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Abstract

Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare sta-
tistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine
learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances.
PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between
2009 and 2021. In this study, we performed an efficient search and included the research articles that employed Al-based
learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using con-
ventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the
different researchers and highlighted the limitations of the existing literature, and performed the comparison using various
parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision,
recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple tech-
niques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced.
Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.

1 Introduction

The word cancer comes from the ancient Greek kapkivoc,
which means crab and tumor. Cancer was introduced to the
medical world in the 1600 s and is associated with abnor-
mally growing cells that can invade or spread to other parts
of the body [136]. The uncontrolled growth of cells starts
from a site in the human body and further spreads to other
body parts known as cancer metastasis [43, 172]. Cancer
cells are categorized into benign and malignant cells. The
benign cells do not spread to other parts, while malignant
cells metastasize and are considered more destructive. Due
to high mortality and recurrence rate, its process of treatment
is very long and costly. There is a need to accurately diag-
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nose it early to enhance cancer patient's survival rate. It is a
genetic disease triggered due to genetic mutations that con-
trol our cell's function, especially how they grow and divide.
As the tumor cells continue to grow, additional changes will
occur. In a nutshell, cancer cells have more genetic changes,
such as mutations in DNA, than normal cells [116], 110].
Though the immune system generally discards damaged or
abnormal cells from the body, few cancer cells can hide from
the immune system. The tumor also uses the immune system
to grow and stay alive [179]. The name of the cancer type
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is based on the site where tumor cells grow, for example,
cancer that arises in the lungs and spreads to the liver is
called lung cancer. Cancer diagnosis includes three predic-
tive predictions related to cancer risk assessment, cancer
recurrence, and cancer survivability prediction. Initially, the
probability of cancer occurrence is assessed, followed by the
second step, predicting cancer recurrence. The last step is to
predict the aspects like progression, life expectancy, tumor-
drug sensitivity, survivability [95].

1.1 Motivation

The motivation behind this research is the rapid growth in
cancer incidence and mortality cases worldwide [10]. The
reasons are complex but reflect both aging and growth of the
population and changes in the prevalence and distribution of
the main risk factors for cancer. Figure 1 depicts the cancer
incidence cases and death statistics reported by the Ameri-
can Cancer Society and other reliable resources.

Multiple investigations have been done in cancer
research; for example, Rong et al. [142] have led a mor-
tality and survival study by gender orientation. Dolatkhah
et al. [49] have introduced the investigation that revealed
the endurance information and pattern examination of
malignant breast growth in Iran. Goodarzi et al. [65] had
introduced the assessment dependent on distinct cross-sec-
tional malignant growth studies. Azamjah et al. [13] aimed
to determine the 25-year breast cancer mortality rate in 7
super regions defined by the Health Metrics and Evaluation

(IHME). Momenimovahed et al. [115] presented a study that
determined that breast cancer incidence varies significantly
with race and ethnicity and is higher in developed countries.
Haggar et al. [66] introduced the examination which demon-
strated the frequency, mortality, and survival rates for colo-
rectal malignancy are with consideration paid to provincial
varieties and changes after some time. Zhang et al. [184] led
an investigation to gather the CRC frequency information
from the Cancer Incidence in Five Continents. Wong et al.
[174] observed a positive correlation between incidence and
country-specific socio-economic development. Nguyen et al.
[124] summarized the diagnosis and treatment of thyroid
cancer, with recommendations from the American Thyroid
Association regarding thyroid nodules and differentiated
thyroid cancer. Lee et al. [176] have stated that from March
18 to April 26, 2020, 800 patients analyzed with a diagnosis
of cancer and symptomatic COVID-19. 412 (52%) patients
had a mild COVID-19 disease course. 226 (28%) patients
died, and the risk of death was significantly associated with
advancing patient age. Al-Zhou et al. [6] evaluated the
demographic characteristics and histological trends of skin
cancer in Southern areas of Yemen. Artificial Intelligence
(AI) is one of the exceptional achievements of computer
science conceived around the 1940s [5, 130]. Al has marked
its significance in advanced clinical diagnostics by provid-
ing unique opportunities to incorporate the tools into the
healthcare area [4, 131]. Al aims to analyze the associa-
tions between treatment techniques and patient outcomes. In
cancer research, Al has proved its potential to affect several
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Fig. 1 Estimated number of new cases and deaths in 2020 for common cancer types (www.cancer.net)
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facets of cancer therapy, improved the accuracy and speed
of diagnosis, and provided more reliable clinical decisions,
leading to better health outcomes [182, 183]. Al provides an
unprecedented cancer prediction accuracy level higher than
a general statistical expert [152, 180]. Thus, Al-based cancer
detection models can assist in health centers and help medi-
cal experts affirm their medical verdicts without any obstruc-
tion. Hence, the article aims to highlight the contribution
made by the researchers in the field of artificial intelligence
techniques for the early detection and diagnosis of cancer.

1.2 Contribution and Organization of Paper

We conducted an extensive survey of the conventional
machine and deep learning models proposed in cancer
research. The paper presents a comparative analysis of the
existing research works using Al-based techniques and
medical imaging for cancer diagnosis, medical imaging
for diagnosis, and automated analysis in cancer diagnosis.
Most of the techniques proposed in the different papers were
based on the deep learning framework and provided appreci-
able prediction outcomes. The paper provides a description
of cancer complications and clinical applications, cancer
classification using Al-based techniques, the role of deep
learning in cancer research, limitations of cancer prediction-
related using automated learning, multiple investigations,
and challenges corresponding to cancer research using Al-
based techniques.

