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INTRODUCTION

The liver plays a vital role in maintaining the physiological homeostasis of mammals and is
responsible for many biological processes, including detoxification, bile acid synthesis, glycolysis, and
lipid metabolism (Ben-Moshe and Itzkovitz 2019). The liver consists of repeating anatomical units
termed liver lobules, including parenchymal and non-parenchymal cells. Hepatocyte, the liver
parenchymal cells, account for 60% of hepatic cells composition and 80% of liver mass (Godoy et al.,
2013). While the liver non-parenchymal cells (NPCs), including bile duct cell (cholangiocyte), liver
endothelial cell (LEC), hepatic stellate cells (HSC), Kupffer cell, and other immune cell populations,
account for the remaining 20% of liver mass (MacParland et al., 2018; Aizarani et al., 2019). When
the cell function is compromised or its composition becomes abnormal, it can cause many diseases,
such as fatty liver disease, cirrhosis, and hepatocellular carcinoma (Saviano et al., 2020).

During embryonic development, a few cells from the endoderm begin to specialize into
hepatoblasts around embryonic day (E) 8.5 - E9.0 in mouse embryos (Tremblay and Zaret
2005). By E10.5, hepatoblast, LEC, and HSC start to organize into primitive sinusoidal
capillaries (Gordillo et al., 2015). Finally, hepatoblast begin to differentiate into hepatocyte and
cholangiocyte approximately at E13.5 (Roskams and Desmet 2008; Yang et al., 2017). In those
developmental processes, several transcription factors and signaling pathways, including Hhex,
hepatocyte nuclear factor 4α (Hnf4α), fibroblast growth factors (FGFs), bone morphogenetic
proteins (BMPs), Wnt/β-catenin, and Hippo pathway play essential roles (Bort et al., 2006;
McLin et al., 2007; Negishi et al., 2010; Alder et al., 2014; Wang et al., 2015; Ober and Lemaigre
2018). Until E16.5, the liver is the main hematopoietic organ in the body, then gradually becomes a
metabolic organ (Zaret 2002). After birth, both the nutrient metabolism and the immune system in
the liver will undergo significant transformations in response to drastic changes, such as the primary
source of energy switching from glucose in the cord blood to lipids in breast milk (Ehara et al., 2015).
As a result, metabolic pathways, including fatty acid β-oxidation, gluconeogenesis, and de novo
lipogenesis, are upregulated in the neonatal liver (Perichon and Bourre 1995; Sekine et al., 2007).

Edited by:
Mo Li,

King Abdullah University of Science
and Technology, Saudi Arabia

Reviewed by:
Ling Shuai,

Nankai University, China
Tao Tan,

Kunming University of Science and
Technology, China

*Correspondence:
Chuanyu Liu

liuchuanyu@genomics.cn
Longqi Liu

liulongqi@genomics.cn

†These authors contributed equally to
this work

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 11 December 2021
Accepted: 11 March 2022
Published: 06 April 2022

Citation:
Xu J, Hao S, Shi Q, Deng Q, Jiang Y,
Guo P, Yuan Y, Shi X, Shangguan S,
Zheng H, Lai G, Huang Y, Wang Y,

Song Y, Liu Y, Wu L, Wang Z, Cheng J,
Wei X, Cheng M, Lai Y, Volpe G,

Esteban MA, Hou Y, Liu C and Liu L
(2022) Transcriptomic Profile of the
Mouse Postnatal Liver Development
by Single-Nucleus RNA Sequencing.

Front. Cell Dev. Biol. 10:833392.
doi: 10.3389/fcell.2022.833392

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 8333921

DATA REPORT
published: 06 April 2022

doi: 10.3389/fcell.2022.833392

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.833392&domain=pdf&date_stamp=2022-04-06
https://www.frontiersin.org/articles/10.3389/fcell.2022.833392/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.833392/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.833392/full
http://creativecommons.org/licenses/by/4.0/
mailto:liuchuanyu@genomics.cn
mailto:liulongqi@genomics.cn
https://doi.org/10.3389/fcell.2022.833392
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.833392


After a short period of adaptation, hepatocytes begin to
proliferate and differentiate rapidly around postnatal day 3
(P3), as a result of increased β-catenin signaling (Apte et al.,
2007). By P7, the liver lobule structure has been formed (Ober
and Lemaigre 2018), becomes more intact, and performs several
functions, including xenobiotic metabolism, steroid metabolism,
and bile acids biosynthetic (Li et al., 2009; Cui et al., 2012).

