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Abstract
Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare sta-
tistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine 
learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. 
PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 
2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based 
learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using con-
ventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the 
different researchers and highlighted the limitations of the existing literature, and performed the comparison using various 
parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, 
recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple tech-
niques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. 
Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.

1 Introduction

The word cancer comes from the ancient Greek kapkivoc, 
which means crab and tumor. Cancer was introduced to the 
medical world in the 1600 s and is associated with abnor-
mally growing cells that can invade or spread to other parts 
of the body [136]. The uncontrolled growth of cells starts 
from a site in the human body and further spreads to other 
body parts known as cancer metastasis [43, 172]. Cancer 
cells are categorized into benign and malignant cells. The 
benign cells do not spread to other parts, while malignant 
cells metastasize and are considered more destructive. Due 
to high mortality and recurrence rate, its process of treatment 
is very long and costly. There is a need to accurately diag-
nose it early to enhance cancer patient's survival rate. It is a 
genetic disease triggered due to genetic mutations that con-
trol our cell's function, especially how they grow and divide. 
As the tumor cells continue to grow, additional changes will 
occur. In a nutshell, cancer cells have more genetic changes, 
such as mutations in DNA, than normal cells [116], 110]. 
Though the immune system generally discards damaged or 
abnormal cells from the body, few cancer cells can hide from 
the immune system. The tumor also uses the immune system 
to grow and stay alive [179]. The name of the cancer type 
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is based on the site where tumor cells grow, for example, 
cancer that arises in the lungs and spreads to the liver is 
called lung cancer. Cancer diagnosis includes three predic-
tive predictions related to cancer risk assessment, cancer 
recurrence, and cancer survivability prediction. Initially, the 
probability of cancer occurrence is assessed, followed by the 
second step, predicting cancer recurrence. The last step is to 
predict the aspects like progression, life expectancy, tumor-
drug sensitivity, survivability [95].

1.1  Motivation

The motivation behind this research is the rapid growth in 
cancer incidence and mortality cases worldwide [10]. The 
reasons are complex but reflect both aging and growth of the 
population and changes in the prevalence and distribution of 
the main risk factors for cancer. Figure 1 depicts the cancer 
incidence cases and death statistics reported by the Ameri-
can Cancer Society and other reliable resources.

Multiple investigations have been done in cancer 
research; for example, Rong et al. [142] have led a mor-
tality and survival study by gender orientation. Dolatkhah 
et al. [49] have introduced the investigation that revealed 
the endurance information and pattern examination of 
malignant breast growth in Iran. Goodarzi et al. [65] had 
introduced the assessment dependent on distinct cross-sec-
tional malignant growth studies. Azamjah et al. [13] aimed 
to determine the 25-year breast cancer mortality rate in 7 
super regions defined by the Health Metrics and Evaluation 

(IHME). Momenimovahed et al. [115] presented a study that 
determined that breast cancer incidence varies significantly 
with race and ethnicity and is higher in developed countries. 
Haggar et al. [66] introduced the examination which demon-
strated the frequency, mortality, and survival rates for colo-
rectal malignancy are with consideration paid to provincial 
varieties and changes after some time. Zhang et al. [184] led 
an investigation to gather the CRC frequency information 
from the Cancer Incidence in Five Continents. Wong et al. 
[174] observed a positive correlation between incidence and 
country-specific socio-economic development. Nguyen et al. 
[124] summarized the diagnosis and treatment of thyroid 
cancer, with recommendations from the American Thyroid 
Association regarding thyroid nodules and differentiated 
thyroid cancer. Lee et al. [176] have stated that from March 
18 to April 26, 2020, 800 patients analyzed with a diagnosis 
of cancer and symptomatic COVID-19. 412 (52%) patients 
had a mild COVID-19 disease course. 226 (28%) patients 
died, and the risk of death was significantly associated with 
advancing patient age. Al-Zhou et  al. [6] evaluated the 
demographic characteristics and histological trends of skin 
cancer in Southern areas of Yemen. Artificial Intelligence 
(AI) is one of the exceptional achievements of computer 
science conceived around the 1940s [5, 130]. AI has marked 
its significance in advanced clinical diagnostics by provid-
ing unique opportunities to incorporate the tools into the 
healthcare area [4, 131]. AI aims to analyze the associa-
tions between treatment techniques and patient outcomes. In 
cancer research, AI has proved its potential to affect several 

Fig. 1  Estimated number of new cases and deaths in 2020 for common cancer types (www. cancer. net)

http://www.cancer.net
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facets of cancer therapy, improved the accuracy and speed 
of diagnosis, and provided more reliable clinical decisions, 
leading to better health outcomes [182, 183]. AI provides an 
unprecedented cancer prediction accuracy level higher than 
a general statistical expert [152, 180]. Thus, AI-based cancer 
detection models can assist in health centers and help medi-
cal experts affirm their medical verdicts without any obstruc-
tion. Hence, the article aims to highlight the contribution 
made by the researchers in the field of artificial intelligence 
techniques for the early detection and diagnosis of cancer.

1.2  Contribution and Organization of Paper

We conducted an extensive survey of the conventional 
machine and deep learning models proposed in cancer 
research. The paper presents a comparative analysis of the 
existing research works using AI-based techniques and 
medical imaging for cancer diagnosis, medical imaging 
for diagnosis, and automated analysis in cancer diagnosis. 
Most of the techniques proposed in the different papers were 
based on the deep learning framework and provided appreci-
able prediction outcomes. The paper provides a description 
of cancer complications and clinical applications, cancer 
classification using AI-based techniques, the role of deep 
learning in cancer research, limitations of cancer prediction-
related using automated learning, multiple investigations, 
and challenges corresponding to cancer research using AI-
based techniques.