The rest of the paper is organized as follows. Section 2
elaborates the research methodology. This section discusses
the approach used for selecting the literature. Section 3
highlights the Cancer complications and clinical Applica-
tions. Section 4 expresses the reported work, which covers
the deep learning perspective in cancer. This section fur-
ther discusses the comparative analysis, which includes the
challenges of the current work with performance evaluation
using various other parameters. Section 5 delivers a thor-
ough discussion; all the investigations are discussed in this
section. Section 6 concludes the paper and discusses future
directions.

2 Research Methodology

We conducted this systematic review under the PRISMA
guidelines [40]. We performed an efficient search for select-
ing research articles on three different electronic databases,
i.e., the web of science, EBSCO, and EMBASE. These are
all openly available web indexes that list the entire content
or metadata of academic writings. The articles were selected
using the query ((Artificial Intelligence) or (Cancer Diag-
nosis) or (Early Detection) or (Machine Learning) or (Deep
Learning)). The exclusion and inclusion standards used to

select the articles are discussed in Sect. 2.1. Figure 2 pre-
sents the PRISMA flowchart depicting the detailed screening
of the collected papers.

The articles published from 2009 to April 2021 have been
included in this study. Total 350 studies were selected, and
after removing duplicate ones, 275 studies remained. Subse-
quently, 210 papers were selected, and the studies focused on
diseases other than cancer, treatment & surgery, a language
other than English were excluded. Also, after this phase, the
complete articles were evaluated, and the research articles
that used methods other than Al-based techniques were also
excluded from further analysis. Finally, the 185 selected arti-
cles were analyzed in the study.

2.1 Investigations

e [nvestigation 1: Which Learning Approach has provided
appreciable prediction outcomes extensively?

e [nvestigation 2: Which cancer site and training data has
been explored most extensively?

e [nvestigation 3: In which year most of the cancer predic-
tion studies have been published?

e [nvestigation 4: Which sorts of images have attained the
highest prediction accuracy?

e [nvestigation 5: What are the Challenges faced by the
researchers in the construction of Al-based prediction
models.

3 Cancer Complications and Clinical
Applications

The DNA present inside a cell is packaged into a vast num-
ber of individual genes and has instructions that communi-
cate the cell's functions. [15]. DNA mutations are the reason
for cancer development. The original functioning of the cells
ultimately turns cancerous due to some error interruption in
the multistage process [104, 185].

Figure 3 shows different factors that affect the spread of
cancers. Tobacco, alcohol, improper diet, and few physi-
cal activities are the leading cancer risk factors worldwide.
Some chronic infections are the risk factors for cancer
and have major significance in low- and middle-income
countries.

3.1 Cancer Complications

While undergoing cancer treatment, one can experience many
complications that affect the health of the patient. However,
not all cancers are painful while undergoing cancer treat-
ment, but they still may have to experience some pain. But
there are few medications and other approaches that help
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Fig.2 PRISMA flow chart

Fig.3 Causes of cancers [26]
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treat cancer-related pain [129, 184]. During cancer, one can
experience fatigue and many symptoms, but usually, it is man-
ageable [3]. Tiredness happens because of radiation therapy
or chemotherapy treatments,however, it is generally short-
term. Breathing is another complication because of cancer
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or cancer treatment [120]. However, treatments may bring
relief whereas, some types of cancer and treatment of cancer
can lead to nausea [34]. Cancerous cells deprive normal cells
of required nutrients, which may ultimately cause a loss in
weight. Majorly, even if nutrients are provided with the help
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of artificial ways via tubes in the vein or stomach, it still does
not impact the reduction of weight [169], 21]. Cancer can also
uplift severe complications because of the imbalance of the
average chemical balance in the human body. Frequent urina-
tion, confusion, excessive thirst, and constipation might be the
signs and symptoms of chemical imbalances [46]. In some
instances, cancer can impact the body's immune system by
attacking cancer cells to normal and fit cells. Paraneoplastic
syndrome, a very uncommon reaction, can bring on several
symptoms and signs like a problem in walk and seizures [7].
Cancer immensely affects the functioning of that body part
as it may press on nearby nerves. It can cause headaches and
signs and symptoms of stroke and maybe a weakness on one
side of the human body if it involves the brain [47]. Suppose
someone becomes successful in defeating once it may save
one temporarily because cancer survivors always remain at
the risk of occurrence [36]. So, the patient needs to hear from
the doctor about the precautions.

3.2 Clinical Applications

Doctors can develop a plan for the future, consisting of scans
and examine at regular fixed intervals of time (in the months
or years) after the patient's treatment to investigate radia-
tion treatment: In a radiation treatment, cancerous cells are
targeted [30, 54]. A significant fraction of cancer cases and
deaths can be preventable by having an excellent epidemio-
logical and mechanistic understanding of environmental and
behavioral risk factors. Cancer therapeutics presently have
the most minimal clinical preliminary achievement pace of
every significant sickness. Due to the scarcity of success-
ful anti-cancer drugs, malignant growth will be the leading
source of mortality in created nations. As a sickness inserted
in the essentials of our science, cancerous growth presents
troublesome difficulties that would profit by joining special-
ists from a wide cross-segment of related and random fields
[55]. Along with causes, we have factors for identifications
of the initial staging of cancer. Diagnosing cancer at an early
stage ultimately leads to higher survival rates, less morbid-
ity, and less expensive treatment [27]. Three essential steps
need to be taken in a well-timed way:

e Alertness and get into precaution
e Medical valuation, analysis, and staging
e Get into therapeutics.

