism [25]. The 2 RP:CB replication studies that have received the most methodological criti-

cisms had the second and third highest mean forecasts of significance. This suggests experts

could have been overly optimistic about the challenge of executing direct replications in living

biological systems or about the specialized skills RP:CB researchers would need to implement

novel techniques.

A third interpretation is that forecasters were wrong in the specifics but right in the general-

ities. It is possible in each case that the original study was an overestimate of the effect size and

the replication was an underestimate. As a consequence, further effort at replication might

ultimately vindicate the experiments that did not successfully recapitulate effects observed in

the original study. However, it is unlikely we would see the same pattern with such stark con-

trasts for every study. A different version of this interpretation is that some participants

responded to our forecast questions with their beliefs about the underlying biological claims,

rather than instantiations of them in particular laboratory experiments. In response, we point

out that 2 of the 5 studies in our survey (19 and 21) were widely reported as having confirmed

underlying biological claims, while 1 of the studies (15) was reported as having been discon-

firmed [25]. If forecasts were right in the generalities, we would expect forecasts to be consis-

tently higher for 19 and 21 than for 15 for both measures of replication. As Fig 1 shows,

forecasts were pessimistic for Study 21 and relatively moderate for Study 15.

Although our study was not designed to discriminate between these various interpretations,

it raises important questions about the way expert researchers interpret the sorts of high-
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impact findings tested in RP:CB. We find that biomedical scientists are inclined to overesti-

mate the validity of original reports and/or underestimate the difficulty in conducting direct

replications. The latter would perhaps be of less concern for science policy than the former.

However, inability to appreciate the sensitivity of original reports to subtle laboratory condi-

tions or aleatory uncertainty can result in potentially unfruitful debates about reproducibility,

as well as wasted efforts as laboratories vainly attempt to follow protocols in original reports. It

is beyond the scope of this paper to discuss the quality and reliability of experiments employed

by the RP:CB. Scientific reports and news coverage of RP:CB have highlighted the difficulties

in implementing replication studies (e.g., the commentaries reacting to the RP:CB results in

eLife, Nature, and Science). We make no claim here about whether or not the RP:CB studies we

examined constitute a gold standard of replication. We merely note that the manner in which

such questions are resolved has implications for the interpretation of our results. Nevertheless,

if—as many critics suggest—RP:CB experiments inadequately implemented original methods,

our findings do not suggest these failings were apparent to our participants.

If forecasting improved with expertise, then some risks of overconfidence might be miti-

gated. Elsewhere, experts have been found to be as overconfident as novices, and the relation-

ship between expertise and predictive skill is complex and task dependent [27,28]. In our

study, greater topic expertise did not improve forecasting: indeed, experts displayed greater

overconfidence when they were more familiar with a study and in general did not outperform

our sample of trainees. This might be explained by experts having a tendency to take the

“inside view”—a focus on the unique details of each specific experiment—over the “outside

view”—a focus on the class of similar events [29]. The outside view tends to beat the inside

view in predictive judgments [30]. On the other hand, our observations hint at the prospect

that greater researcher impact (as measured by h-index) was associated with more accurate

forecasts. Some reasons to expect experts to outperform nonexperts are they search for fewer

total but more diagnostic cues and rely more on their existing knowledge and strategies [31].

We urge caution interpreting our results since reproducibility is difficult to define and mea-

sure [32]. Our survey scored forecasts using common forecasting methods that dichotomize

whether studies reproduce based on 2 different criteria (significance and effect size). A

strength of this method is that it creates predictive judgments that are verifiable. Participants’

judgments do not represent participants’ comprehensive beliefs about the treatment mecha-

nisms at hand. However, it is rarely possible to capture such judgments in a manner that can

be verified in a timely fashion. We do not suggest the forecasts collected in our study reflect

judgments concerning fundamental scientific relationships generalized beyond the context in

which they are tested. Additionally, replication is not an “all or nothing” phenomenon; 2 repli-

cation studies failed to reproduce statistical significance and had greatly diminished effect sizes

but nevertheless showed effects that—when meta-analyzed with the original report—excluded

the null hypothesis. Therefore, interpreting the overall success of these replications is to some

degree in the eye of beholder. Moreover, a failed replication is not the same as evidence that

the effect does not exist. However, there is no prescribed degree of disparity from an original

result that is considered tolerable [33]. If the original and replication studies were sound

methodologically, it can be difficult to judge if the original study overestimated or if the repli-

cation underestimated a true effect [34].