The rest of the paper is organized as follows. Section 2 
elaborates the research methodology. This section discusses 
the approach used for selecting the literature. Section 3 
highlights the Cancer complications and clinical Applica-
tions. Section 4 expresses the reported work, which covers 
the deep learning perspective in cancer. This section fur-
ther discusses the comparative analysis, which includes the 
challenges of the current work with performance evaluation 
using various other parameters. Section 5 delivers a thor-
ough discussion; all the investigations are discussed in this 
section. Section 6 concludes the paper and discusses future 
directions.

2  Research Methodology

We conducted this systematic review under the PRISMA 
guidelines [40]. We performed an efficient search for select-
ing research articles on three different electronic databases, 
i.e., the web of science, EBSCO, and EMBASE. These are 
all openly available web indexes that list the entire content 
or metadata of academic writings. The articles were selected 
using the query ((Artificial Intelligence) or (Cancer Diag-
nosis) or (Early Detection) or (Machine Learning) or (Deep 
Learning)). The exclusion and inclusion standards used to 

select the articles are discussed in Sect. 2.1. Figure 2 pre-
sents the PRISMA flowchart depicting the detailed screening 
of the collected papers.

The articles published from 2009 to April 2021 have been 
included in this study. Total 350 studies were selected, and 
after removing duplicate ones, 275 studies remained. Subse-
quently, 210 papers were selected, and the studies focused on 
diseases other than cancer, treatment & surgery, a language 
other than English were excluded. Also, after this phase, the 
complete articles were evaluated, and the research articles 
that used methods other than AI-based techniques were also 
excluded from further analysis. Finally, the 185 selected arti-
cles were analyzed in the study.

2.1  Investigations

• Investigation 1: Which Learning Approach has provided 
appreciable prediction outcomes extensively?

• Investigation 2: Which cancer site and training data has 
been explored most extensively?

• Investigation 3: In which year most of the cancer predic-
tion studies have been published?

• Investigation 4: Which sorts of images have attained the 
highest prediction accuracy?

• Investigation 5: What are the Challenges faced by the 
researchers in the construction of AI-based prediction 
models.

3  Cancer Complications and Clinical 
Applications

The DNA present inside a cell is packaged into a vast num-
ber of individual genes and has instructions that communi-
cate the cell's functions. [15]. DNA mutations are the reason 
for cancer development. The original functioning of the cells 
ultimately turns cancerous due to some error interruption in 
the multistage process [104, 185].

Figure 3 shows different factors that affect the spread of 
cancers. Tobacco, alcohol, improper diet, and few physi-
cal activities are the leading cancer risk factors worldwide. 
Some chronic infections are the risk factors for cancer 
and have major significance in low- and middle-income 
countries.

3.1  Cancer Complications

While undergoing cancer treatment, one can experience many 
complications that affect the health of the patient. However, 
not all cancers are painful while undergoing cancer treat-
ment, but they still may have to experience some pain. But 
there are few medications and other approaches that help 
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treat cancer-related pain [129, 184]. During cancer, one can 
experience fatigue and many symptoms, but usually, it is man-
ageable [3]. Tiredness happens because of radiation therapy 
or chemotherapy treatments,however, it is generally short-
term. Breathing is another complication because of cancer 

or cancer treatment [120]. However, treatments may bring 
relief whereas, some types of cancer and treatment of cancer 
can lead to nausea [34]. Cancerous cells deprive normal cells 
of required nutrients, which may ultimately cause a loss in 
weight. Majorly, even if nutrients are provided with the help 

Fig. 2  PRISMA flow chart
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of artificial ways via tubes in the vein or stomach, it still does 
not impact the reduction of weight [169], 21]. Cancer can also 
uplift severe complications because of the imbalance of the 
average chemical balance in the human body. Frequent urina-
tion, confusion, excessive thirst, and constipation might be the 
signs and symptoms of chemical imbalances [46]. In some 
instances, cancer can impact the body's immune system by 
attacking cancer cells to normal and fit cells. Paraneoplastic 
syndrome, a very uncommon reaction, can bring on several 
symptoms and signs like a problem in walk and seizures [7]. 
Cancer immensely affects the functioning of that body part 
as it may press on nearby nerves. It can cause headaches and 
signs and symptoms of stroke and maybe a weakness on one 
side of the human body if it involves the brain [47]. Suppose 
someone becomes successful in defeating once it may save 
one temporarily because cancer survivors always remain at 
the risk of occurrence [36]. So, the patient needs to hear from 
the doctor about the precautions.

3.2  Clinical Applications

Doctors can develop a plan for the future, consisting of scans 
and examine at regular fixed intervals of time (in the months 
or years) after the patient's treatment to investigate radia-
tion treatment: In a radiation treatment, cancerous cells are 
targeted [30, 54]. A significant fraction of cancer cases and 
deaths can be preventable by having an excellent epidemio-
logical and mechanistic understanding of environmental and 
behavioral risk factors. Cancer therapeutics presently have 
the most minimal clinical preliminary achievement pace of 
every significant sickness. Due to the scarcity of success-
ful anti-cancer drugs, malignant growth will be the leading 
source of mortality in created nations. As a sickness inserted 
in the essentials of our science, cancerous growth presents 
troublesome difficulties that would profit by joining special-
ists from a wide cross-segment of related and random fields 
[55]. Along with causes, we have factors for identifications 
of the initial staging of cancer. Diagnosing cancer at an early 
stage ultimately leads to higher survival rates, less morbid-
ity, and less expensive treatment [27]. Three essential steps 
need to be taken in a well-timed way:

• Alertness and get into precaution
• Medical valuation, analysis, and staging
• Get into therapeutics.