The relevancy of early diagnosis is high in every situa-
tion and most cancers. Programs can be formulated to lessen
hold-up in and obstruction to care, letting patients gain treat-
ment well in time [31].

3.2.1 Current methodologies applied in the medical sector
for cancer prediction

The section presents a description on the clinical practices
applied in the medical sector for cancer prediction at present.
The methodologies are described as follows:

1. Screening: Screening aims to find people of particu-
lar cancer or pre-cancer who have not developed any
symptoms and direct them quickly for analysis and treat-
ment. For the specific type of cancer, screening can be
effective when tests are used according to the need and
stages [149]. Moreover, screening is a more complicated
process to follow than early diagnosis. Screening is of
utmost necessary to have an accurate diagnosis [10]. The
main reason behind every type of cancer is that cancer
needs a unique treatment schedule that includes single or
extra modalities, such as chemotherapy, surgical proce-
dures, and radiotherapy [16]. The main aim is to treat the
tumor and significantly extend lifespan because improv-
ing a patient's life is also an unforgettable target [28].

2. Chemotherapy: The main aim of chemotherapy is to kill
cancerous cells with the help of medications that target
rapidly dividing cells. The drugs used to shrink tumors
have dangerous side effects [71].

e Hormone-level therapy: Hormone-level therapy
works on the reaction of few hormones to the body.
Hormones play a substantial role among people suf-
fering from prostate or breast cancers [53].

e [mmunotherapy: Immunotherapy aims to strengthen
the body's immune system to fight against cancerous
cells. Checkpoint inhibitors and adoptive cell trans-
fers are some examples of immunotherapy [150].

e Personalized medication: Personalized medication is
a newly developed approach with the help of genetic
testing and determines suitable treatment for specific
cancer. However, it is yet to prove that whether per-
sonalized medication can treat all kinds of cancers
or not [24].

e Radiation treatment: Radiation therapy kills the can-
cerous cells or slows down the growth of cancerous
cells by damaging their DNA. Medical experts often
recommend this treatment to shrink tumors or mini-
mize cancer symptoms before surgery [89].

e Stem cell transplant: Stem cell transplant is helpful
for cancer that is related to blood, such as leukemia
or lymphoma. The process involves the removal of
RBC (Red Blood Cells) and WBC (White Blood
cells), which have been destroyed because of the
chemotherapy [34].

e Surgery: Surgery is primarily done when a person is
suffering from cancerous cells. It is also used to nul-
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lify the spread of the disease by removing the lymph
nodes [48].

e Targeted therapies: Targeted therapies are used to
avoid the spread of cancer and improve immunity.
Small-molecule drugs and monoclonal antibodies are
examples of the target therapies [90].

4 Related Work

From the last couple of years, artificial intelligence has taken
society’s imagination and created interest in its potential
to progress our lives [91]. Now the usage of Al has been
increasing rampantly to uplift disease recognition, its man-
agement, and the ramification of therapies. Because of the
growing number of patients identified with cancer and the
ample amount of data gathered during the treatment process
[77, 119]. It leads to the need for Al to improve oncologic
care. Cancer prediction can diminish the mortality rate [57,
118]. The section consists of cancer diagnosis based on deep
learning methods, medical imaging for cancer, the mortality
rate for different cancers, cancer dataset, and automated and
semi-automated methods for cancer detection.

4.1 Artificial Intelligence in Medical Imaging
for Cancers Diagnosis

In clinical imaging, computer-aided detection (CADe) or
computer-aided diagnosis (CADx) is the system-based
framework that helps specialists to make decisions rapidly
[70]. Medical imaging manages data in the picture that the
clinical specialist and specialists need to assess and exam-
ine abnormality in a timeframe [182, 183]. Clinical images
prepared with Al strategies can propel the exactness in vari-
ous cancer growth stages [121]. In this way, early malig-
nancy determination and recognition clinical imaging is a
robust method. Without a doubt, clinical imaging has been

Fig.4 Types of imaging for

cancer test (
X-rays and other
radiographic tests
.
-
Computed Tomography
(CT) Scan
N
Ultrasound
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generally utilized for early malignancy discovery, checking,
and follow-up after the medicines [44, 101, 102].

Figure 4 shows different kinds of scans used for cancer
diagnosis. A computed tomography (CT) scan can help
doctors diagnose cancer and determine the shape and size
of the tumor. Nuclear medicine scans can help medical
experts determine cancer metastasis. The most common
nuclear scans are bone scans, PET (positron emission
tomography) scans, Thyroid scans, MUGA (multigated
acquisition) scans, and gallium scans. MRI assists spe-
cialists with discovering malignancy in the body and
search for signs that it has spread. X-ray additionally can
help specialists plan malignant growth therapy, similar
to medical procedure or radiation, and Mammograms are
low-portion x-beams that can help discover breast dis-
ease. Detection of Cancer usually includes radiological
imaging that examines the extent of cancer and improve-
ment after treatment. Oncological imaging is constantly
turning into more wide-ranging and precise [95]. Suberi
et al. [162] proposed an image-based computer-aided sys-
tem for cancer immunotherapy. The proposed approach
enhanced the preparation of the vaccine with Dendritic
Cells (DCs) immunotherapy. The study has incorporated
various image-based algorithms have into the system with
low computational time.

