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ABSTRACT: Thermodynamics plays a crucial role in regulating the metabolic processes
in all living organisms. Accurate determination of biochemical and biophysical properties is
important to understand, analyze, and synthetically design such metabolic processes for
engineered systems. In this work, we extensively performed first-principles quantum
mechanical calculations to assess its accuracy in estimating free energy of biochemical
reactions and developed automated quantum-chemistry (QC) pipeline (https://appdev.
kbase.us/narrative/45710) for the prediction of thermodynamics parameters of
biochemical reactions. We benchmark the QC methods based on density functional
theory (DFT) against different basis sets, solvation models, pH, and exchange-correlation
functionals using the known thermodynamic properties from the NIST database. Our
results show that QC calculations when combined with simple calibration yield a mean
absolute error in the range of 1.60−2.27 kcal/mol for different exchange-correlation
functionals, which is comparable to the error in the experimental measurements. This
accuracy over a diverse set of metabolic reactions is unprecedented and near the benchmark chemical accuracy of 1 kcal/mol that is
usually desired from DFT calculations.

■ INTRODUCTION

Thermodynamics provides a quantitative framework for
modeling metabolic processes at a fundamental level to
understand design principles of natural and synthetically
engineered microbial systems.1−5 To accurately use a
thermodynamic framework and to better understand microbes
and microbial communities, it requires a comprehensive,
precise, and accurate prediction of thermodynamic parameters
for all of the relevant metabolites and metabolic reactions.
Comprehensive thermodynamic data provides the foundation
for the development of thermodynamically constrained flux
balance analysis of metabolism6−8 enabling prediction of
reaction rates and metabolite concentration ranges consistent
with the laws of thermodynamics. Unfortunately, experimentally
derived values for thermochemical parameters, such as the
standard Gibbs free energy change of biochemical reactions
(ΔGr′°), have been limited to a small number of biochemical
reactions.9 Thus, there is currently a gap in our knowledge of
thermochemical parameters for diverse biological reactions.
This information gap limits our ability to rationally design and
engineer microbes for various applications.
Accurate and efficient determination of thermochemical

parameters of metabolites, cofactors, and metabolic reactions
from first-principles quantum-chemistry method modeling and
simulation is a long-standing problem with implications in drug
discovery, biofuels processing, and synthetic biology.10 In the
metabolic modeling community, thermodynamic parameters

such as the standard Gibbs free energy of formation for
metabolites (ΔfG′) are generally estimated using empirical-
component or group-contribution methods that are subse-
quently used to calculate standard reaction-free energies
(ΔGr′°).11−17 However, for some secondary metabolites and
cofactors, such anempirical approach is not possible to estimate
parameters due to the lack of experimental data needed to
determine all required group-contribution values. These
empirical methods use numerical approximations to account
for crucial molecular-level information and relevant properties
such as solvation effect, ionic strength, pH, and different
protonation states. For many metabolites, Gibbs energy is not
equal to the sum of the Gibbs energies of their constituent
chemical moieties, leading to inaccurate group-contribution
estimates.18 Other metabolites may share few, if any, moieties
with those in the training set, so group-contribution estimates
may be imprecise or impossible. All group-contributionmethods
are currently based on an a priori heuristic definition of each
chemical moiety, but such moieties may incompletely represent
the metabolites to be estimated or overestimate the number of
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moieties transformed by a chemical reaction leading to large
uncertainties in estimates of thermodynamic parameters.
Using first-principles quantum mechanical methods for

