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Automated and Manual 
Quantification of Tumour Cellularity 
in Digital Slides for Tumour Burden 
Assessment
Shazia Akbar1,2,3, Mohammad Peikari2, Sherine Salama4, Azadeh Yazdan Panah4, 
Sharon Nofech-Mozes4 & Anne L. Martel1,2,3

The residual cancer burden index is an important quantitative measure used for assessing treatment 
response following neoadjuvant therapy for breast cancer. It has shown to be predictive of overall 
survival and is composed of two key metrics: qualitative assessment of lymph nodes and the percentage 
of invasive or in situ tumour cellularity (TC) in the tumour bed (TB). Currently, TC is assessed through 
eye-balling of routine histopathology slides estimating the proportion of tumour cells within the 
TB. With the advances in production of digitized slides and increasing availability of slide scanners in 
pathology laboratories, there is potential to measure TC using automated algorithms with greater 
precision and accuracy. We describe two methods for automated TC scoring: 1) a traditional approach 
to image analysis development whereby we mimic the pathologists’ workflow, and 2) a recent 
development in artificial intelligence in which features are learned automatically in deep neural 
networks using image data alone. We show strong agreements between automated and manual 
analysis of digital slides. Agreements between our trained deep neural networks and experts in this 
study (0.82) approach the inter-rater agreements between pathologists (0.89). We also reveal properties 
that are captured when we apply deep neural network to whole slide images, and discuss the potential 
of using such visualisations to improve upon TC assessment in the future.

Neoadjuvant systemic therapy (NAT) for breast cancer (BC) is used to treat locally advanced and operable BC to 
allow breast-conserving surgery1. NAT provides an opportunity to monitor clinical, radiological and ultimately 
pathologic response. Pathologic complete response (pCR) to NAT has been shown to provide accurate surrogate 
endpoint for patient survival2 and in some studies has been prognostic for rate of local recurrence3. As such, accu-
rate assessment of pathologic response to NAT provides important prognostic information.

As residual disease can be subtle and/or scattered, the assessment of pCR to neoadjuvant therapy relies upon 
a stable and standardized protocol applicable across multiple institutions. Symmans et al.4 proposed a method 
for quantifying residual disease by calculating the residual cancer burden index (RCB). RCB is recognized as 
long-term prognostic utility4 and has shown to be more predictive of overall survival compared to other measure-
ments5. The RCB index accounts for two key metrics: qualitative assessment of residual disease in the breast (via 
tumour cellularity (TC) in the tumour bed (TB) and proportion of in situ component) and assessment of lymph 
nodes. Here, the TB area comprises of morphologic changes in the stroma suggestive of tumor regression with 
or without residual invasive or in situ carcinoma. While RCB calculator produces a continuous score, scores are 
further categorized in four RCB classes from pCR (RCB-0) to extensive residual disease (RCB-III) that are easily 
reproducible6. Accurate quantification of TC is a laborious, time consuming task that most practicing pathologists 
are not trained to perform. Yet, TC is crucial for computing the RCB index.

Currently TC is estimated by manually “eyeballing” the TB area at multiple microscopic fields through sev-
eral slides that represent the largest linear dimension, and comparing the involved area with graphic standard 
sketches7. Such illustrations although helpful are semi-quantitative, subjective measurements. A single case-level 
score is then obtained by taking an average of TC scores from different fields and rounded to the nearest 10th 
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percent. However, these scores can also be reformulated on a continuous scale. As manual analysis is limited to 
predefined discrete values, we are yet to discover the potential benefits of continuous TC scores for prognosis. In 
theory such measurements can be more precise, however, acquiring them manually is infeasible given there is a 
greater chance of error and reproducibility is not possible.

With latest technological advancement in digital pathology, including tissue scanners capable of scanning 
whole slides at high resolutions, there is potential to leverage image analysis techniques to gain more accurate 
metrics than is achievable by the human eye, and reduce pathology workload by eliminating time-consuming 
tasks. TB region can be captured digitally on scanned slides, using annotation tools (Fig. 1). Towards an ultimate 
goal to automate RCB assessment, we explored methods to evaluate TC as the first step. In this paper, we report 
the use of automation to compute TC scores using two different image analysis approaches (Fig. 2):

	 1.	 An image analysis pipeline which encompasses hand-engineered features designed to mimic the patholo-
gist’s eye.

	 2.	 A deep learning approach which learns features directly from raw image data of digital slides using deep 
convolutional neural networks (DCNNs).