Nirupama and Damodhar [126] predicted lung cancer
using the MRI scans (Dicom images). Win et al. [171]
developed a computer-aided decision system to detect
the cancer cells in cytological pleural effusion images.
Initially, median filtering and intensity adjustment were
applied to enhance the quality of the picture. They used a
hybrid segmentation method to extract cell nuclei based on
simple linear iterative clustering and K-means clustering.
In a K- means clustering algorithm, the error of each data
point is computed using the distance (Euclidean) between
the data point and nearest centroid as shown in Eq. (1),
and further compute the total sum of the squared errors.

Nuclear medicine scans
(PET scans, Bone scans, Thyroid
scan, MUGA scan, gallium scan)

Imgglng for Magnetic resonance imaging
ancer (MRI) scan
Breast MRI Mammography
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m n

D=2 2% -4 M)

i=1 j=1

In the Eq. (1), D, m, and n represent the objective func-
tion, the number of clusters, and number of cases, respec-
tively. Also, xj(.i) represents jth case of ith cluster and c; is the
centroid for ith cluster. Another distance metric used in
K-means clustering is cosine similarity, expressed mathe-
matically in Eq. (2).

a-b
cos(f) = — 2)

In Eq. (2), @ and b are the Euclidean norms of the vector
a and vector b, respectively. Rosalidar et al. [140] presented
the asymmetrical thermal distribution on breast thermo-
grams using computer-assisted technology. The reported
work has shown that the current neural learning models have
increased the classification accuracy of breast cancer ther-
mograms. Taher et al. [165] worked on the CAD system to
diagnose lung cancer. They used the database of 100 sputum
color images of different patients collected from the Tokyo
Centre of lung cancer. The new CAD system processed the
sputum images and classified them into benign or cancerous
cells. Another factor observed in the study was the superior
performance of Bayesian classification over the rule-based
heuristic classification. The Bayesian algorithm works by
computing posterior probabilities as shown in Eq. (3).

JF&xlo)f(e)
f(clx) ) 3)

In Eq. (3), f(c) and f(x) are the prior probability of class
and predictor, respectively. Also, f(c|x) and f(x|c) denote
the posterior probability of farget (c) given predictor (x)
and the probability of x given c, respectively. Naeem et al.
[117] introduced the AI (ML) strategies for liver malignancy
order using a fused dataset of two-dimensional (2D) com-
puted tomography (CT) and attractive reverberation imag-
ing (MRI). From that point, a combination of MRI and CT-
filter datasets produced the fused optimized hybrid-feature
dataset. The MLP has indicated a promising exactness of
99% among all the conveyed classifiers. Kalaiselvi et al. [80]
have also proposed a fuzzy c-means method to detect auto-
matic brain tumors from T2-weighted MRI brain images
using the principle of modified minimum error thresholding
(MET). Lee et al. [99] discovered the most widely recog-
nized type of disease types, particularly breast malignancy,
prostate disease, cellular breakdown in the lungs, and skin
disease. A new proposed distributed computing structure
has motivated the specialists to use the current deals with
picture-based disease investigation and build up a more flex-
ible CAD framework for discovery [87]. introduced an edge
technique for sectioning mammographic pictures to identify

Breast malignancy in its beginning phases. [127] evaluated
a computer-aided diagnosis (CADx) system for lung nodule
classification. The retrospective study hand-crafted imaging
features with machine learning algorithms and compared
support vector machine (SVM) and gradient tree boosting
(XGBoost) as machine learning algorithms. Gradient boost-
ing classifiers works by first computing the error done by
each misclassified instance as shown in Eq. (4) and then
increasing the weight of misclassified instances in the next
layer as shown in Eq. (4).

Sl el 2, () .
' EZ:I W(,ﬁ)

Here, E denotes the error, w is the weight associated with
each instance and m is the size of the dataset, and p denotes
the number of the weak learners. The hypothesis 7(s,, ) for
each of the s instances is evaluated under the condition func-
tion C. The weight Updation formula is given in Eq. (5).

W,QsH) = W(,;I;) * exp(/‘p * C(Sm # hp(sm))) )

4.2 Deep learning methods for cancer detection

Deep learning is a sub-part of Al, which falls under artificial
intelligence. Deep learning is a technique that takes in the
features from the data, for instance, text, pictures, or sound.
Deep learning is one of the most significant attributes of
AI[101, 102]. Traditional AI methodologies require gather-
ing steps to achieve the portrayal task, including pre-getting
ready, feature extraction, and wary selection of features,
learning, and request [113]. The introduction of these sys-
tems is solidly dependent on the picked features, which may
not be the right features to isolate between classes. At the
same time, Deep learning engages the robotized learning of
the capacities for different endeavors instead of standard Al
methodology. It can achieve the learning and gathering in
one shot [114].