Our findings are subject to several limitations. First, despite a vigorous recruitment effort,

our response rate was probably low, and our bounce rate was high. This may reflect some con-

troversy surrounding the RP:CB. Nevertheless, we were able to capture a meaningful sample of

experts: 138; this figure compares favorably with other studies requiring esoteric, expert

research participants. The mean h-index for responders was somewhat lower than for nonre-

sponders, suggesting our participants may have been slightly younger or marginally less
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productive than our sample population. However, the upper third of our sample had a high h-

index (49.1 on average compared to 32.4 for the average nonresponder), including 22 experts

with h-indices exceeding 40. Second, the gender imbalance in our expert sample is notably

larger than in our novice sample. This imbalance may reflect an inherent gender imbalance

between senior and junior researchers. Experts in life sciences tend to be primarily male (for

example, 25% of tenured faculty positions in the biological and life sciences were held by

females in 2013 [35]), while trainees tend be more female (for example, 53% of biological doc-

torates were awarded to women that year [36]). Females’ forecasts were about 6% higher on

average, but the overall patterns of optimism held across gender. Third, our sample of experi-

ments was small, and there was no variability in the reported results. We selected xenograft

experiments because they are generally regarded as more predictive of clinical utility and the

results were verifiable; this choice limited the number of available studies. We selected experi-

ments a priori without any knowledge of outcomes, and the lack of variability in outcomes

ultimately limited our ability to test researchers’ capacity to discriminate between studies that

reproduce from those that do not. Our findings should therefore be replicated in a larger sam-

ple of experiments before drawing conclusions about the forecasting skill of cancer biology

experts. Fourth, we do not know what the forecasters were intending to communicate when

they offered forecasts. Forecast methods do not account for forecaster motivation. Indeed, the

use of a “proper scoring rule” is intended to incentivize truthful—as opposed to strategic or

motivated—disclosure of belief. Nevertheless, forecasters could have intended optimistic fore-

casts as a way of portraying the field positively or defending it against skepticism. Paradoxi-

cally, participants may have intended to express relative pessimism about reproducibility,

since forecasts tended to be lower than participants’ expectations about perfectly reproducible

effects (see S3 Fig in the Supporting Information). Such pessimistic forecasts could be a hedge

so that the cancer field in general would appear better than predicted if replication results were

“positive.” In any event, unconscious motives often play a role in survey responses and cannot

be excluded as an explanation for the observed patterns. Fifth, our surveys assumed a certain

amount of statistical knowledge. For example, asking individuals whether replication studies

would achieve statistical significance (p� 0.05) requires understanding what a p-value mea-

sures. We regard this as a potential strength, however. Scientific reports routinely convey

claims through metrics like p-values or standardized mean differences. Therefore, the ability

to derive valid inferences from such metrics is integral to forming judgments about effects and

reproducibility.

Expert predictive judgment in biomedical research has not, to our knowledge, been previ-

ously studied. Scientists tend to focus on finding physical truths, and discrepancies between

results often trigger debate about the methods used in each study. We suggest the role of sci-

entific judgment is also important because physical truths can never be proven with cer-

tainty. The judgment of experts thus determines—at least in the short term—the way

discrepant results are interpreted and which findings are taken as fact. Our study provides

evidence that community-wide judgments about reproducibility are overoptimistic and

overconfident.

The assessment and cultivation of researcher judgments, we suggest, may lead to a more

efficient research enterprise. Knowing how well biomedical researchers can predict experi-

mental outcomes is crucial for maintaining research systems that set appropriate research pri-

orities, that self-correct, and that incorporate valid evidence into policy making. Regardless of

how one interprets our results, these findings have potential policy implications, since they

suggest that biomedical scientists have a difficult time anticipating outcomes when high-

impact experiments are repeated. We believe it would be valuable to work to improve the judg-

ments of researchers and trainees. There are common traits of domains in which experts’
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forecasts tend to be more accurate and discriminating. Judgments must be formally quantified,

and feedback should be timely, as unambiguous as possible, and easily compared to the origi-

nal forecast [37]. Forecasting skill may also be better in domains in which expert judges are

directly accountable to skeptical constituencies for the quality of their predictions [38]. We

cannot expect researcher judgments to improve until the proper structure is in place to help

them succeed.