In recent years, single-cell transcriptome sequencing has been
developing rapidly and has been applied in many research fields,
such as cell atlas construction, as well as studying embryo
development and disease pathogenesis (Granja et al., 2019;
Tang et al., 2019; Cao et al., 2020; Trevino et al., 2021). In
terms of liver development, single-cell transcriptome
sequencing has been used to elucidate the origin of
hepatoblasts, the differentiation trajectory of hepatoblasts and
NPCs, and the interaction among different cell types (Popescu
et al., 2019; Lotto et al., 2020; Mu et al., 2020; Wang et al., 2020).
However, few single-cell transcriptomic studies on liver
development in mice after birth. A robust and comprehensive
bulk RNA sequencing study was performed to characterize the
liver development spanning E12.5 to postnatal week 8, which
found that many important liver metabolic functions are acquired
after birth (Gong et al., 2020). However, bulk RNA sequencing
cannot distinguish the gene expression of different cell types and
does not provide information about cell-cell interaction and
microenvironment composition, thus calling for a more
systematic single-cell transcriptome study of postnatal liver
development. Moreover, single-nucleus RNA sequencing
(snRNA-seq) has an obvious advantage over single-cell RNA
sequencing (scRNA-seq) in detecting multiple cell types without
any bias (Zeng et al., 2016; Lake et al., 2017; Bakken et al., 2018;
Ding et al., 2020). This is crucial for liver tissue because
hepatocytes are prone to cell death during liver single-cell
isolation, and obtaining HSCs and cholangiocytes remains
quite challenging. In addition, it could lead to skewed cell
types ratio in scRNA-seq datasets (Donne et al., 2020;
Brazovskaja et al., 2021; Guilliams et al., 2022).

For this study, we performed snRNA-seq to profile 82,967
nuclei from four key time points of postnatal murine liver
development (P0, P3, P7, P14). We identified 28 clusters of
hepatic cell types and analyzed the dynamic changes in cells
composition and functions and the hepatocyte differentiation
trajectories during this process. Interestingly, we found two HSC
subtypes specifically expressing some markers of LECs or Kupffer
cells. In addition, the ligand-receptor interaction and
transcription factor regulative activity analysis significantly
increased the reliability of the new cell types.

MATERIALS AND METHODS

Sample Collection
All mice used in this study were in C57BL/6 background. The
Institutional Review Board approved the use of mice in relevant
experimental studies on the Ethics Committee of BGI (Permit No.
BGI-IR20210903001). Four neonatal mice from different time
points (P0, P3, P7, P14) after birth were purchased from Jiangsu

Ailingfei Biotechnology Co. LTD. and used in this study. Mice
were transported to the Guangzhou Institute of Biomedicine and
Health (GIBH) of the Chinese Academy of Sciences, where GIBH
colleagues helped with tissue dissection. Liver tissues were
harvested, resected, and snap-frozen in liquid nitrogen. The
dissected mouse liver tissues were transported on dry ice to
BGI-Shenzhen and were immediately stored in a liquid
nitrogen tank.