Figure 5 shows the deep learning methods for cancer
diagnosis and detection by analyzing the medical imag-
ing in different steps. This section discusses the purpose of
various deep learning models such as auto-encoder, transfer
learning, Convolutional Neural Networks, Gradient Descent,
Generative Adversarial Networks, and Boltzmann Machines
for cancer diagnosis and detection. Yu et al. [178] built up
an information-based discovery technique that utilized deep
learning strategies for lincRNA discovery and created DNA
genome examination [82]. Second, approving the com-
mented on lincRNAs record locales and testing the presence
of deep learning strategy by contrasting and customary pro-
cedures. For the primary objective, the auto-encoder method
accomplished a 100% rate.
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Fig.5 Deep learning process for cancer diagnosis [1]

An auto-encoder strategy is made out of three primary
strides, as demonstrated in Fig. 6: building, pre-preparing, and
approving. The fundamental design, including an input layer,
concealed layer, and initiation capacities, is fabricated in the
initial step. Also, the encoder and the decoder are prepared
layer by coating following the pre-arranged cycles. Thirdly,
fine-grained preparing/approval is performed through the
whole model. All in all, the initial step develops the funda-
mental system of the deep neural organization, the subsequent

one trains the layer-wise hubs, and the last one moves through
all layers for approval. Brosch et al. [35] described a method
that learned the 3D brain image using a deep belief network.
Their approach took low computational time and less memory.
Kadam et al. [79] also proposed a feature ensemble learning
based on Sparse Auto-encoders and Softmax Regression for
classification of Breast Cancer into benign (non-cancerous)
and malignant (cancerous). An Auto-encoder consists of an
encoder part and a decoder part, an artificial neural network
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Fig.6 Working of auto-encoder method [126]
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trained using unsupervised learning that applies the back-prop-
agation approach. Sparse Auto-encoder (SA) is an Autoen-
coder imposed with sparseness constraints on all hidden nodes
and the sparse penalty term. The cost function for training a
Sparse Auto-encoder (given by Eq. (6) includes three attrib-
utes. The first term is called mean square error, which offers
the discrepancy between input and reconstructs the whole
training data.

The function of each is further computed, as shown in
Eq. (11).

=20 (11)

Kassani et al. [78] proposed a successful deep learning-
based technique utilizing a DCNN descriptor and pooling
activity to characterize breast malignancy. The creators
likewise utilized diverse information enlargement strate-

E = MSE + (A x L2Regularization Term) + (f X Sparsity Regularization Term) (6)

where A = The coefficient for the L2 regularization term.

P = The coefficient for the sparsity regularization term.

Mean Squared Error computes the average squared differ-
ence between predicted and the actual value. MSE is expressed
mathematically in Eq. (7) where G and G' are the vectors of
observed and predicted values

MSE = E[G,(x) - G\ ()]’ ©)

Li [100] also proposed a practical and self-interpretable
invasive cancer diagnosis solution for the diagnosis of breast
cancer. Also, Krithiga et al. [88] carried a systematic review on
breast cancer that focused on the call for specific action in the
diagnostic processes. Similarly, Bulten et al. [32], Sajja et al.
[145] also proposed a deep neural network based on Goog-
leNet with a maximum dropout ratio to moderate the process-
ing time for detection of lung cancer using CT scan images. In
the proposed approach, 60% of neurons are at a fully connected
layer with which higher drop rate than the existing GoogleNet.
Experiments were conducted using the three pre-trained CNN
architectures such as AlexNet, GoogleNet, and ResNet50 on
LIDC pre-process dataset. ResNet50 produced the highest
accuracy than the pre-trained architectures and the state-of-
the-art methods. The main components working behind the
deep learning architecture are the "neurons" that compute
average k vector values, and q denotes the column vector of
weights. The working is mathematically expressed in Eq. (8).

7= qk, + @k + @3ks + ..+ qk, = ¢k (8)

Further, bias (b) gets updated with each iteration and added
to adjust the output, as shown in Eq. (9).

z=¢€-k+b ®

The functioning of layer k is explained in Eq. (10), where
g and a are the non-linear function and activation functions.

l - 1 I
W =gt.a™ + bl = g (z,[]) (10)

gies to help the exhibition of order and explored the impact
of various stain standardization strategies. The proposed
approach using the pre-prepared Xception model accom-
plished 92.50% order precision. Chen et al. [37] proposed
a transfer learning-based depiction group (TLSE) strategy
by incorporating preview outfit learning with move learn-
ing in a brought together and composed manner. Preview
outfit gives troupe benefits inside a solitary model preparing
methodology while moving learning centers around the little
example issue in cervical cell arrangement.

Figure 7 portrays the transfer learning-based approach
ensemble strategy for cervical cell arrangement reason. The
TLSE technique is assessed on a pap-smear dataset called
Herlev dataset and is demonstrated to have a few superi-
orities over the leaving strategies. It shows that TLSE can
improve the exactness with just one preparing measure for
the little example in fine-grained cervical cells arrangement.
Alzubaidi et al. [9] introduced a crossover deep convolu-
tional neural organization to arrange hematoxylin—eosin-
stained bosom biopsy pictures into four classes: obtrusive
carcinoma, in-situ carcinoma, kind tumor, and normal tissue.
The model consolidated two ideas, which are equal convolu-
tions with various channel sizes and leftover connections.
The foundational layout of the proposed model has as con-
spicuous attributes a superior component portrayal and the
mix of highlights at multiple levels. This study achieved
a precision of 90% precision in predicting breast cancer.
Sasikala et al. [151] performed the detection of skin can-
cer lesions as malignant (melanoma) or benign using the
CNN. The system's performance was evaluated using the
accuracy and error rate with varying learning rates. Hosny
et al. [76] introduced a programmed skin injuries grouping
framework with a higher characterization rate utilizing the
hypothesis of move learning and the pre-prepared deep neu-
ral organization. The exchange learning has been applied to
the Alex-net in various manners, including the arrangement
layer with a softmax layer. The presentation of the frame-
work is measured with the ISIC dataset and got 93% preci-
sion. Nivaashini and Soundariya [128] The proposed system
uses a Deep Boltzmann Machine (DBM) to find an efficient
set of features. Deep Neural Network (DNN) classifier is
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Training samples

Data preprocessing

Data augmentation

Training

Combining Together

Transfer Learning +

Snapshot Ensemble

Several snapshots

Testing

Testing Samples

J

Data Preprocessing

Keeping the last two
snapshot models

[ Final results

Averaging the outputs of the
‘ models

Fig.7 Transfer learning-based snapshot ensemble method [37]

used to classify the tumor into benign or malignant breast
cancer groups. The proposed system obtained a higher detec-
tion rate of 99.73% than the conventional machine learning
models.