Figure 1.  TB outlined in black in a digital slide scanned at 20X magnification (displayed at lower resolution). 
Regions of interest are shown in a higher magnification on the right alongside TC scores provided by an expert 
pathologist.

Figure 2.  Overview of two methods for generating automated TC score. Hand-engineered feature approach is 
shown above and a cascade approach using two deep convolutional neural networks below.
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We performed detailed comparisons between the above approaches to validate the feasibility of automation 
in the pathology workflow and measure the progression of image analysis techniques over the last few years to 
perform RCB assessment, which currently relies heavily on expert opinion. In this study we define TC as the 
percentage of total area within predefined areas of interest or patches, occupied by malignant tumour cells. The 
tumour area defined in Symmans et al.4 excludes tumour infiltrating lymphocytes (TILS). Pathologists, however, 
will also include areas of cytoplasm surrounding malignant nuclei in their cellularity assessment and this is a 
somewhat subjective process. Whilst automation can also be used to locate the TB, in this paper we specifically 
report computation of TC with predefined boundaries, with the intention of implementing this as part of a larger 
pipeline in future work.

In this paper, we report the benefits and limitations of latest advancements in artificial intelligence, compared 
to a more traditional hand-engineered approach for designing algorithms. To evaluate the clinical relevance of 
automation on whole slide images, we also applied our trained models to high resolution digital slides scanned at 
20X, achievable in a matter of minutes. We show that a localised analysis of TC on a patch-by-patch basis can be 
used to give a more descriptive representation of the heterogeneity of the TB area and distribution of TC scores.

Results
Agreements between manual and automated scores.  A quantitative comparison between two 
pathologists: a pathology fellow (Pathologist A) and an experienced breast pathologist (Pathologist B) and our 
two proposed image analysis pipelines described in Section 4 are given in Table 1 in the form of intra-class 
correlation coefficient (ICC) values. ICC values are reported between patches i.e. regions of interest measuring 
258 μm × 258 μm, extracted from digital slides. The reported intra-rater agreement between the study patholo-
gists was 0.89 and this value indicates the level of variability between our readers in the independent test set. Both 
automated methods fell short of reported intra-rater agreements however automatically-generated scores were 
more consistent as shown by reported confidence intervals (shown in square brackets). Such outcomes suggests 
that automated TC scores are consistently stable with scores retrieved from both annotators, demonstrating the 
advantage of reproducibility with such systems. Out of the two automated methods, DCNNs were superior, with 
an average agreement of 0.82, close to agreements between our experts and substantially higher than hand-en-
gineered features. Given the upper and lower bounds of reported scores, DCNNs were on par with inter-rater 
agreements, and furthermore are reproducible.

To further evaluate DCNN, we also combined both automated systems by identifying cancerous patches from 
the first InceptionNet model in DCNN (Fig. 2) and then using hand-engineered features to determine an auto-
mated TC score. Results are shown on the right in Table 1. Whilst ICC values are better than hand-engineered 
features alone, DCNN is still superior suggesting both InceptionNets are needed for optimal performance.

Comparison between hand-engineered features and deep learning.  A breakdown of prediction 
accuracies between both automated systems revealed that the DCNN trained to solely distinguish between health 
and cancerous tissue performed exceptionally well, giving accuracy rates of 93% when compared against both 
experts. Our hand-engineered approach fell short at 81% due to mis-identified malignant cell nuclei during the 
cell classification stage.

When comparing TC scores for those patches which contained few cancerous structures i.e. TC scores just 
above 0%, we found the hand-engineered approach produced cellularity scores with strong concordance with 
expert pathologists (Fig. 3 (left)). Whilst DCNN generated cellularity scores with good agreement with our study 
experts, as shown by the line of best fit, generally scores were not as precise as the hand-engineered approach. 
However the lack of outliers, particularly in the 0–30% range, meant that DCNN performed the best overall. The 
hand-engineered approach particularly suffered in the >70% range as shown in Fig. 4, suggesting further work is 
needed to represent regions containing high proportions of tumour cells.