Methods

Ethics statement

Human participant procedures were approved by the McGill University Faculty of Medicine

Institutional Review Board (Protocol #A01-B05-16A). Each participant provided informed

consent before commencing.

Participants

We recruited experts using a 2-pronged search for authors of publications related to the first 6

studies in RP:CP (a flow chart of the sampling process is shown in S1 Fig in the Supporting

Information). First, we used SCOPUS to identify all papers citing each original study. Second,

we performed a “similar articles” search of each original study using PubMed. Both searches

were conducted between February and July 2015. We captured the identity of all authors of the

obtained articles. Individuals were eligible as experts if (a) they were named as a corresponding

author on any article captured in our 2 searches or (b) their name appeared 3 times, in any

author position, in 1 of the searches. Eligible experts were sent up to 5 email invitations spaced

at least 1 week apart or until an invitee completed the survey or actively declined.

As a comparator, we also created a sample of biomedicine novices by circulating survey

invitations to all graduate and postdoctoral students in programs with relevant cancer training

at 2 leading research universities—1 in eastern Canada and 1 in the northeast United States.

Use of such a comparator was prompted by the observation that experts in other fields some-

times underperform nonexperts when making predictive judgments [39,40]. We incentivized

invitees by offering a C$200 reward to the top 2 forecasters and C$50 to the 2 next best fore-

casters. We also offered the top 3 forecasters the option of having their names published at

http://www.translationalethics.com/forecast-scoreboard/.

A total of 2,667 experts were invited to participate: 12.3% (329) of invitations bounced,

and 1.57% (42) actively declined. Assuming that all nonbounced invitations sent were actu-

ally received by our targets, 6% (138) of invited experts forecasted at least 1 study. Because

novice invites were circulated by graduate program directors, we cannot calculate response

rates for novices. We excluded the data of 1 participant who completed the survey well below

our threshold of 7 minutes. We disqualified 12 forecasts for which participants declared

knowledge of the replication results.

Surveys

We based our queries of reproducibility on mouse tumor growth curves in the first 6 studies

planned by RP:CB. We used mouse xenograft experiments because they are believed by many

to be the most prognostic of clinical utility. Ideally, we would solicit subjective probabilities

(i.e., forecasts) on whether whole studies reproduced. However, every study contained multi-

ple experiments, and the definition of “reproduction” is itself highly debated [32,33]. As a

result, using such an approach would make it impossible to verify the accuracy of forecasts.
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Instead, we used an approach that minimized the interpretational ambiguity of our questions

and the ensuing forecast data. Each experiment had a single effect (treatment versus control)

that could be said to represent the main finding of the study. This allowed us to collect predic-

tive judgments for each study and to create objective and unambiguous methods for scoring

each prediction. To maintain a mean survey duration of 30 minutes, we created 2 batches of

surveys, each asking about 3 RP:CB studies. Survey questions were reviewed and approved by

cancer preclinical researcher consultants.

For each replication forecast, we gave participants the study title, authors, and links to both

the original study and the registered report for the replication. We also gave them the relevant

figure from the original paper, with annotations indicating the effect our query centered on.

Participants were asked to indicate their subjective probabilities (in percent chance format)

that (a) the replication experiments would “also be statistically significant in the same direction

(as the original study)” and (b) the effect size of the replication would be “as large or larger

than the original effect size.” We chose these particular questions over more complicated judg-

ments to minimize the degree to which our findings would be confounded by participants’ sta-

tistical sophistication [7,32,41].