Figure 8 shows the typical segmentation with Deep
Learning: A Convolutional Neural Network (CNN) based
model is discovered. It first packs up the source picture
with a heap of various convolution, actuation, and pooling
layers. The inverse operation extends the compacted latent
representation. The organization is kept from start to finish

Source MRI

i o

- Convolution Layer

trainable. At the test time, a forward pass gives the seg-
mentation labels, which first packs the information picture
measurements with a heap of convolutional and pooling lay-
ers. Altaf et al. [1], Gomez et al. [59] also proposed a CNN-
based breast disease diagnosis technique by utilizing thermal
pictures. The creators showed that an all-around delimited
data set split method is required to decrease the bias and
overfitting during the training process. They likewise intro-
duced the studies on the DMR-IR data set. Exploratory out-
comes affirmed that the data set split approach limits the

Segmented Image

Activation Layer

Pooling Layer

Un-Pooling Layer

De-Convolution Layer

Fig.8 Deep learning-based CNN model for segmentation of MRI imaging [1]
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overfitting and bias during training. The creators also passed
on that state-of-the-art benchmark of CNN models, for
example, ResNet, SeResNet, VGG16, Inception, Inception-
ResNetV2, and Xception, the DMR-IR data set. Albahar [8]
proposed a prediction model that grouped skin injuries into
kind-hearted or harmful sores dependent on a novel regular-
ize method. The proposed model accomplished a standard
exactness of 97.49%, which indicated its prevalence over
other state-of-the-art strategies. The presentation of CNN
as far as AUC-ROC with an implanted novel regularizer
was tried on various use cases. The Area under the curve
(AUC) accomplished for nevus against melanoma sore is
77%. Ragab et al. [135] proposed a computer-aided diag-
nosis (CAD) structure for requesting thoughtful and under-
mining mass tumors in breast mammography pictures. The
deep convolutional neural association (DCNN) is used to
incorporate extraction. An outstanding DCNN design named
AlexNet is used and is aligned to mastermind two classes
instead of 1,000 classes. The last related convolution layer
is associated with the support vector machine (SVM) clas-
sifier to improve exactness. The results are obtained using
the going with transparently open datasets (1) the electronic
informational index for screening mammography (DDSM)
and (2) the Curated Breast Imaging Subset of DDSM (CBIS-
DDSM). The mathematical working of linear, polynomial,
and radial basis function (rbf) kernel is expressed in the
Egs. (12), (13), (14), respectively.

k(xi,wj) =X W (12)
Here, kiandkj are n-dimensional inputs.

k(xw;) = (- w+ 1) (13)
Here, r is the constant and ¢ is the degree of freedom.

||xi_wj||2)

— (14)

k(xi, wj) = exp(—
Here, o is the free parameter.

Saraf and Kalpana [148] presented the work for clas-
sifying the benign and the malignant thyroid nodules in
ultrasound images. The author performed pre-processing,
segmentation, feature extraction as well as the classifica-
tion for thyroid detection. Edge detection techniques have
been used for segmentation purposes and detected malignant
nodule using ANN. Similarly, Dov et al. [51] also presented
the work for predicting thyroid-malignancy from the ultra-
high-resolution whole-slide images of the cytopathology. A
deep-learning-based algorithm has been used for the cyto-
pathologist diagnosing the slides. The projected algorithm
assigns the relevant image regions to the local malignancy
scores, which are incorporated into global malignancy. The
reported output of the presented work using the MIL method

is 0.87 Area under the curve (AUC) and 0.743 average pre-
cision (AP). Ma et al. [106] also proposed that the CNN
diagnose thyroid-based diseases using the SPECT images.
The projected method used the modified DenseNet architec-
ture as well as the improved training method. The accuracy
achieved using the proposed method is 99.08% for Grave’s
disease, 99.25% for Hashimoto disease, and 99.67% for
Subacute disease. Sokoutil et al. [161] presented the work
for detecting tumors in the thyroid gland. The reported work
depicts the image processing technique and the simple, intel-
ligent system like the hill-climbing algorithm. Malathi et al.
[107] presented the CNN method for the segmentation of
brain tumors and achieved high prediction accurateness
[132], compared three segmentation algorithms and pro-
posed a Random Forest (RF) classifier, and convolution
neural network. RF and CNN yielded an average Dice’s
coefficient (DC) of 0.862 and 0.876, respectively. The RF
classification method computes the information gain for a
split using Entropy (E). Mathematically,

E is expressed in Eq. (15). Here, y is the number of
classes (binary or multi) and p, is the likelihood that an
instance belongs to the class n.

y
E=-Yp,logp, (15)