predicting thermodynamic parameters offers several advantages:
they are not limited by the available experimental data, thus
reducing the risk of overfitting and providing a consistent
approach throughout all metabolic processes. Additionally, such
methods can take advantage of an established hierarchy of
increasingly accurate (yet computationally expensive) quantum
chemical (QC) methods. Some effort19,20 has been made in the
past to estimate the thermodynamical parameters of biomole-
cules using QC calculations based on the density functional
theory (DFT);21,22 however, such studies were limited to only a
small subset of reactions and ignored the challenging and more
complex metabolites and reactions.23,24 Moreover, such studies
were limited only to a particular choice of DFT exchange-
correlation functionals and a basis set. Jinich et al.10 calculated
the thermodynamic redox potentials of bioreactions directly
using the single-point energies thus ignoring the vibrational
contribution to the Gibbs free energy of metabolites. An
extensive benchmark study of DFT functionals for studying
main group thermochemistry on GMTKN55 database was
performed by Goerigk et al.,25,26 where they proposed double-
hybrid DSD-BLYP-D3(BJ) as the best performing functional.
They also proposed SCAN-D3(BJ) as the best performingmeta-
GGA functionals among all. Extension of similar studies to
modern and range of other functionals have also been reported
in the literature.27−30 Other studies have used experimental data
to calibrate the first-principles predicted thermodynamical
parameters to improve the accuracy.10 Despite these preliminary
studies, the thermodynamic properties of complex cofactors,
metabolites, corresponding biochemical reactions, many of
which occur in central carbon metabolism, have yet to be
computed using quantum mechanics to-date.
In this study, we used a highly parallelized in-house developed

computational chemistry code, NWChem,31 to investigate the
current state-of-the-art DFT for predicting reaction-free
energies, ΔGr′° of diverse biological reactions. In this context,
we first benchmark the performance of different basis sets,
solvation models, and diverse exchange-correlation functionals
in current state-of-the-art DFT for predicting Gibbs free energy
change (ΔGr′°) over a large and diverse set of metabolic reactions
with known experimental references. To understand the impact
of pH for calculating ΔGr′° from DFT simulations, we compute
and compare ΔGr′° values at pH = 0 and 7. In addition, we
examine the performance of DFT for different categories of
biological reactions typically defined by Enzyme Commission
(EC) numbers. We show that our best QC approach can predict
ΔGr′° for diverse metabolic reactions with a mean absolute error
of ∼1.50 kcal/mol. We also highlight unique challenges
associated with DFT approaches and provide possible solutions
to overcome those challenges. As a result, we developed a
quantum-chemistry-based workflow for automatically perform-
ing nonempirical high-throughput calculations for estimating
thermodynamics of metabolic reactions and metabolites and we
integrated that computational workflow within DOE Systems
Biology Knowledgebase (KBase).8

■ METHODS
NWChem Computational Chemistry Calculations

Using ModelSEED Data. All calculations were performed
using the massively parallel NWChem-7.0.031 quantum-
chemistry code embedded within our workflow for ab initio

prediction of Gibbs free energies of reactants and products in a
given reaction. Our workflow starts with the SMILES strings of
the metabolites from the ModelSEED database32 and uses
Chemaxon33 to generate the major microspecies of a given
SMILES string at a desired pH (pH = 0 or 7). Three-
dimensional molecular geometries were generated from these
SMILES strings using RDkit34 and then geometrically optimized
using dispersion35-corrected B3LYP36 (B3LYP-D3) exchange-
correlation functionals and 6-31G* as the basis set.37,38 Since
metabolic reactions occur in an aqueous phase (more precisely
in a lipid) in biological systems, the effect of solvation (by water)
was considered using an implicit solvation model called the
solvation model density (SMD).39 The ground state of the DFT
calculations for eachmetabolite was confirmed by doing stability
analysis on the calculated frequencies. The standard Gibbs free
energy of each metabolite was calculated by taking into account
the entropy (S) and enthalpy (H) contribution using the
expression (G = H − TS), where T = 298.15 K. We note that
vibrational frequencies calculated at B3LYP-D3/6-31G* level of
theory were used to calculate the correction to the single-point
electronic energy to get the standard Gibb’s free energy used for
the subsequent evaluations. The standard Gibbs free energies of
metabolites were stoichiometrically combined to predict the
standard free energy change of reactions (ΔGr′°) for 300
biological reactions, which were then compared with the existing
experimental references from theNational Institute of Standards
and Technology Thermodynamics of Enzyme-catalyzed Re-
actions database (NIST).9 For the thermal analysis, we used 1M
concentration for all of the metabolites and 55.5 M for water.
The Gibbs free energy of −268.61 kcal/mol was used as the
solvation energy of a proton.19 For some of the reactions,
multiple experimental references exist in the NIST data. For
such reactions, an average of the available ΔGr′° values was used
as a reference. All of the calculations were performed using
Cascade supercomputer at Environmental Molecular Sciences
Laboratory, DOE Office of Science User Facility sponsored by
the Office of Biological and Environmental Research.