Nuclei Isolation From Frozen Tissues
Nuclei were isolated from frozen mouse liver tissue according to a
published nucleus extraction method (Corces et al., 2017). All the
subsequent procedures were performed on ice. Briefly, each
frozen liver tissue was cut into pieces and transferred to a
prechilled 2 ml tissue Dounce homogenizer (Sigma, #D8938-
1SET) with 2 ml of ice-cold homogenization buffer [500 mM
sucrose (Sigma, #69293), 1% BSA (Sigma, #V900933-100G) in
nuclease-free water, 20 mM Tris pH 8.0 (Sigma, #T2694-1L)
50 mM KCl (Sigma, #P5405), 10 mM MgCl2 (Sigma, #2670-
100g), 0.1% NP-40 (Invitrogen, #FNN0021), 1 × protease
inhibitor cocktail (Thermo Scientific, #87786), 0.1 mM DTT
(Sigma, #646563), and 0.12 U/µl RNasin Plus (Promega,
#N2115)]. The tissue was incubated on ice for 5 min and
homogenized by 25 strokes of the loose Dounce pestle, after
which the homogenate was filtered through a 70 μm cell strainer
(Sigma, #CLS431752-50EA). Next, the filtered homogenate was
further homogenized by 25 strokes of the tight pestle to release
nuclei, then filtered through a 40 μm cell strainer (Sigma,
#CLS431750-50EA) into a 15 ml centrifuge tube and
centrifuged at 500 g for 5 min. The sediment was resuspended
in 1.5 ml blocking buffer containing 1 × phosphate buffer saline
(PBS, Thermo Fisher Scientific, #10010049), 1% filtered sterilized
BSA, and 0.2 U/ml RNasin Plus by pipetting up and down gently
and centrifuged at 500 g for 5 min. The previous step was
repeated once. The nuclei were resuspended in 0.04% BSA of
PBS, then counted by DAPI (Beyotime, #C1006) staining and
diluted to a concentration of 1,000 nuclei/μl.

snRNA-Seq Library Preparation and
Sequencing
The single-nucleus RNA-seq libraries were prepared as
previously described (Liu et al., 2019) with DNBelab C Series
High-throughput Single-Cell RNA Library Preparation Kit (MGI,
940-000047-00). Briefly, the single cell suspension, barcoded
mRNA capture beads, and droplet generation oil were loaded
into the corresponding reservoirs on the chip for droplet
generation. The droplets were placed at room temperature for
20 min and then broken and collected by the bead filter. The
beads pellet was resuspended with 100 μl RT mix. The mixture
was then thermal cycled as follows: 42°C for 90 min, 10 cycles of
50°C for 2 min, 42°C for 2 min. The PCRmaster mix was added to
the beads pellet, and thermal cycled as follows: 95°C for 3 min, 15
cycles of 98°C for 20 s, 58°C for 20 s, 72°C for 3 min, and finally
72°C for 5 min. Amplified cDNAwas purified using 60 μl of DNA
clean beads (VAZYME, #N411-03). According to the
manufacturer protocol, the cDNA was subsequently
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fragmented by NEBNext dsDNA Fragmentase (New England
Biolabs, #M0348L). The indexed sequencing libraries were
constructed and sequenced using the DIPSEQ T10 sequencer
at the China National GeneBank.

Raw Sequencing Data Processing
The read structure was paired-end with read 1 covering 30 bases
in which the 1st–20th bases were cell barcodes, and the 21st–30th
bases were unique molecular identifier (UMI) sequences. The
read 2 contains 100 bp of transcript sequences. The PISA software
(https://github.com/shiquan/PISA) was used to parse raw reads
into FASTQ+ format based on the library structure and correct
cell barcodes with the allow list if the hamming distance is equal
or lower than one. The reformed reads were aligned to reference
genome GRCm38 (mm10) by using STAR (Dobin et al., 2013)
software. SAM files were transformed into BAM files and
annotated with a reference gene set using PISA software. The
UMIs in reads with the same cell barcode and gene annotation
containing 1 bp mismatch were corrected to the most supported
one. Then, we filtered the empty droplets by using R package
DropletUtils (Lun et al., 2019). A final cell-x-gene matrix was
generated by PISA too. The SoupX (Young and Behjati 2020)
software was harnessed to remove the influence of ambient RNA.

Doublet Filtering, Batch Effect Eliminating,
and Cell Clustering
The final cell-x-gene matrix was introduced into the Seurat
(v4.0.0) package to create a Seurat object followed by
normalization, scaled, and dimensionality reduce by the
CreateSeuratObject, NormalizeData, FindVariableFeatures,
ScaleData, and RunPCA functions in turn with default
parameters (Hao et al., 2021). Then, we performed the
DoubletFinder (v2.0.3) package to filter the doublet cells
(McGinnis et al., 2019). The CCA algorithm implemented by
the FindIntegrationAnchors and IntegrateData functions in
Seurat was used to integrate all the filtered objects from each
sample. Finally, taking advantage of the FindNeighbors and
FindClusters functions, we divided all cells into 20 clusters
covering the most common hepatic cell types.