Image processing techniques have been widely used in
various health sectors, especially detecting and diagnosing
cancer early. Huidrom et al. [75] used Juxta-Pleural nod-
ules inclusion which was a fully automated lung segmen-
tation method, and it consisted of two main stages. In its
first stage, the Lung region was extracted, also known as
lung field extraction, followed by the second stage, lungs
were segmented using boundary analysis and segmenta-
tion techniques. It has been observed that their proposed
method yielded a better result than that of the existing ones.
Whereas, Asideu et al. [12] proposed a technique in which
automatic features were extracted and classified for acetic
acid and Lugol’s iodine cervigrams. The study employed
various techniques for combining the features in cervigrams
and used a support vector machine model to classify cer-
vigrams. Cheng et al. [38] used a CAD system to detect
and classify breast cancer. They did it in four stages, i.e.,
pre-processing, segmentation, feature extraction, and feature
classification. Patil et al. [131] presented the automated sys-
tem to build the mammogram breast detection model with
improved hybrid classifiers. Image processing, tumor seg-
mentation, feature extraction, and diagnosis are the well-
designed steps for detecting projected breast cancer. [122]
launched automated multi-strategy-based lung nodule detec-
tion and the classification system, which contains the objec-
tive of the bogus positive decrease at the beginning phases.
Cui et al. [41] proposed the strategy to perceive lung nodules
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in the pictures of chest CT and improved DICOM windows
show. During this experiment, the nodule recognition was
92.65% sensitive with 0.2468 FPs/filter.

4.3 Comparative Analysis

The comparative analysis section highlighted the study of
different researchers for cancer disease detection using Al
techniques. The prediction outcomes are classified on basis
of parameters such as accuracy, sensitivity/recall, precision,
specificity, dice score, Area under the Curve. Figure 9 pro-
vides the description of multiple evaluation parameters.

Table 1 comprises the comparative analysis based on
multiple evaluation parameters for various cancer types.

As shown in the comparative analysis, many research
works have been analyzed for cancer diagnosis and detec-
tion using conventional machine and deep learning methods.
It can be observed that most of the deep learning techniques
have performed well and achieved high accurateness in
terms of the prediction scores obtained. Also, most of the
research articles have been published recently (2020). Also,
most of the studies have worked on the diagnosis of breast
cancer.

5 Discussion

In the current review, we have presented recently pub-
lished research studies that employed Al-based Learning
techniques for predicting malignancy. This study high-
lights research works related to cancer diagnosis predic-
tion and predicting post-operative life expectancy of can-
cer patients using Al-based learning techniques.

e [nvestigation 1: Which Learning Approach has provided
appreciable prediction outcomes extensively?

Al-based techniques have contributed significantly to
the field of cancer research. The research works men-
tioned in the literature have focussed mainly on deep
learning techniques. Deep learning classifiers have domi-
nated over machine learning models in the field of cancer
research. Among Deep learning models, Convolutional
Neural Networks (CNN) has been used most commonly
for cancer prediction; approximately 41% of studies have
used CNN to classify cancer. Neural networks (NN)
and Deep Neural Networks (DNN) have also been used
extensively in the literature. Apart from deep learning
approaches, Ensemble learning techniques (Random

Parameters Explanation Formula
It is the ratio of the number of correct classifications (TP+FP)/ (TP+FP+TN+FN)
Accuracy i.e., TP and FP to the total number of predictions.
o It is defined by the ratio of the correct negative TN/ (TN + FP)
Specificity classifications, TN to the total negative cases i.e.,
TN and FP.
o It is defined by the ratio of correct positive TP/(TP + FP)
Precision (Pr) predictions (TP) to the total correct classifications
i.e., TP and FP.
e It calculates the ratio of correct positive predictions TP/(TP + FN
Sensitivity / (TP) to all the cases identified as positive by the ( )
Recall (Re) classifier.
It measures the model using the harmonic mean of 2 x ((Pr x Re)/(Pr + Re))
F Score Precision and Recall
Receiver
Operating It outines the true positive rate against the false- --
. positive rate on a range of thresholds.
Characteristic
(ROC) Curve

Area under

the Curve

It measures the area under the ROC curve and is
also scale-invariant.

Fig. 9 Evaluation parameters
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Fig. 10 Al-Based Prediction Models

Forest Classifier weighted voting, Gradient Boosting

Machines) and Support vector machines (SVM) are pri-

marily used in literature. The distribution of literature

based on Al-based prediction models is shown in Fig. 10.
e [nvestigation 2: Which cancer site and training data has
been explored most extensively? Most of the research
papers explored in this review focused on the automated
diagnosis of cancer prediction. The most extensively
explored sites are the breast (22) followed by the kidney
(17). Other than breast and kidney, most researchers have
worked on brain, colorectal, cervical, and prostate can-
cer prediction. Figure 11 depicts the distribution of the
research works based on cancer sites.

The type of data used to train the prediction model
significantly affects the performance of the model. The
reliability and the prediction outcomes are dependent
on the data used to train the classification model. Most
of the research studies reviewed in this paper has used
Magnetic Resonance Imaging (MRI). The second most
commonly used data is Computed Tomography (CT)
scan images. Other image types like dermoscopic, mam-
mographic, endoscopic, and pathological were also used
in the literature. Figure 12 highlights the distribution of
papers based on the type of data used to train the predic-
tion model.

Investigation3: In which year most of the cancer predic-
tion studies have been published?