Effect of Different Exchange-Correlation Functionals
and Basis Set. To understand the effect of exchange-
correlation functionals for predicting ΔGr′°, we have used
seven diverse exchange-correlation functionals from the Jacob’s
Ladder shown in Figure 1 that ranges from the pure generalized
gradient approximation (GGA, PBE),40 to hybrid functionals
(PBE041 and B3LYP42), to meta-GGA functionals (M06,43

SCAN,44 SCAN045), along with a range-separated functional
(LC-ωPBE)46 and a double hybrid (B2PLYP).47 PBE is a pure
GGA functional proposed by Perdew, Burke, and Ernzernof.

Figure 1. Jacob’s ladder for exchange-correlation functionals in DFT.
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PBE0 is the PBE hybrid functional with 75% of its exchange
energy contributed by PBE exchange and 25% from Hartree−
Fock (HF) exchange, with correlation from the PBE functional.
The meta-GGA functionals M06 have a 27% HF exchange
mixed with the DFT exchange. LC-ωPBE is a long-range-
corrected GGA functional that partitions exchange interactions
into short- and long-range terms in which short-range exchange
interactions are described with a PBE exchange, while long-
range interactions are treated by an HF exchange. SCAN is a
recently proposed meta-GGA functional that works well with a
range of properties because of its ability to satisfy most of the
system constraints. SCAN0 is a hybrid of SCAN and B2PLYP is
a double hybrid that uses second-order perturbation from MP2
for the correlation part of energy in combination with a GGA
correlation.47 These functionals with larger basis sets are
computationally demanding for geometry optimization. To
circumvent the computational cost required for optimizing the
molecular geometry and subsequent frequency calculations
using larger basis sets, only single-point solution-phase
calculations were carried out for larger basis sets on top of the
optimized geometry from B3LYP/6-31G* basis set.37,38 The
ΔGr′° at larger basis sets (6-311++G**)38,48,49 were calculated
using the thermal and entropy contributions from the small basis
set. To benchmark different approaches for calculatingΔGr′°, we
performed DFT calculations of metabolites using a SMILES
representation of major microspecies generated at pH = 0 and 7.
We extracted the Gibbs free energies of reactions from the Gibbs
free energy of metabolites directly computed at pH = 0 and 7. To
measure the performance of each of the methods discussed
above, we used mean absolute error (MAE) as defined by eq 1 as
a metric.

∑= | − |
N

MAE
1

DFT expt.
i

i i
(1)

NIST Experimental Data.Our benchmark data set includes
300 reactions from the NIST database9 with known
experimental references. Experimental Gibbs free energies of
reactions are derived from the measured equilibrium constant
(K) (using ΔGr′° = −nRT ln (K)). Although the NIST data set
covers only a relatively a small number of the known
biochemical reactions, it is diverse both qualitatively and
quantitatively, with EC numbers varying from 1 to 6, where
the experimental reference for ΔGr′° varies from −10 to +12
kcal/mol. EC numbers are used to classify the unique metabolic
reactions numerically based on the reaction they catalyze. Our
benchmark data set contains 65 oxidoreductase reactions
grouped in EC category 1 (EC1), 84 transferase reactions in
category 2 (EC2), 37 hydrolase reactions in category 3 (EC3),
44 lyases reactions in category 4 (EC4), 66 isomerase reaction in
category 5 (EC5), and four ligase reactions in category 6 (EC6).
Some reactions in the NIST database have multiple
experimental references measured at different experimental
conditions such as pH, ionic strength, etc. For reactions with
multiple references, the average of transformed ΔGr′° values is
calculated. This introduces the noise in the experimental
reference data. We minimized such condition dependence in
the reference NIST data using inverse Legendre trans-
formation.50 We note that, although inverse Legendre trans-
formation reduces the noise in the reference data, it cannot
completely erase it (see Figure S3 for details). Such transformed
ΔGr′° has a mean experimental measurement error of 0.37 kcal/
mol and is used as an experimental reference.