The relevancy of early diagnosis is high in every situa-
tion and most cancers. Programs can be formulated to lessen 
hold-up in and obstruction to care, letting patients gain treat-
ment well in time [31].

3.2.1  Current methodologies applied in the medical sector 
for cancer prediction

The section presents a description on the clinical practices 
applied in the medical sector for cancer prediction at present. 
The methodologies are described as follows:

1. Screening: Screening aims to find people of particu-
lar cancer or pre-cancer who have not developed any 
symptoms and direct them quickly for analysis and treat-
ment. For the specific type of cancer, screening can be 
effective when tests are used according to the need and 
stages [149]. Moreover, screening is a more complicated 
process to follow than early diagnosis. Screening is of 
utmost necessary to have an accurate diagnosis [10]. The 
main reason behind every type of cancer is that cancer 
needs a unique treatment schedule that includes single or 
extra modalities, such as chemotherapy, surgical proce-
dures, and radiotherapy [16]. The main aim is to treat the 
tumor and significantly extend lifespan because improv-
ing a patient's life is also an unforgettable target [28].

2. Chemotherapy: The main aim of chemotherapy is to kill 
cancerous cells with the help of medications that target 
rapidly dividing cells. The drugs used to shrink tumors 
have dangerous side effects [71].

• Hormone-level therapy: Hormone-level therapy 
works on the reaction of few hormones to the body. 
Hormones play a substantial role among people suf-
fering from prostate or breast cancers [53].

• Immunotherapy: Immunotherapy aims to strengthen 
the body's immune system to fight against cancerous 
cells. Checkpoint inhibitors and adoptive cell trans-
fers are some examples of immunotherapy [150].

• Personalized medication: Personalized medication is 
a newly developed approach with the help of genetic 
testing and determines suitable treatment for specific 
cancer. However, it is yet to prove that whether per-
sonalized medication can treat all kinds of cancers 
or not [24].

• Radiation treatment: Radiation therapy kills the can-
cerous cells or slows down the growth of cancerous 
cells by damaging their DNA. Medical experts often 
recommend this treatment to shrink tumors or mini-
mize cancer symptoms before surgery [89].

• Stem cell transplant: Stem cell transplant is helpful 
for cancer that is related to blood, such as leukemia 
or lymphoma. The process involves the removal of 
RBC (Red Blood Cells) and WBC (White Blood 
cells), which have been destroyed because of the 
chemotherapy [34].

• Surgery: Surgery is primarily done when a person is 
suffering from cancerous cells. It is also used to nul-
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lify the spread of the disease by removing the lymph 
nodes [48].

• Targeted therapies: Targeted therapies are used to 
avoid the spread of cancer and improve immunity. 
Small-molecule drugs and monoclonal antibodies are 
examples of the target therapies [90].

4  Related Work

From the last couple of years, artificial intelligence has taken 
society’s imagination and created interest in its potential 
to progress our lives [91]. Now the usage of AI has been 
increasing rampantly to uplift disease recognition, its man-
agement, and the ramification of therapies. Because of the 
growing number of patients identified with cancer and the 
ample amount of data gathered during the treatment process 
[77, 119]. It leads to the need for AI to improve oncologic 
care. Cancer prediction can diminish the mortality rate [57, 
118]. The section consists of cancer diagnosis based on deep 
learning methods, medical imaging for cancer, the mortality 
rate for different cancers, cancer dataset, and automated and 
semi-automated methods for cancer detection.

4.1  Artificial Intelligence in Medical Imaging 
for Cancers Diagnosis

In clinical imaging, computer-aided detection (CADe) or 
computer-aided diagnosis (CADx) is the system-based 
framework that helps specialists to make decisions rapidly 
[70]. Medical imaging manages data in the picture that the 
clinical specialist and specialists need to assess and exam-
ine abnormality in a timeframe [182, 183]. Clinical images 
prepared with AI strategies can propel the exactness in vari-
ous cancer growth stages [121]. In this way, early malig-
nancy determination and recognition clinical imaging is a 
robust method. Without a doubt, clinical imaging has been 

generally utilized for early malignancy discovery, checking, 
and follow-up after the medicines [44, 101, 102].

Figure 4 shows different kinds of scans used for cancer 
diagnosis. A computed tomography (CT) scan can help 
doctors diagnose cancer and determine the shape and size 
of the tumor. Nuclear medicine scans can help medical 
experts determine cancer metastasis. The most common 
nuclear scans are bone scans, PET (positron emission 
tomography) scans, Thyroid scans, MUGA (multigated 
acquisition) scans, and gallium scans. MRI assists spe-
cialists with discovering malignancy in the body and 
search for signs that it has spread. X-ray additionally can 
help specialists plan malignant growth therapy, similar 
to medical procedure or radiation, and Mammograms are 
low-portion x-beams that can help discover breast dis-
ease. Detection of Cancer usually includes radiological 
imaging that examines the extent of cancer and improve-
ment after treatment. Oncological imaging is constantly 
turning into more wide-ranging and precise [95]. Suberi 
et al. [162] proposed an image-based computer-aided sys-
tem for cancer immunotherapy. The proposed approach 
enhanced the preparation of the vaccine with Dendritic 
Cells (DCs) immunotherapy. The study has incorporated 
various image-based algorithms have into the system with 
low computational time.