For secondary analyses, we probed (a) confidence in each forecast, (b) self-rated expertise

on each experiment, (c) additional cognitive variables shown to correlate with forecast skill in

other domains: actively openminded thinking [42] and belief in the progress of medical

research-adapted from an economic boomster-doomster scale [43], and (d) questions about

their familiarity with and the anticipated influence of the RP:CB on how they read papers and

design studies. We also asked participants to estimate the overall replication rate the RP:CB

will report, but we do not present this data in the current paper since it is premature to do so,

and we do not want to confuse researchers’ beliefs about xenograft studies with their beliefs

about in vitro studies. Participants were also asked the following: “Imagine a replication study

perfectly reproduces the effects observed in an original study. How likely would the effect be as

large or larger than that provided in the original study?” We provided an open text screen for

respondents to provide thoughts and feedback on our survey. Further details, including the

study protocol, are provided in the Supporting Information (see S1 Text). Surveys were con-

ducted online using Surveymonkey. The order of studies in each survey was drawn randomly

for each participant.

We analyzed the results of the first 5 studies whose outcomes are resolved and that have

been published in eLife [17–21], and we present a sensitivity analysis of the sixth study by

describing how the forecast results would change if it replicated the results or not. Accuracy of

forecasts were calculated using the Brier score, a proper scoring rule for forecast accuracy that

measures the squared deviation between a forecast probability and the actual outcome (coded

0 for nonoccurrence and 1 for occurrence) [44,45], so a lower Brier score denotes a more accu-

rate forecaster than a higher score. A forecaster who behaves like a clairvoyant, correctly classi-

fying all outcomes with complete confidence, would get a perfect Brier score of 0. In contrast,

a forecaster who invariably guesses 50%—a common response for participants who do not

know how to answer questions about the probability of binary options, sometimes called “the

fifty-fifty blip” [46]—would have a Brier score of 0.25. We report mean Brier scores with bias-

corrected 95% bootstrap confidence intervals with 5,000 resamples. All hypothesis tests were

conducted using bootstrap t-tests based on whether 95% bootstrap confidence intervals of the

mean difference contained the value 0. We also report the extent to which forecasts correctly

identified which studies would not replicate using specificity (i.e., the “true negative rate”),

which is normalized by the sum of true negative and false positive forecasts. Data analysis was

conducted using R statistical software.
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Supporting information

S1 Fig. Flow chart of expert sampling process.

(TIF)

S2 Fig. Direct comparison of forecasts and Brier scores by rank for survey 1. The first row

shows forecasts and the second shows brier scores. The first column shows significance and

the second shows effect size. For each panel, the histogram is the aggregate as all of respon-

dents, the red line is for experts and the blue line is for novices.

(TIF)

S3 Fig. Likelihood of reproducing upon perfect replication. In the top row, the dark gray

histograms show the forecast of a (genericized) perfect replication, and density lines show

actual effect size forecasts. The bottom row is the perfect replication ratio: log(forecast/perfect

replication). Thus, a negative value indicates the forecast is lower than the perfect replication.

The left column shows data from all experts, whereas the right column shows survey 1 data

comparing experts to novices. There are multiple interpretations of the idea of a perfect repli-

cation. 1) The modal response was .5, which may indicate that the original effect size is a rea-

sonable estimate of the true effect; 2) some participants thought it should be high (.95 for

students; 1 for novices), perhaps based on the possibility of Type I error from the original

study; 3) some participants expected .8, perhaps based on the power and Type II error from

the replication study; 4) and yet others thought it was less than 50% (20% or 30%), suggesting

they may have a cynical view of reproducibility in this field. There is a strong peak in panels 3

and 4 for participants who made forecasts in line with a perfect replication. Beyond that, the

trend is to make forecasts below a hypothetical perfect replication, so the forecasters were con-

sistently acknowledging that real replication studies are flawed to some degree. Experts were

more likely than novices to forecast higher than the perfect replication seemingly suggesting

that some of these replication studies were highly likely to replicate the original results com-

pared to other studies.

(TIF)

S1 Table. Completions by survey.

(DOCX)

S2 Table. Forecast descriptive statistics and prediction accuracy by trichotomized predic-

tors.

(DOCX)

S3 Table. Descriptive statistics of discretized predictors.

(DOCX)

S4 Table. Original and replication study results.

(DOCX)

S5 Table. Sensitivity analysis of Brier scores by outcome and identified expertise.

(DOCX)

S1 Text. Study protocol.

(DOCX)

S1 Data. Data file. Potentially identifying information has been redacted to protect the ano-

nymity of the participants.

(CSV)
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