Development of KBase App. Finally, we integrated our
automated pipeline to calculate metabolic ΔGr′° with the DOE
Systems Biology Knowledgebase8 (KBase) module to develop a
QC-based web-accessible application (App). Our narrative
integrates a set of modules, each of which are self-contained and
independently validated. It uses a benchmarkedQCmethod and
provides open-source access as a ThermoCalculator to calculate
ΔGr′° of metabolic reactions. For this, we have used snakemake51

as an underlying package for workflow management to bind
together different Python-based components ensuring scal-
ability, portability, and fault tolerance. Within the app, the
ModelSEED database is used for describing the biochemical
reactions that are typically utilized to construct a new genome-
scale model for a given organism. Our app takes ModelSEED32

reaction IDs or a reaction as an input and generates a metabolite
list of ModelSEED compounds and returns QC-predicted ΔGr′°
as well as ΔfG′ as an output.
This tool not only provides an accurate prediction ofΔGr′° but

also increases access of QC methods to a community where
users do not have access to the huge computational resources
required for these calculations. ThermoCalculator tools like this
are very critical for synthetic biology to predict the metabolic
fluxes and metabolites levels as well as to determine the growth
and engineering strategies for optimizing the production of
biofuels and bioproduct precursors.

■ RESULTS AND DISCUSSION
Assessment of the Quantum Mechanical Method. We

performed the analysis by splitting our entire data set into two
reaction sets (see Table 1) based on the molecular size and

challenges they offer to calculations in predicting ΔGr′° of
metabolic reactions. The first subset (hereafter called Set-1)
contains 150 reactions and primarily consists of small tomedium
size metabolites that are more amenable for quantum
mechanical calculations. Set-1 is diverse and consists of all
possible EC-classes with metabolite charges varying from 0 to
−4. Set-2 consists of another 150 reactions whose ΔGr′° values
are relatively challenging to predict accurately based on the first-
principles quantum mechanical methods. This is due to the fact
that Set-2 contains some relatively large, and more negatively
charged metabolites, which are known to be problematic for
quantum mechanical calculations because of a high computa-
tional cost associated and other reasons discussed below.19 The
error in predicting ΔfG′ of these complex metabolites is further
compounded when using these values to compute ΔGr′° for the
Set-2 reactions that often involve multiple complex metabolites.
Based on our extensive reaction data analysis, this seems to be
more predominant on the Set-2 reactions where each reaction

Table 1. Classification of Biochemical Reactions Considered
in Set-1 and Set-2 into Different Categories Using EC
Numbers

number of reactions

EC-category Set-1 Set-2

1 32 65
2 41 84
3 14 37
4 24 44
5 37 66
6 2 4
total 150 300
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generally contains more than one reactant or product. Only few
reactions with a single reactant or product have such large errors
associated. Part of the error originates from the huge
conformational space that exists for each of the metabolites in
these reactions and the fact that two very different conformers
may be generated for a reactant and product in a reaction.
As a first step, we assessed the effect of basis sets on the ΔGr′°

of Set-1 using B3LYP as the exchange-correlation functionals
with 6-31G* and 6-311++G** as the basis sets52 (see Table 2).

These are two typical basis sets used in work reported in the
literature where the latter has a high computational cost. With
the 6-31G* as the basis set, we obtained an MAE of 4.69 kcal/
mol when compared to experimental references, whereas the
MAE was 3.69 kcal/mol when the 6-311++G** basis set was
applied. A similar error of 4.18 kcal/mol was reported19 with
B3LYP/6-31G* for 113 NIST reactions in EC-categories 2, 4,
and 5 in earlier studies. Further increasing the size of the basis set
increases the computational cost without significant improve-
ment in the resultingΔGr′°.5353 Therefore, we have used 6-311+
+G** as the working basis set for this work. Subsequently, we
analyzed the sensitivity of ΔGr′° on the solvation method using
COSMO54 and SMD39 continuum solvation models at the
B3LYP/6-311++G** level of theory.52 Our results show that
changing the solvation model from COSMO to SMD improves
the resulting ΔGr′° MAE from 4.35 to 3.69 kcal/mol. Thus, for
the rest of the work reported here, we used SMD as the implicit
solvation model unless mentioned otherwise.
As a next step, we analyzed the performance of different

exchange-correlation functionals for calculating the ΔGr′°. The
violin plots in Figure 2 indicate that the accuracy ofΔGr′° for Set-
1 reactions depends strongly on the particular choice of
exchange-correlation functionals. Most importantly, among all