Hepatocyte Trajectory Inference
About 10,000 hepatocytes were extracted from the integrated
Seurat object and introduced into Monocle 2 (v2.18.0) by the
as.CellDataSet function (Trapnell et al., 2014). Then, we reduced
the dimensions by using the reduceDimension function with the
method of DDRTree. At last, we inferred the pseudo-temporal
cell transition process and split cells into 13 states with the
orderCells function. Finally, the genes changing along
pseudotime were identified using the differentialGeneTest
function with the formula “~sm.ns (Pseudotime)”.

Regulatory Network Inference
To investigate the possible regulatory network intra- or inter-cell,
we performed transcript factor regulatory analysis and ligand-
receptor interaction analysis by using the pySCENIC (v0.11.2)
(Van de Sande et al., 2020) package and CellChat (v1.1.0) (Jin

et al., 2021) package, following the tutorials respectively. The
transcript factors regulative activity matrix, exported from the
pySCENIC pipeline, was inserted to the Seurat object as a new
assay, and the cell type-specific regulons were identified by using
the FindAllMarkers function of Seurat and visualized by the
DimPlot function of Seurat. In addition, the netVisual_circle
function visualized the ligand-receptor-interaction results.

Visualization
The marker gene dot plot and UniformManifold Approximation
and Projection (UMAP) were visualized by the DotPlot and
DimPlot functions of Seurat, respectively. The bar plot of GO
term enrichment was visualized by the barplot function of the
clusterProfiler package (v3.18.1) (Yu et al., 2012). The
plot_cell_trajectory function of Monocle 2 visualized the
trajectory embedding dot plot. Other dot plots, box plots,
violin plots, bar plots, and stream plots were visualized by
ggplot2 package (v3.3.3) with the color palette of ArchR
package (v1.0.1) (Hadley 2016; Granja et al., 2021).

RESULTS

snRNA-Seq Data Quality Control
To generate an overview of postnatal liver development at the
single-cell resolution, we performed snRNA-seq on the liver of
mice at P0, P3, P7, P14, and there are three biological replicates at
each time point (Figure 1A). First, we evaluated the raw
sequencing data quality through several parameters, including
the total reads number, the fraction of reads with a valid barcode,
and Q30 of reads and barcodes. Around 36,370 million of the raw
reads were filtered into a total of 26,610 million clean reads
(Supplementary Table 1). The average bases Q30 in reads and
barcodes were 87.6 and 92.0%, respectively. Following the raw
data preprocessing, we performed the data parsing, reads
mapping, alignment annotation, and matrix counting. To
further eliminate the effect of doublets in snRNA-seq data, we
performed one round of doublet filtering (Figure 1B).

In total, 82,967 single nucleus transcriptomes from the
39 snRNA-seq libraries passed quality control, with a median
number of 2,254 UMIs and 1,005 genes per cell (Figures 1C–E).
Besides, the principal component analysis (PCA) showed that
samples from the same time point clustered together and the P14
libraries were far away from the libraries of the other three time
points, consistent with previous reports (Gong et al., 2020;
Chembazhi et al., 2021), indicating the high library quality
and repeatability (Figure 1F).

Cell Types Composition During Postnatal
Liver Development
To investigate the cells composition and the functional diversity
of different cell types during postnatal liver development at
single-cell resolution, we integrated all snRNA-seq data from
four time points and clustered them into 28 clusters with
eliminated batch effect by using Seurat (Figure 2A;
Supplementary Figure 1). We further annotated the 28
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FIGURE 1 | Overview of the experimental design, data analysis workflow, and snRNA-seq data quality control. (A) The mouse liver samples of four different time
points after birth were collected for snRNA-seq profiling. (B) The analysis workflow for snRNA-seq profiles. (C) The violin plot for the UMIs number of each library. (D) The
violin plot for the genes number of each library. (E) The histogram for the cell numbers each time point. (F) The PCA analysis for all libraries.
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FIGURE 2 | The cell type composition of postnatal liver development. (A) The UMAP of snRNA-seq data displayed 28 clusters in four time points. (B) The cell
composition was dynamic at four time points. (C) The dot plot for cell-type-specific genes expression in 28 clusters. (D) The GO term enrichment analysis of differential
genes of two hepatic stellate clusters. (E) Highly expressed genes in hepatic stellate cell subtypes
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clusters to the known liver resident cell types based on the distinct
expression of canonical marker genes and analyzed the changes of
cell composition at different time points. (Figures 2B,C;
Supplementary Figure 2).