Discussion
In this paper, we evaluated three methods for generating TC scores on digital slides of breast tissue for the pur-
poses of tumour burden assessment. The standard method for computing TC scores is by visual interpretation 
of the TB which is a time consuming process and is limited to a rough estimate of the proportion of cancerous 
structures in an irregular region of interest performed by an expert. Furthermore, manual analysis is subject to 
inter- and intra-rater variability therefore reproducibility of TC scores is a limitation in current practice.

To increase throughput, we designed two alternative methods for generating TC scores which leverage 
advancements in technology to automatically analyse large whole slide images. One approach was to mimic the 
way in which a pathologist would compute a score, by first identifying cells in a given region of interest and then 
measuring the proportion of malignant to benign cells and stroma. This approach has been well adopted in the 
digital pathology community which has led to a large literature on cell classification and segmentation8–10 and 
feature extraction methods11.

ICC Coefficient (95% CI)

Pathologist A Hand-engineered12 DCNN8 Combined

Pathologist A — 0.74 [0.70, 0.77] 0.83 [0.79, 0.86] 0.76 [0.74, 0.79]

Pathologist B 0.89 [0.70, 0.95] 0.75 [0.71, 0.79] 0.81 [0.78, 0.84] 0.79 [0.76, 0.81]

Table 1.  Two-way intra-class correlation (ICC) coefficients between two pathologists, and two automated 
methods for predicting TC scores. Upper and lower bounds are given in square brackets.
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In the last five years there has been a shift in medical image analysis to automatically extract features from 
image data alone using deep architectures12. The advantages of this approach is that there is no hand-engineering 
of features involved, and instead appropriate image properties are captured in a model containing several layers. 
There has been previous work using deep neural networks in digital pathology13,14, and comparisons have shown 
we can achieve superior performance compared to traditional feature extraction methods15–17. In this study, we 
also found that by using deep neural networks, we could achieve strong agreements with scores produced by 
two study pathologists; achieving ICC agreements of 0.82, approaching the intra-rater agreement of 0.89 and 
with tighter upper and lower bounds, suggesting more stable measurements than can be achieved manually. Our 
hand-engineered approach fell short at 0.75 ICC agreement. Given these outcomes, there is potential to use auto-
mation to alleviate the burden of manually estimating TC scores which would allow assessments such as the RCB 

Figure 3.  TC scores between 0% and 100% predicted by a hand-engineered approach (top) and deep neural 
networks (bottom) against scores provided by both expert pathologists (Pathologist A, Pathologist B).

Figure 4.  Boxplot of distribution of scores within low (0-30%), medium (30-70%) and high (>70%) ranges of 
TC.
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index more manageable on a routine basis. Furthermore, our method can be used across multiple tumour types 
for TC assessment with some fine-tuning.

Upon closer inspection of our results, we also found under certain conditions the use of latest automated 
techniques produced TC scores more similar to our experts. A subset of the scores produced by both automated 
systems are shown in Fig. 5. The deep neural networks (D) performed better when identifying healthy tissue (top 
row) and patches containing almost all cancerous tissue (bottom row). The cascade approach we adopted of train-
ing a separate cancer detector, proved to be ideal for removing healthy tissue first, giving accuracy rates of 93% 
when identifying patches containing only healthy structures. The advantage of the deep learning approach comes 
in distinguishing between >70% TC, and this is demonstrated in Fig. 3, whereby automated scores are tighter 
around those scores assigned manually.

For the purposes of determining RCB, accurate quantification of TC in the lower range leading to RCB-0 
and RCB-1 classes, may enhance clinical prognostication by adopting automation. Symmans et al.4 reported 
RCB-1 was a good predictor of survival outcome with 89% of triple negative breast cancer patients with RCB-1 
relapse-free after 5 years; RCB-2 and RCB-3 were not prognostic. Given that the deep neural networks excelled 
at low TC range, the use of automation for measuring TC as a RCB component could potentially be improved by 
adding further training examples containing low TC scores. As it is particularly difficult to quantify TC manually, 
automation offers an easier method for achieving precise scores which can further contribute to use of the RCB 
index as opposed to RCB categorical readings.

Figure 5.  Subset of results from TC test dataset for healthy tissue, and low/medium/high TC categories (top to 
bottom). Scores are given for both automated systems (H = hand-engineered features, D = deep convolutional 
neural networks) and Pathologist A (P).
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It should be noted that whilst both automated methods reported here output scores on a continuous scale, the 
scores provided to the systems during training were not. Manual assessment was performed by providing an esti-
mate of the proportion of carcinoma in each patch, often to the nearest 5% in our experiments; some variations 
between automation and pathologists’ scores can be explained by the scoring protocol.