The research works published between 2009 to April
2021 are selected in this review article. Figure 13 demon-
strates the distribution of the articles based on the published
year. Most of the research works were published in the years

2020 (35), 2019 (32), 2018 (30). There are few papers from
the year 2021 as we could only extract papers published up
to April 2021. Based on the analysis of Fig. 13, we can con-
clude that number of research studies has increased gradu-
ally in recent years.

o [nvestigation 4: which sorts of images have attained
the highest prediction accuracy? Most of the studies
have used MRI images for cancer diagnosis prediction.
Approximately 23% of literature has used Computed
Tomography scan for training the model. Also, many
studies have employed mammographic images, endo-
scopic images, and pathological images. Low contrast
in CT scan images makes the classification task difficult
as it becomes difficult to differentiate the object from
the background. Some cancers, such as prostate cancer,
and certain liver cancers, are hardly detected using a CT
scan. In such scenarios, Digital Imaging and Communi-
cations in Medicine (DICOM) images generated from
MRI can help achieve the purpose with greater prediction
accurateness.

Regarding the specificity of the type of classification
models used for specific cancer: Convolutional Neural
Networks models have been used to predict almost every
type of cancer such as brain, colorectal, skin, thyroid, and
lungs. Most of the studies that explored the prediction
of breast cancer diagnosis used hybrid modes or novel
approaches for the purpose. Also, Neural networks have
been applied to almost all breast and cervical cancer
datasets. Regarding Stomach cancer, only Convolu-
tional Neural Networks have been used. Support Vec-
tor machines have been used for the prediction of liver
and breast cancer. In a nutshell, Convolutional Neural
Networks can be applied with different datasets. Also,
ensemble learners have been used with almost every kind
of cancer.

e [nvestigation 5: Challenges faced by the researchers in
the construction of Al-based prediction models.

Although Al-based techniques have marked their signifi-
cance in the field of cancer prediction research, there are still
many challenges faced by the researchers that need to be
addressed.

i. Limited Data size The most common challenge faced
by most of the studies was insufficient data to train the
model. A small sample size implies a smaller training
set which does not authenticate the efficiency of the
proposed approaches. Good sample size can train the
model better than the limited one.

ii. High dimensionality Another data-related issue faced
in cancer research is high dimensionality. High dimen-
sionality is referred to a vast number of features as

@ Springer
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Fig. 11 Cancer site-wise distri- 25
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Fig. 12 Distribution of papers based on the type of training data

compared to cases. However, multiple dimensional-
ity reduction techniques [155] are available to deal
with this issue. However, the requirement of a generic
approach to handle this issue is there.

iii. Class imbalance problem A leading challenge faced
by medical data sets, especially cancer data, is the
uneven distribution of classes. Class imbalance arises
due to a miss-match of the sample size of each class.
Classification models tend to be biased towards the
class with a majority of samples. Most of the exist-
ing techniques handle the imbalance well on binary
classes but fail in multi-class patterns.

iv. Computational time About 90% of studies have
endorsed deep learning approaches to predict cancer

@ Springer

> A\ < & Z S X O o
&é'b ~\6°° \,}40 \/(\ a,s'?"& ~ @,oc, \\‘o‘ GQQI
O A QKO NG & ‘\Q}
o\.
Cancer Site

using medical images than other techniques. However,
the deep learning-based approaches are highly com-
plex. About 41% of the studies have used the CNN
classifier, which has performed significantly but at the
cost of high computational time and space.

v. Efficient feature selection technique Many studies have
achieved exceptional prediction outcomes. However,
the requirement of a computationally effective feature
selection method is still there to eradicate the data
cleaning procedures while generating high cancer pre-
diction accuracy.

vi. Model Generalizability A shift in research towards
improving the generalizability of the model is
required. Most of the studies have proposed a predic-
tion model that is validated on a single site. There is a
need to validate the models on multiple sites that can
help improve the model's generalizability.

vii. Clinical Implementation Al-based models have proved
their dominance in cancer research; still, the practi-
cal implementation of the models in the clinics is not
incorporated. These models need to be validated in
a clinical setting to assist the medical practitioner in
affirming the diagnosis verdicts.

6 Conclusions and Future Directions

This review study attempts to summarize the various
research directions for Al-based cancer prediction models.
Al has marked its significance in the area of healthcare,
especially cancer prediction. The paper provides a critical
and analytical examination of current state-of-the-art cancer
diagnostic and detection analysis approaches—a thorough
examination of the machine and deep learning models used
in cancer early detection using medical imaging. The Al
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Fig. 13 Year-wise distribution 40
of papers

35
30
25
20

15

Number of Papers
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2014

techniques play a significant role in early cancer prognosis
and detection using machine and deep learning techniques
for extracting and classifying the disease features. Our study
concluded that most previous literature works employed
deep learning techniques, especially Convolutional Neural
Networks. Another significant factor noted in our study is
that most studies have worked on breast cancer data. It was
examined that when deep learning models are applied to
pre-processed and segmented medical images, the images
perform better in classification metrics such as AUC, Sen-
sitivity, Dice-coefficient, and Accuracy. There is scope to
work on early detection of head and neck cancers because
less study has been conducted for both types of cancer. Also,
the federated learning model can be used for cancer detec-
tion based on distributed datasets. hence, we intend to use a
federated learning model for the detection of cancer disease
by creating the decentralized training model for cancer data-
sets in remote places. This study highlights the challenges
faced by the researchers in the construction of Al-based pre-
diction models. Although multiple pieces of research have
displayed significant results, there is still a need to address
the challenges in cancer research in future.
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