functionals studied, SCAN was the best performer with an MAE
of 1.74 kcal/mol. The reason is that SCAN represents charged
species more accurately with the smallest overbinding tendency
of excess charge in the molecules among all approximate
functionals.55 On the other hand, the overbinding tendency is
relatively large in other functionals that show detrimental effects
on calculated properties including free energies of the molecules
for the charged species. Moreover, SCAN is more robust by
construction because it satisfies all of the constraints needed of a
meta-GGA functional. The SCAN error of 1.74 kcal/mol is close
to the chemical accuracy (1 kcal/mol) desired from DFT
calculations and this level of accuracy from quantum chemical
methods is unprecedented in such a diverse set of biological
reactions.
SCAN0 follows parent SCAN with an MAE of 2.25 kcal/mol.

As shown in Figure 2, all other functionals provide relatively
large error as compared to SCAN. Meta-GGA functional M06
has an MAE result almost twice that from SCAN. With
parameter-free PBE functional, we get an MAE of 2.93 kcal/mol
and its hybrid (PBE0) further improves the MAE to 2.79 kcal/
mol. Such improvement might be the result of self-interaction
error cancellation in PBE0 when compared to PBE. B3LYP, LC-
ωPBE, and double-hybrid B2PLYP functionals yield relatively
large error compared to the other functionals. The improvement
inΔGr′° is very significant (almost by 200%, 3.43 kcal/mol) as we
go fromB2PLYP to SCAN. The performance of double hybrid is
in stark contrast with the literature,25,26 where other variants of
double hybrids yield smaller MAE for calculating reaction
energies. However, we note that cited work directly calculates
the reaction energies (not reaction-free energy) only from the
electronic energies of single-point calculation performed in a
gaseous phase, thus ignoring the correction to the electronic
energies from solvation and from vibrational frequency
calculations. Moreover, we take into account such correction
while also considering the effect of the solvent. This could be the
reason for the observed discrepancy between our work and
literature. Our calculations also highlight the typical distribution
of error in the data set for different functionals (Figure 2). It is
important to mention that the error inΔGr′° is large for all of the
functionals employed except SCAN and its hybrid. This can also
be seen from the long tails in the violin plots. The predicted large
error associated with such functionals is consistent with previous

Table 2. Effects of Basis Set and the Solvation Model onΔGr′°
in Set-1

MAE (kcal/mol)

basis set
6-31G* 4.69
6-311++G** 3.69

solvation model
COSMO 4.35
SMD 3.69

Figure 2. Violin plot showing an error in reaction-free energy (ΔGr′°) for Set-1 for different DFT exchange-correlation functionals compared to an
experimental reference. The mean absolute error (MAE, kcal/mol) for each functional is shown in labels.
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studies where they reported a large error of 4.18 kcal/mol using
B3LYP19 for a small subset of reactions.
Effect of Metabolite Charges on Quantum-Chemistry

Calculations. We also observed that the accuracy of DFT
depends upon the charges of the metabolites involved in the
reactions (see Figure 3). In general, the MAE in ΔGr′° with our
best performing functional SCAN gradually increases as the
negative charge on metabolites increases from−1 to−4 in those
reactions. In general, DFT yields a relatively small error, when a
particular reaction has a positive charge or a small negative
charge on metabolites and the error increases if the reaction has
multiple large negatively charged metabolites, as shown in
Figure 3. This is to some extent, the artifact of DFT calculations
and is a well-known issue in DFT-based quantum-chemistry
methods.56,57 In this context, the nonphysical self-interaction
error is one of the limitations which particularly deteriorate the
DFT performance for negatively charged species.56,57 Self-
interaction error is known to overbind excess electrons in
negatively charged molecules, with consequences in calculated
properties55 such as the binding affinity or the ionization energy.
Self-interaction-free DFT functionals have shown to improve
the energy differences among negatively charged species.58

However, these methods are computationally not possible (as of
now) for large metabolites involved in our benchmark.58 Some
of the self-interaction errors can be removed using the hybrid-
exchange-correlation functionals as used in our work which
include a fraction of Hartree−Fock exchange that cancels self-
interaction error to some extent. This is reflected in a
comparative analysis of ΔGr′° between PBE and PBE0
functional, where the performance improves as we move from
PBE to PBE0 (Figure 2). We note that this is surprisingly not
observed in the case of SCAN and where its hybrid performance
slightly reduces. Such reduction in performance in the case of
SCAN0 compared to SCAN has been reported for several
properties45 including isodesmic reaction energies of n-alkanes
to ethane. The error with negatively charged metabolites can be
eliminated or improved further using the more accurate wave-
function-based methods59,60 (such as couple-cluster singlet
doublet CCSD, methods); however, the computational cost
associated with those methods is huge61 with NWChem.