Whilst here we specifically evaluated TC, the RCB index also encompasses a measure of the TB area7. 
Assessment of TB size relies upon consideration of preNAT imaging, gross examination and expert interpretation 
of the TB. In the current study, TC was assessed in patches derived from predefined TB regions, determined by 
Pathologist A. As such, this work is only an initial step in automating the entire RCB calculation pipeline. Further 
work is needed to identify “TB” and to distinguish between invasive and in situ carcinoma in a fully automated 
pipeline. This may require assessment of multiple digital slides per patient. Furthermore, we were only able to 
obtain scores from two raters; this is an expensive and time consuming process and it was not possible to recruit 
more pathologists to carry out this task. Another limitation is that all slides were prepared and scanned at the 
same centre; a secondary test set from another institution would allow generalizability to be assessed.

One of the main advantages of using automation is the ability to perform detailed analysis across entire whole 
slide images to give further contextual information. An example of our trained deep neural networks applied to 
whole slide images is shown in Fig. 6, as heatmaps overlaid on original digital slides. We have appended a higher 
resolution image as Supplementary Fig. S2. Blue overlays denotes low TC and red denotes patches with high TC 

Figure 6.  TC scores produced by a trained deep neural network overlaid on whole slide images. Scores are 
provided on a patch-by-patch level, where blue denotes healthy (0% TC) and red denotes 100% TC. Some 
close-up results of cellularity scores are provided to the right of each whole slide image.
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scores. In its simplest form, this tool can be used to navigate the reader to the most interesting parts of the tissue 
thus eliminating around 90% of the slide. This is a desirable property in digital pathology as the substantial por-
tion of a pathologists’ time is performed sifting through benign tissue18 and any method for increasing through-
put has significant advantage in the pathology workflow. It is important to note that the deep neural network 
designed to distinguish between healthy and cancerous patches suffered when applied to whole slide images 
compared to our patch-based test set. During training, the model was only exposed to a small subset of healthy 
structures and as such fatty tissue, folding tissue, red blood cells etc. were therefore unrecognizable during testing. 
We anticipate that with further training with more healthy patches, such errors can be avoided. In the long term, 
a preprocessing phase to first identify the TB region is recommended.

In Fig. 6, we can also see a distinct distribution of TC scores across the TB, suggesting that a global score of the 
entire TB may not reflect the characteristics of the TB accurately. There are clearly “pockets” of high cellularity 
regions and most of the TB consists of healthy or low cellularity regions. The RCB index recommends recording 
the average TC, however our results suggests an alternative metric which takes into account spatial distribution 
of TC in the TB may offer new features possibly advantageous for assessing tumour burden. Further work is also 
needed to investigate using continuous scores for clinical assessment, specifically the relationship between heter-
ogeneity of the TB and prognosis.

To summarise, we performed a comparison between manual and automated assessment of TC and showed 
that we can gain reproducible scores with automation, and superior performance with deep neural networks. We 
showed that leveraging such tools on whole slide images can give us richer representations of tumour heterogene-
ity across the TB, and can potentially be used as an alternative metric to approximated TC scores currently used 
in practice.

Methods
Data.  To validate different methods for computing TC, representative sections from 62 patients with residual 
invasive BC on resection specimens following NAT were acquired. After de-identification, representative rou-
tine Hematoxylin and Eosin glass slides were scanned at 20X magnification (0.5 lm/pixel) in the Department of 
Anatomic Pathology at Sunnybrook Health Sciences Centre (SBHSC), Toronto, Canada. After initial assessment 
and quality control, nine patients in our study were excluded. Table 2 shows a summary of patients’ clinical char-
acteristics in this study.

This study was approved by the Research Ethics Board (REB) of Sunnybrook Health Sciences Centre (pro-
ject ID: 312 2014) and all methods were carried out in accordance with relevant guidelines and regulations. 
Informed consent was waived by the REB of SBHSC. The distribution of our training and test sets were such that 
patient data used for training was excluded from testing. Patches, each with dimensions 512 × 512 pixels, were 
hand-selected from 96 whole slide images, 25 of which were reserved for testing purposes. Patches were selected 
to represent a wide representation of range of TC scores. In total we extracted 3,700 patches (training: 2579, test: 
1121) which were then labelled manually.