For hepatocytes, we identified nine subtypes at different
stages of differentiation. The hepatocytes 2, 3, and 6 were
immature cells in the early stage of postnatal liver
development. These cells highly expressed Afp, H19, and
Ahsg, which were essential factors for hepatocyte
differentiation and tumorigenesis in hepatocellular
carcinoma (HCC) (Lazarevich 2000; Kalabay et al., 2007;
Pope et al., 2017). The hepatocytes 1, 4, 5, 7, and 8 were
characterized by the high expression of genes related to liver
metabolic functions, and the proportion of these cells
increased gradually during postnatal liver development. The
genes exclusively expressed in hepatocyte 1 contained many
periportal exhibited features in the adult mouse liver, such as
Apsg, Sds, and Cyp2f2 (Halpern et al., 2017; Ben-Moshe et al.,
2019). On the contrary, the genes highly expressed in the
hepatocyte 5 contained more pericentral features of the liver
zonation, such as Glul, Cyp2e1, and Oat. The Pro. Hepatocyte
group consisted of proliferating hepatocytes and highly
expressed proliferation genes, such as Mki67 and Ube2c,
with those cells being more abundant in P3 and P7. The
Cholangiocytes were detected at all time points, specifically
expressing Spp1 and Onecut2. And the latter one may be a new
marker gene.

Regarding the liver resident non-parenchymal cells, including
LEC, HSC, Kupffer cell, we identified many cell subtypes and
compared their cell proportion at all time points. Besides, the
Kupffer cells increased significantly at P3 and P7 but decreased
sharply at P14, suggesting more immune challenges to respond to
drastic environmental changes after birth. On the other hand,
three LEC clusters, including liver sinusoidal endothelial cell
(LSEC), proliferating endothelial cell, and liver vessel
endothelial cell (LVEC), that specifically expressed Vwf were
discovered. For mesenchymal cells, we identified two HSCs
subtypes and fibroblast. The fibroblast distinctively expressed
Eln, Col1a1, and Gpm6a. In addition, both the HSC subtypes
expressed classical marker genes Dcn, Reln, and Fgfbi.

Interestingly, the stellate 2 exclusively expressedmany genes of
the protocadherin family, indicating a critical role in establishing
the specific cell-cell connections (Hirayama et al., 2012). Next, we
compared the differential expressed genes (DEGs) of these two
groups of HSCs and performed the Gene Ontology (GO) terms
enrichment analysis. We found that stellate 1 highly expressed
genes related to extracellular matrix organization and cell
adhesion, while the DEGs of stellate 2 were mainly enriched
in signaling pathways related to angiogenesis and hypoxia
response (Figure 2D). The cluster stellate 2 displayed a
transitional pattern in UMAP spanning LSEC to Stellate 1,
indicating its composition complexity. For a deeper
understanding of stellate 2, we regrouped it into three
subgroups and identified the marker genes in each population
(Figure 2E). There were two new heterogeneous cell types in
these three subgroups, one of which expressing Cd5l and Marco
was annotated as Stellate 2/Kupffer, which was recently

mentioned by a published paper (Liang et al., 2022). Another
heterozygous group expressing Kdr and Egfl7 was annotated as
Stellate 2/LSEC. Further, we analyzed the ligand-receptor
interactions between stellate and other cell types and found
the multiplex functions of these two heterogeneous subgroups
(Supplementary Figure 3). For example, the VEGF signaling
pathway is enriched in Stellate 2/LSEC cell and LSEC; the AGT
signaling pathway is more enriched in Stellate 2/Kupffer cell and
Kupffer. These results further suggest that the newly discovered
cell types are reliable. Moreover, we found the CDH signaling
pathway enriched among hepatocytes, proliferating hepatocytes,
and stellate 2, indicating the effect of stellate 2 on hepatocyte
proliferation.