Nirupama and Damodhar [126] predicted lung cancer 
using the MRI scans (Dicom images). Win et al. [171] 
developed a computer-aided decision system to detect 
the cancer cells in cytological pleural effusion images. 
Initially, median filtering and intensity adjustment were 
applied to enhance the quality of the picture. They used a 
hybrid segmentation method to extract cell nuclei based on 
simple linear iterative clustering and K-means clustering. 
In a K- means clustering algorithm, the error of each data 
point is computed using the distance (Euclidean) between 
the data point and nearest centroid as shown in Eq. (1), 
and further compute the total sum of the squared errors.

Fig. 4  Types of imaging for 
cancer test
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In the Eq. (1), D , m, and n represent the objective func-
tion, the number of clusters, and number of cases, respec-
tively. Also, x(i)

j
 represents jth case of ith cluster and ci is the 

centroid for ith cluster. Another distance metric used in 
K-means clustering is cosine similarity, expressed mathe-
matically in Eq. (2).

In Eq. (2), a and b are the Euclidean norms of the vector 
a and vector b , respectively. Rosalidar et al. [140] presented 
the asymmetrical thermal distribution on breast thermo-
grams using computer-assisted technology. The reported 
work has shown that the current neural learning models have 
increased the classification accuracy of breast cancer ther-
mograms. Taher et al. [165] worked on the CAD system to 
diagnose lung cancer. They used the database of 100 sputum 
color images of different patients collected from the Tokyo 
Centre of lung cancer. The new CAD system processed the 
sputum images and classified them into benign or cancerous 
cells. Another factor observed in the study was the superior 
performance of Bayesian classification over the rule-based 
heuristic classification. The Bayesian algorithm works by 
computing posterior probabilities as shown in Eq. (3).

In Eq. (3), f (c) and f (x)  are the prior probability of class 
and predictor, respectively. Also, f (c|x) and f (x|c) denote 
the posterior probability of target (c ) given predictor (x ) 
and the probability of x given c , respectively. Naeem et al. 
[117] introduced the AI (ML) strategies for liver malignancy 
order using a fused dataset of two-dimensional (2D) com-
puted tomography (CT) and attractive reverberation imag-
ing (MRI). From that point, a combination of MRI and CT-
filter datasets produced the fused optimized hybrid-feature 
dataset. The MLP has indicated a promising exactness of 
99% among all the conveyed classifiers. Kalaiselvi et al. [80] 
have also proposed a fuzzy c-means method to detect auto-
matic brain tumors from T2-weighted MRI brain images 
using the principle of modified minimum error thresholding 
(MET). Lee et al. [99] discovered the most widely recog-
nized type of disease types, particularly breast malignancy, 
prostate disease, cellular breakdown in the lungs, and skin 
disease. A new proposed distributed computing structure 
has motivated the specialists to use the current deals with 
picture-based disease investigation and build up a more flex-
ible CAD framework for discovery [87]. introduced an edge 
technique for sectioning mammographic pictures to identify 

(1)D =

m∑

i=1

n∑

j=1

x
(i)

j
− c2

i

(2)cos (�) =
a ⋅ b

ab

(3)f (c|x) =
f (x|c)f (c)

f (x)

Breast malignancy in its beginning phases. [127] evaluated 
a computer-aided diagnosis (CADx) system for lung nodule 
classification. The retrospective study hand-crafted imaging 
features with machine learning algorithms and compared 
support vector machine (SVM) and gradient tree boosting 
(XGBoost) as machine learning algorithms. Gradient boost-
ing classifiers works by first computing the error done by 
each misclassified instance as shown in Eq. (4) and then 
increasing the weight of misclassified instances in the next 
layer as shown in Eq. (4).

Here, E denotes the error, w is the weight associated with 
each instance and m is the size of the dataset, and p denotes 
the number of the weak learners. The hypothesis ℏ

(
sm
)
 for 

each of the s instances is evaluated under the condition func-
tion C . The weight Updation formula is given in Eq. (5).

4.2  Deep learning methods for cancer detection

Deep learning is a sub-part of AI, which falls under artificial 
intelligence. Deep learning is a technique that takes in the 
features from the data, for instance, text, pictures, or sound. 
Deep learning is one of the most significant attributes of 
AI [101, 102]. Traditional AI methodologies require gather-
ing steps to achieve the portrayal task, including pre-getting 
ready, feature extraction, and wary selection of features, 
learning, and request [113]. The introduction of these sys-
tems is solidly dependent on the picked features, which may 
not be the right features to isolate between classes. At the 
same time, Deep learning engages the robotized learning of 
the capacities for different endeavors instead of standard AI 
methodology. It can achieve the learning and gathering in 
one shot [114].

Figure 5 shows the deep learning methods for cancer 
diagnosis and detection by analyzing the medical imag-
ing in different steps. This section discusses the purpose of 
various deep learning models such as auto-encoder, transfer 
learning, Convolutional Neural Networks, Gradient Descent, 
Generative Adversarial Networks, and Boltzmann Machines 
for cancer diagnosis and detection. Yu et al. [178] built up 
an information-based discovery technique that utilized deep 
learning strategies for lincRNA discovery and created DNA 
genome examination [82]. Second, approving the com-
mented on lincRNAs record locales and testing the presence 
of deep learning strategy by contrasting and customary pro-
cedures. For the primary objective, the auto-encoder method 
accomplished a 100% rate.