Manual interpretation.  For this study, we recruited two pathology experts: a breast pathology fellow 
(Pathologist A) and an experienced pathologist with focused practice in breast pathology (Pathology B). Each 
pathologist independently annotated identified patches on a digital pathology viewing platform, Sedeen Viewer 
(Pathcore)19. Initially, Pathologist A was asked to select representative patches spanning a full range of TC scores 
(i.e. from low to high TC) as well as patches containing healthy tissue. For each patch, a TC score, ranging from 

Criteria Total

Age at Diagnosis

30–39 12

40–49 17

50–59 11

60–72 13

Histology

Invasive ductal 
carcinoma (IDC) 50

Invasive lobular 
carcinoma (ILC) 4

Invasive mammary 
carcinoma (IMC) 1

Grade

1 8

2 29

3 15

ER
Positive 37

Negative 16

PR
Positive 30

Negative 22

HER2
Positive 11

Negative 42

Table 2.  Clinical pathology characteristics of patients in reported study. Note that multiple WSIs were prepared 
per patient, and therefore one patient may share multiple characteristics.
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0% to 100% for assessment of RCB7, was provided. Patches which did not contain any tumour cells were assigned 
a TC score of 0%. The training set was only annotated by Pathology A. Both Pathologist A (the annotator for the 
training set) and Pathologist B annotated the test set, and we compared the variability between both experts in 
reported results. In addition to continuous scores, both pathologists also classified each patch to low, medium, 
high TC and no tumour cells. Annotations were performed independently therefore each expert was unaware of 
scores assigned by the other.

The distribution of TC scores provided by each pathologist is given in Table 3. Note that the distribution varies 
considerably at higher cellularity scores (i.e. >70%) within our test sets, with 18% of Pathologist A’s scores within 
this range, and 31% in Pathologist B’s scores. Any automated system must be able to adjust for these differences 
between our experts.

Hand-engineered features.  To mimic scores provided by pathologists in an automated manner, we first 
designed a cell nuclei segmentation algorithm to identify boundaries of individual cells of the following types: 
lymphocytes, epithelial cells, malignant cells. Cells boundaries were identified by removing stain variations 
through a series of color stretch and color space conversions. A support vector machine (SVM) classifier was 
trained from several appearance, textural and spatial features extracted from identified cell nuclei, producing a 
cell map during testing (Fig. 2 (top)).

To compute a cellularity score, we segmented all malignant nuclei in each patch, dilated the resulting binary 
mask to account for the presence of cytoplasm, and then computed the fraction of area covered by malignant 
tissue. Finally, a calibration step was performed to bring computed TC scores closer to scores manually assigned 
by the pathologists in our study. A full description of this algorithm is given by Peikari et al.20.

Deep convolutional neural network.  Deep convolutional neural networks (DCNNs) are a family of 
architectures in artificial intelligence which are derived from a conceptual model of the human brain12. Typically, 
a DCNN consists of multiple layers, each of which contain several artificial neurons. By learning connections 
between hundreds or even millions of these neurons through simple linear activation functions, we can capture 
representations of complex data inputs. In a DCNN, groups of neurons are stacked in a series of specialised layers 
which can model further abstract representations of the data without manual intervention and this is where the 
power of DCNNs lie. Whilst there are many approaches to building DCNNs, here we opted to finetune a preb-
uilt network called InceptionNet21 which has been well-adopted in digital pathology. To compute TC scores, we 
trained two separate InceptionNets: one that distinguished between healthy and cancerous tissue, and the other 
to output regression scores on a continuous scale between 0% and 100%. Details of the implementation of the 
InceptionNet models is provided in supplementary material (see Supplementary Data S1).

Software and tools.  Algorithms to produce hand-engineered features were developed in Matlab and the 
built-in “fitcsvm” library was used to produce SVM predictions. The DCNN system was implemented in Python 
and Keras with a TensorFlow backend, a well-adopted library developed by Google for building deep neural 
networks. In each platform, we developed functions to load manual annotations generated by the Sedeen Viewer 
(see Section 4.2).

R was used to perform statistical analysis in this study.
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