We also identified many NPCs cell types of hematopoietic
origin that can be grouped into three main lineages: lymphoid,
myeloid, and erythroid. We observed several clusters of B cells
at different stages of differentiation, as characterized by the
expression of genes involved in regulating B cells
differentiation and maturation, such as Pax5, Cd79b, and
Cd19. In our study, T cells were also found expressing Ptprc
(Cd45). The myeloid cells identified in our datasets consisted
of common myeloid progenitor (CMP), neutrophils,
monocytes, and dendritic cells, expressing classic marker
genes, such as Mpo, S100a8, Ccr2, and H2-Aa, respectively.
The erythroid lineage contained erythroblast and immature
erythrocyte, both of which highly expressed Hba-a1 and Hbb-
bt. The erythroblast, also highly expressed Gypa and Gata1 are
a critical determinant of erythrocyte differentiation (Cao et al.,
2020). In addition, we observed the expression of genes
associated with platelet formation, such as Pf4 and Plek, in
megakaryocytes (Italiano and Shivdasani 2003) (Figure 2C;
Supplementary Figure 2). Almost all these developing
hematopoietic cells except for T cells gradually decreased
during liver development and eventually disappeared by
P14, which is consistent with the conclusion of a paper
published in the journal of Hepatology in 2018 (Nakagaki
et al., 2018).

Cellular Trajectory of Hepatocyte
Differentiation
To further characterize the hepatocyte differentiation process
and the liver metabolic function dynamics, we used Monocle 2
to establish the developing trajectory and calculated the
pseudotime for each nucleus (Figure 3A). There was a clear
differentiation trajectory from left to right, consisting of three
branching points that divide all hepatocytes into 7 states
(Figure 3B). In addition, the pseudotime distribution and
cell state composition across four time points displayed
great coordination, further confirming the validity of our
trajectory analysis (Figures 3C,D). Furthermore, we
analyzed the variation of a series of essential genes related
to liver development and found that the expression of marker
genes of immature hepatocytes decreased gradually along the
trajectory, such as Afp, Ahsg, and H19. In contrast, the
expression of liver metabolism-related genes increased
significantly, such as Cyp3a59,Cyp2a22, Cyp27a1, and
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FIGURE 3 | The differentiation trajectory of hepatocytes. (A) The trajectory of hepatocyte development from P0 to P14 with Monocle 2. The colors from blue to
yellow indicate an increased pseudotime. (B) The trajectory is the same as (A). The colors represent 7 different states. (C) The boxplot for the pseudotime distribution in
four time points. (D) The histogram displayed the hepatocyte numbers of 7 states in four time points. (E) The gene expression changes patterns along the trajectory. (F)
The pathway changes patterns along the trajectory.
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Cyp3a25 (Figure 3E). Therefore, the trajectory reconstructed
the procession of hepatocyte maturation.

Moreover, we investigated the pathway changes along the
differentiation trajectory of hepatocytes (Figure 3F). The
dynamic of these pathways can be further divided into three
main categories: 1) The decreased pathways including
glycolysis/gluconeogenesis, oxidative phosphorylation, and
HIF-1 signaling pathway, possibly owing to the changes of
oxygen and nutrients supply after birth (Bohme et al., 1983); 2)
Pathways that increased in P3 and P7 and decreased in P14,
including cell cycle and WNT signaling pathway, which
regulates the proliferative capacity of hepatocytes; 3) The
increased pathways including the JAK-STAT signaling
pathway, retinol metabolism, and bile secretion, that are
mainly involved in the acquisition of metabolic function of
hepatocytes post birth.