(4)Ep =

∑M

m=1
w
(p)
m ∗ C

�
sm ≠ ℏp

�
sm
��

∑M

m=1
w
(p)
m

(5)w(p+1)
m

= w(p)
m

∗ exp
(
�p ∗ C

(
sm ≠ ℏp

(
sm
)))
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An auto-encoder strategy is made out of three primary 
strides, as demonstrated in Fig. 6: building, pre-preparing, and 
approving. The fundamental design, including an input layer, 
concealed layer, and initiation capacities, is fabricated in the 
initial step. Also, the encoder and the decoder are prepared 
layer by coating following the pre-arranged cycles. Thirdly, 
fine-grained preparing/approval is performed through the 
whole model. All in all, the initial step develops the funda-
mental system of the deep neural organization, the subsequent 

one trains the layer-wise hubs, and the last one moves through 
all layers for approval. Brosch et al. [35] described a method 
that learned the 3D brain image using a deep belief network. 
Their approach took low computational time and less memory. 
Kadam et al. [79] also proposed a feature ensemble learning 
based on Sparse Auto-encoders and Softmax Regression for 
classification of Breast Cancer into benign (non-cancerous) 
and malignant (cancerous). An Auto-encoder consists of an 
encoder part and a decoder part, an artificial neural network 

Fig. 5  Deep learning process for cancer diagnosis [1]

Fig. 6  Working of auto-encoder method [126]
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trained using unsupervised learning that applies the back-prop-
agation approach. Sparse Auto-encoder (SA) is an Autoen-
coder imposed with sparseness constraints on all hidden nodes 
and the sparse penalty term. The cost function for training a 
Sparse Auto-encoder (given by Eq. (6) includes three attrib-
utes. The first term is called mean square error, which offers 
the discrepancy between input and reconstructs the whole 
training data.

where � = The coefficient for the L2 regularization term.

Mean Squared Error computes the average squared differ-
ence between predicted and the actual value. MSE is expressed 
mathematically in Eq. (7) where G and Gi are the vectors of 
observed and predicted values

Li [100] also proposed a practical and self-interpretable 
invasive cancer diagnosis solution for the diagnosis of breast 
cancer. Also, Krithiga et al. [88] carried a systematic review on 
breast cancer that focused on the call for specific action in the 
diagnostic processes. Similarly, Bulten et al. [32], Sajja et al. 
[145] also proposed a deep neural network based on Goog-
leNet with a maximum dropout ratio to moderate the process-
ing time for detection of lung cancer using CT scan images. In 
the proposed approach, 60% of neurons are at a fully connected 
layer with which higher drop rate than the existing GoogleNet. 
Experiments were conducted using the three pre-trained CNN 
architectures such as AlexNet, GoogleNet, and ResNet50 on 
LIDC pre-process dataset. ResNet50 produced the highest 
accuracy than the pre-trained architectures and the state-of-
the-art methods. The main components working behind the 
deep learning architecture are the "neurons" that compute 
average k vector values, and q denotes the column vector of 
weights. The working is mathematically expressed in Eq. (8).

Further, bias (b) gets updated with each iteration and added 
to adjust the output, as shown in Eq. (9).

The functioning of layer k is explained in Eq. (10), where 
g and a are the non-linear function and activation functions.

(6)E = MSE + (� × L2Regularization Term) + (� × Sparsity Regularization Term)

� = The coefficient for the sparsity regularization term.

(7)MSE = E
[
Gh(x) − Gi

h
(x)

]2

(8)z = q1k1 + q2k2 + q3k3 + ... + qnkn = qt.k

(9)z = et ⋅ k + b

(10)y
[l]

k
= qt

k
.a[l−1] + bia

[l]

k
= g[l]

(
z
[l]

i

)

The function of each is further computed, as shown in 
Eq. (11).

Kassani et al. [78] proposed a successful deep learning-
based technique utilizing a DCNN descriptor and pooling 
activity to characterize breast malignancy. The creators 
likewise utilized diverse information enlargement strate-

gies to help the exhibition of order and explored the impact 
of various stain standardization strategies. The proposed 
approach using the pre-prepared Xception model accom-
plished 92.50% order precision. Chen et al. [37] proposed 
a transfer learning-based depiction group (TLSE) strategy 
by incorporating preview outfit learning with move learn-
ing in a brought together and composed manner. Preview 
outfit gives troupe benefits inside a solitary model preparing 
methodology while moving learning centers around the little 
example issue in cervical cell arrangement.

Figure 7 portrays the transfer learning-based approach 
ensemble strategy for cervical cell arrangement reason. The 
TLSE technique is assessed on a pap-smear dataset called 
Herlev dataset and is demonstrated to have a few superi-
orities over the leaving strategies. It shows that TLSE can 
improve the exactness with just one preparing measure for 
the little example in fine-grained cervical cells arrangement. 
Alzubaidi et al. [9] introduced a crossover deep convolu-
tional neural organization to arrange hematoxylin–eosin-
stained bosom biopsy pictures into four classes: obtrusive 
carcinoma, in-situ carcinoma, kind tumor, and normal tissue. 
The model consolidated two ideas, which are equal convolu-
tions with various channel sizes and leftover connections. 
The foundational layout of the proposed model has as con-
spicuous attributes a superior component portrayal and the 
mix of highlights at multiple levels. This study achieved 
a precision of 90% precision in predicting breast cancer. 
Sasikala et al. [151] performed the detection of skin can-
cer lesions as malignant (melanoma) or benign using the 
CNN. The system's performance was evaluated using the 
accuracy and error rate with varying learning rates. Hosny 
et al. [76] introduced a programmed skin injuries grouping 
framework with a higher characterization rate utilizing the 
hypothesis of move learning and the pre-prepared deep neu-
ral organization. The exchange learning has been applied to 
the Alex-net in various manners, including the arrangement 
layer with a softmax layer. The presentation of the frame-
work is measured with the ISIC dataset and got 93% preci-
sion. Nivaashini and Soundariya [128] The proposed system 
uses a Deep Boltzmann Machine (DBM) to find an efficient 
set of features. Deep Neural Network (DNN) classifier is 

(11)ŷ = g(z)
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used to classify the tumor into benign or malignant breast 
cancer groups. The proposed system obtained a higher detec-
tion rate of 99.73% than the conventional machine learning 
models.

Figure  8 shows the typical segmentation with Deep 
Learning: A Convolutional Neural Network (CNN) based 
model is discovered. It first packs up the source picture 
with a heap of various convolution, actuation, and pooling 
layers. The inverse operation extends the compacted latent 
representation. The organization is kept from start to finish 

trainable. At the test time, a forward pass gives the seg-
mentation labels, which first packs the information picture 
measurements with a heap of convolutional and pooling lay-
ers. Altaf et al. [1], Gomez et al. [59] also proposed a CNN-
based breast disease diagnosis technique by utilizing thermal 
pictures. The creators showed that an all-around delimited 
data set split method is required to decrease the bias and 
overfitting during the training process. They likewise intro-
duced the studies on the DMR-IR data set. Exploratory out-
comes affirmed that the data set split approach limits the 

Fig. 7  Transfer learning-based snapshot ensemble method [37]

Fig. 8  Deep learning-based CNN model for segmentation of MRI imaging [1]
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overfitting and bias during training. The creators also passed 
on that state-of-the-art benchmark of CNN models, for 
example, ResNet, SeResNet, VGG16, Inception, Inception-
ResNetV2, and Xception, the DMR-IR data set. Albahar [8] 
proposed a prediction model that grouped skin injuries into 
kind-hearted or harmful sores dependent on a novel regular-
ize method. The proposed model accomplished a standard 
exactness of 97.49%, which indicated its prevalence over 
other state-of-the-art strategies. The presentation of CNN 
as far as AUC-ROC with an implanted novel regularizer 
was tried on various use cases. The Area under the curve 
(AUC) accomplished for nevus against melanoma sore is 
77%. Ragab et al. [135] proposed a computer-aided diag-
nosis (CAD) structure for requesting thoughtful and under-
mining mass tumors in breast mammography pictures. The 
deep convolutional neural association (DCNN) is used to 
incorporate extraction. An outstanding DCNN design named 
AlexNet is used and is aligned to mastermind two classes 
instead of 1,000 classes. The last related convolution layer 
is associated with the support vector machine (SVM) clas-
sifier to improve exactness. The results are obtained using 
the going with transparently open datasets (1) the electronic 
informational index for screening mammography (DDSM) 
and (2) the Curated Breast Imaging Subset of DDSM (CBIS-
DDSM). The mathematical working of linear, polynomial, 
and radial basis function (rbf) kernel is expressed in the 
Eqs. (12), (13), (14), respectively.

Here, kiandkj are n-dimensional inputs.

Here, r is the constant and t is the degree of freedom.

Here, � is the free parameter.
Saraf and Kalpana [148] presented the work for clas-

sifying the benign and the malignant thyroid nodules in 
ultrasound images. The author performed pre-processing, 
segmentation, feature extraction as well as the classifica-
tion for thyroid detection. Edge detection techniques have 
been used for segmentation purposes and detected malignant 
nodule using ANN. Similarly, Dov et al. [51] also presented 
the work for predicting thyroid-malignancy from the ultra-
high-resolution whole-slide images of the cytopathology. A 
deep-learning-based algorithm has been used for the cyto-
pathologist diagnosing the slides. The projected algorithm 
assigns the relevant image regions to the local malignancy 
scores, which are incorporated into global malignancy. The 
reported output of the presented work using the MIL method 

(12)k
(
xi,wj

)
= xi ⋅ wj

(13)k
(
xi,wj

)
= (xi ⋅ wj + r)t

(14)k
(
xi,wj

)
= exp(−

||xi − wj||2)
�2

is 0.87 Area under the curve (AUC) and 0.743 average pre-
cision (AP). Ma et al. [106] also proposed that the CNN 
diagnose thyroid-based diseases using the SPECT images. 
The projected method used the modified DenseNet architec-
ture as well as the improved training method. The accuracy 
achieved using the proposed method is 99.08% for Grave’s 
disease, 99.25% for Hashimoto disease, and 99.67% for 
Subacute disease. Sokoutil et al. [161] presented the work 
for detecting tumors in the thyroid gland. The reported work 
depicts the image processing technique and the simple, intel-
ligent system like the hill-climbing algorithm. Malathi et al. 
[107] presented the CNN method for the segmentation of 
brain tumors and achieved high prediction accurateness 
[132], compared three segmentation algorithms and pro-
posed a Random Forest (RF) classifier, and convolution 
neural network. RF and CNN yielded an average Dice’s 
coefficient (DC) of 0.862 and 0.876, respectively. The RF 
classification method computes the information gain for a 
split using Entropy (E). Mathematically,

E is expressed in Eq.  (15). Here, y is the number of 
classes (binary or multi) and �n is the likelihood that an 
instance belongs to the class n.