Cell Type-Specific Transcription Factor
Activity Analysis
Finally, we investigate the essential regulatory genes in the
mouse liver development process after birth. We performed
single-cell regulatory network inference and clustering
(SCENIC) analysis (Aibar et al., 2017). And we captured 12
cell type-specific transcription factors (Regulon) that may
significantly affect the fate of hepatic cells and liver function
in adults (Supplementary Figure 4). For instance, FOXA2
(Hepatocyte Nuclear Factor 3-Beta, HNF3B), HNF4A, and
SOX9 are essential in determining the differentiation of
hepatoblast (Gordillo et al., 2015), had higher regulative
activity in hepatocytes or cholangiocytes. Besides, NR1H4,
NR1I2, and CEBPB can affect multiple liver functions,
including bile acid synthesis and transport, detoxification,
and regeneration (Milnes et al., 2008; Jakobsen et al., 2013;
Haeusler et al., 2016) had different regulative activity in
different hepatocyte subgroups, implying their various
functions in hepatocyte development. For the liver non-
parenchymal cells, we found that: TCF4 is enriched explicitly
in LEC; MAFB is enriched explicitly in Kupffer cell; GATA6 and
FOXF1 are enriched in fibroblast and stellate, 1 respectively.
Mainly TFAP4 was extremely cell type-specific in stellate 2, a
gene that promotes tumorigenic capability and activates the
Wnt/β-catenin pathway in hepatocellular carcinoma in previous
studies (Zhao and Duncan 2005; Song et al., 2018).

CONCLUSION

In summary, we profiled the single-nucleus transcriptome of
mouse postnatal liver development at four time points,
identified 28 different hepatic cell types, and investigated
the dynamic of cells composition. Interestingly, we
identified a new subtype of hepatic stellate cells that
exclusively expressed many genes of the protocadherin
family, such as Pcdhg3 and Pcdhg11, which may be of great
importance in the establishment of specific cell-cell
connections. Furthermore, by regrouping and annotation,

we obtained two new heterogeneous cell subtypes in stellate
2, respectively expressed markers of LEC and Kupffer cell,
including Egfl7, Kdr, Cd5l, andMacro. Moreover, the CellChat
analysis showed that the CDH signaling pathway only
enriched among hepatocyte clusters and stellate 2, which
may influence the proliferation of hepatocyte. For hepatic
parenchyme cell, we identified several immature hepatocyte
subtypes and cholangiocyte, respectively highly expressed Afp,
Ahsg, Spp1, and Onecut2. But we do not find the liver stem cell
population (hepatoblast) by checked the expression levels of
classic marker genes, such as Dlk1, Nope, Cd24a, Prom1 and
Epcam, which is consistent with the known fact that
hepatoblast differentiation mainly occurs from E13.5 to
E18.5 during mouse embryonic development (Miyajima
et al., 2014; Gordillo et al., 2015; So et al., 2020; Wang
et al., 2020). Consider that two important recent studies by
lineage tracing in mice have reported that there are no adult
stem cells in the liver, but that there are differences in the
regional hepatocyte proliferation of the liver lobule (He et al.,
2021; Wei et al., 2021), so we think that there are only
immature hepatic cells in the mouse liver after birth
according to the data of this study, which requires further
experimental verification by assays including chimera or
organoid (Leeb and Wutz 2011; Leeb and Wutz 2012;
Takebe et al., 2017; Li et al., 2018). Such immature hepatic
cells during liver development are very important for the study
of expanded culture of hepatocytes in vitro, organoid and
disease models, because they have some similar
characteristics to hepatocyte progenitor cells and strong
cellular plasticity (Li et al., 2020). In addition, we found
that several signaling pathways changed along the
hepatocytic differentiation trajectory, such as glycolysis/
gluconeogenesis, oxidative phosphorylation, bile secretion,
JAK-STAT, WNT signaling pathway, among others. Finally,
we identified key transcription factors activity enriched in
different cell clusters, including FOXA2 (HNF3B), HNF4A,
and SOX9. Both FOXA2 and HNF4A are pioneer hepatocyte
transcription factors for the differentiation of embryonic stem
cell from the foregut endoderm into hepatoblast during
embryonic development, which activated liver-specific genes
such as Alb and Ttr (Olsen and Jeffery 1997; Alder et al., 2014;
Gordillo et al., 2015). SOX9 significantly affect hepatoblast
differentiated into cholangiocyte and has been used as a
marker gene for liver progenitor cell in certain conditions
for a period of time (Antoniou et al., 2009; Tarlow et al., 2014).
In a word, this dataset will be a valuable resource to understand
the fundamental biological events in postnatal liver
development, such as the differentiation process of
hepatocytes, angiogenesis, and the postnatal acquisition of
metabolic functions.
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