Image processing techniques have been widely used in 
various health sectors, especially detecting and diagnosing 
cancer early. Huidrom et al. [75] used Juxta-Pleural nod-
ules inclusion which was a fully automated lung segmen-
tation method, and it consisted of two main stages. In its 
first stage, the Lung region was extracted, also known as 
lung field extraction, followed by the second stage, lungs 
were segmented using boundary analysis and segmenta-
tion techniques. It has been observed that their proposed 
method yielded a better result than that of the existing ones. 
Whereas, Asideu et al. [12] proposed a technique in which 
automatic features were extracted and classified for acetic 
acid and Lugol’s iodine cervigrams. The study employed 
various techniques for combining the features in cervigrams 
and used a support vector machine model to classify cer-
vigrams. Cheng et al. [38] used a CAD system to detect 
and classify breast cancer. They did it in four stages, i.e., 
pre-processing, segmentation, feature extraction, and feature 
classification. Patil et al. [131] presented the automated sys-
tem to build the mammogram breast detection model with 
improved hybrid classifiers. Image processing, tumor seg-
mentation, feature extraction, and diagnosis are the well-
designed steps for detecting projected breast cancer. [122] 
launched automated multi-strategy-based lung nodule detec-
tion and the classification system, which contains the objec-
tive of the bogus positive decrease at the beginning phases. 
Cui et al. [41] proposed the strategy to perceive lung nodules 

(15)E = −

y∑

n

�n log2 �n
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in the pictures of chest CT and improved DICOM windows 
show. During this experiment, the nodule recognition was 
92.65% sensitive with 0.2468 FPs/filter.

4.3  Comparative Analysis

The comparative analysis section highlighted the study of 
different researchers for cancer disease detection using AI 
techniques. The prediction outcomes are classified on basis 
of parameters such as accuracy, sensitivity/recall, precision, 
specificity, dice score, Area under the Curve. Figure 9 pro-
vides the description of multiple evaluation parameters.

Table 1 comprises the comparative analysis based on 
multiple evaluation parameters for various cancer types.

As shown in the comparative analysis, many research 
works have been analyzed for cancer diagnosis and detec-
tion using conventional machine and deep learning methods. 
It can be observed that most of the deep learning techniques 
have performed well and achieved high accurateness in 
terms of the prediction scores obtained. Also, most of the 
research articles have been published recently (2020). Also, 
most of the studies have worked on the diagnosis of breast 
cancer.

5  Discussion

In the current review, we have presented recently pub-
lished research studies that employed AI-based Learning 
techniques for predicting malignancy. This study high-
lights research works related to cancer diagnosis predic-
tion and predicting post-operative life expectancy of can-
cer patients using AI-based learning techniques.

• Investigation 1: Which Learning Approach has provided 
appreciable prediction outcomes extensively?

  AI-based techniques have contributed significantly to 
the field of cancer research. The research works men-
tioned in the literature have focussed mainly on deep 
learning techniques. Deep learning classifiers have domi-
nated over machine learning models in the field of cancer 
research. Among Deep learning models, Convolutional 
Neural Networks (CNN) has been used most commonly 
for cancer prediction; approximately 41% of studies have 
used CNN to classify cancer. Neural networks (NN) 
and Deep Neural Networks (DNN) have also been used 
extensively in the literature. Apart from deep learning 
approaches, Ensemble learning techniques (Random 

Parameters Explanation Formula 

Accuracy 
It is the ratio of the number of correct classifications 
i.e., TP and FP to the total number of predictions. 

(TP+FP)/ (TP+FP+TN+FN) 

Specificity 
It is defined by the ratio of the correct negative 
classifications, TN to the total negative cases i.e., 
TN and FP.    

TN/ (TN + FP) 

Precision (Pr) 
It is defined by the ratio of correct  positive 
predictions  (TP) to the total correct classifications 
i.e., TP and FP. 

TP/(TP + FP) 

Sensitivity / 

Recall (Re) 

It calculates the ratio of correct  positive predictions  
(TP) to all the cases identified as positive by the 
classifier. 

TP/(TP + FN) 

F Score 
It measures the model using the harmonic mean of 
Precision and Recall 

2 × ((Pr × Re)/(Pr + Re)) 

Receiver 

Operating 

Characteristic 

(ROC) Curve 

It outines the true positive rate against the false-
positive rate on a range of thresholds. 

-- 

Area under 

the Curve 

It measures the area under the ROC curve and is 
also scale-invariant. 

-- 

Fig. 9  Evaluation parameters
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Forest Classifier weighted voting, Gradient Boosting 
Machines) and Support vector machines (SVM) are pri-
marily used in literature. The distribution of literature 
based on AI-based prediction models is shown in Fig. 10.

• Investigation  2: Which cancer site and training data has 
been explored most extensively? Most of the research 
papers explored in this review focused on the automated 
diagnosis of cancer prediction. The most extensively 
explored sites are the breast (22) followed by the kidney 
(17). Other than breast and kidney, most researchers have 
worked on brain, colorectal, cervical, and prostate can-
cer prediction. Figure 11 depicts the distribution of the 
research works based on cancer sites.

  The type of data used to train the prediction model 
significantly affects the performance of the model. The 
reliability and the prediction outcomes are dependent 
on the data used to train the classification model. Most 
of the research studies reviewed in this paper has used 
Magnetic Resonance Imaging (MRI). The second most 
commonly used data is Computed Tomography (CT) 
scan images. Other image types like dermoscopic, mam-
mographic, endoscopic, and pathological were also used 
in the literature. Figure 12 highlights the distribution of 
papers based on the type of data used to train the predic-
tion model.

• Investigation3: In which year most of the cancer predic-
tion studies have been published?

The research works published between 2009 to April 
2021 are selected in this review article. Figure 13 demon-
strates the distribution of the articles based on the published 
year. Most of the research works were published in the years 

2020 (35), 2019 (32), 2018 (30). There are few papers from 
the year 2021 as we could only extract papers published up 
to April 2021. Based on the analysis of Fig. 13, we can con-
clude that number of research studies has increased gradu-
ally in recent years.

• Investigation 4: which sorts of images have attained 
the highest prediction accuracy? Most of the studies 
have used MRI images for cancer diagnosis prediction. 
Approximately 23% of literature has used Computed 
Tomography scan for training the model. Also, many 
studies have employed mammographic images, endo-
scopic images, and pathological images. Low contrast 
in CT scan images makes the classification task difficult 
as it becomes difficult to differentiate the object from 
the background. Some cancers, such as prostate cancer, 
and certain liver cancers, are hardly detected using a CT 
scan. In such scenarios, Digital Imaging and Communi-
cations in Medicine (DICOM) images generated from 
MRI can help achieve the purpose with greater prediction 
accurateness.

  Regarding the specificity of the type of classification 
models used for specific cancer: Convolutional Neural 
Networks models have been used to predict almost every 
type of cancer such as brain, colorectal, skin, thyroid, and 
lungs. Most of the studies that explored the prediction 
of breast cancer diagnosis used hybrid modes or novel 
approaches for the purpose. Also, Neural networks have 
been applied to almost all breast and cervical cancer 
datasets. Regarding Stomach cancer, only Convolu-
tional Neural Networks have been used. Support Vec-
tor machines have been used for the prediction of liver 
and breast cancer. In a nutshell, Convolutional Neural 
Networks can be applied with different datasets. Also, 
ensemble learners have been used with almost every kind 
of cancer.

• Investigation 5: Challenges faced by the researchers in 
the construction of AI-based prediction models.

Although AI-based techniques have marked their signifi-
cance in the field of cancer prediction research, there are still 
many challenges faced by the researchers that need to be 
addressed.

 i. Limited Data size The most common challenge faced 
by most of the studies was insufficient data to train the 
model. A small sample size implies a smaller training 
set which does not authenticate the efficiency of the 
proposed approaches. Good sample size can train the 
model better than the limited one.

 ii. High dimensionality Another data-related issue faced 
in cancer research is high dimensionality. High dimen-
sionality is referred to a vast number of features as 

Fig. 10  AI-Based Prediction Models
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compared to cases. However, multiple dimensional-
ity reduction techniques [155] are available to deal 
with this issue. However, the requirement of a generic 
approach to handle this issue is there.

 iii. Class imbalance problem A leading challenge faced 
by medical data sets, especially cancer data, is the 
uneven distribution of classes. Class imbalance arises 
due to a miss-match of the sample size of each class. 
Classification models tend to be biased towards the 
class with a majority of samples. Most of the exist-
ing techniques handle the imbalance well on binary 
classes but fail in multi-class patterns.

 iv. Computational time  About 90% of studies have 
endorsed deep learning approaches to predict cancer 

using medical images than other techniques. However, 
the deep learning-based approaches are highly com-
plex. About 41% of the studies have used the CNN 
classifier, which has performed significantly but at the 
cost of high computational time and space.

 v. Efficient feature selection technique Many studies have 
achieved exceptional prediction outcomes. However, 
the requirement of a computationally effective feature 
selection method is still there to eradicate the data 
cleaning procedures while generating high cancer pre-
diction accuracy.

 vi. Model Generalizability A shift in research towards 
improving the generalizability of the model is 
required. Most of the studies have proposed a predic-
tion model that is validated on a single site. There is a 
need to validate the models on multiple sites that can 
help improve the model's generalizability.

 vii. Clinical Implementation AI-based models have proved 
their dominance in cancer research; still, the practi-
cal implementation of the models in the clinics is not 
incorporated. These models need to be validated in 
a clinical setting to assist the medical practitioner in 
affirming the diagnosis verdicts.

6  Conclusions and Future Directions

This review study attempts to summarize the various 
research directions for AI-based cancer prediction models. 
AI has marked its significance in the area of healthcare, 
especially cancer prediction. The paper provides a critical 
and analytical examination of current state-of-the-art cancer 
diagnostic and detection analysis approaches—a thorough 
examination of the machine and deep learning models used 
in cancer early detection using medical imaging. The AI 

Fig. 11  Cancer site-wise distri-
bution of papers

Fig. 12  Distribution of papers based on the type of training data
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techniques play a significant role in early cancer prognosis 
and detection using machine and deep learning techniques 
for extracting and classifying the disease features. Our study 
concluded that most previous literature works employed 
deep learning techniques, especially Convolutional Neural 
Networks. Another significant factor noted in our study is 
that most studies have worked on breast cancer data. It was 
examined that when deep learning models are applied to 
pre-processed and segmented medical images, the images 
perform better in classification metrics such as AUC, Sen-
sitivity, Dice-coefficient, and Accuracy. There is scope to 
work on early detection of head and neck cancers because 
less study has been conducted for both types of cancer. Also, 
the federated learning model can be used for cancer detec-
tion based on distributed datasets. hence, we intend to use a 
federated learning model for the detection of cancer disease 
by creating the decentralized training model for cancer data-
sets in remote places. This study highlights the challenges 
faced by the researchers in the construction of AI-based pre-
diction models. Although multiple pieces of research have 
displayed significant results, there is still a need to address 
the challenges in cancer research in future.
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