Reaction Associated with Metabolic Reaction Cate-
gories (Enzyme Commission, EC). The accuracy of DFT for
predicting ΔGr′° of metabolic reactions varies between reaction
categories. Figure 4 shows the error distribution in each EC

Figure 3. Violin plot showing error in SCAN ΔGr′° (kcal/mol) for Set-1 as compared to experimental reference for different charges on metabolites.
Labels display a maximum negative charge on metabolites involved in the reaction along with respective MAEs.

Figure 4.Violin plots showing error in SCANΔGr′° for Set-1 for different EC compared to the experimental reference.MAE values in terms of kcal/mol
for each EC are shown in labels.
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category of the Set-1 reactions with SCAN as the underlying
theory. For the majority of the reactions, the errors lie within the
±4 kcal/mol. In general, EC1, EC2, and EC4 reactions are the
most challenging class of metabolic reactions for accurate
prediction of ΔGr′° from DFT followed by EC3 and EC5. We
note that these metabolic reactions are mostly reversible and any
change in reaction direction will not affect the MAE presented.
The smallest MAE of 1.31 kcal/mol was obtained for EC-5,
which generally consists of only one reactant and product in a
reaction in contrast to other EC categories where reactants and
products have multiple metabolites.
We also analyzed the performance of each DFT functional for

each category of reactions as shown in the bar diagram (see
Figure S1). SCAN consistently gives a smaller error in ΔGr′°
between different EC-categories except for EC-6, where SCAN0
performs more accurately with an MAE of 1.37 kcal/mol.
Performance of DFT in Set-1 shows that DFT can achieve close
to benchmark chemical accuracy (1 kcal/mol) to predict ΔGr′°
for diverse biological reactions. However, this trend does not
transfer to a larger set of reactions involving larger, more
negatively charged metabolites for the several reasons discussed
hereafter.
Then, we extended our study to the larger data set consisting

of larger and more complex metabolic reactions included in Set-
2. The general trend for the accuracy of different exchange-
correlation functionals remains the same as we observed for Set-
1. However, the error increases significantly compared to Set-1,
particularly for our best performing functionals, SCAN (see
Table 3). Among all of the functionals for Set-2, SCAN is best

with an MAE of 3.48 kcal/mol followed by SCAN0, PBE, LC-
ωPBE, M06, and PBE0 with MAE values of 4.00, 4.13, 4.42,
4.42, and 5.17 kcal/mol, respectively. B3LYP and B2PLYP give
relatively large errors compared to SCAN. The poor perform-
ance of some hybrid functionals like B3LYP and B2PLYP
compared to parameter-free PBE functionals shows that higher
level functionals in Jacobs ladder do not necessarily improve the
prediction ofΔGr′°. Overall, our results show that SCAN is most
accurate for predicting ΔGr′° for a diverse set of reactions.
In Set-2, none of the DFT functionals provided a small

enough error to achieve chemical accuracy. The large error
stems from many different factors that we discuss below. First
and foremost, ΔGr′° is extremely sensitive to individual
metabolites and complexity increases as we increase the number
of metabolites in the reaction. This is the case observed from our
work, where we see that for reactions in EC-class 5, we have
generally only one metabolite in each side of the reaction and
hence a small error. Our predicted ΔGr′° analysis further reveals
that the different converged conformers of the related
metabolites can provide very different free energy of formation

adding huge error in the predictedΔGr′°. For the case of NAD+/
NADH (same for ATP/ADP/AMP), if we do not generate the
NAD+ structure from an optimized NADH structure, it can lead
to significant error. In addition, to reduce the error, where ΔGr′°
deviates by a large number compared to the experiment, we
explored the conformer space of the molecule to look for other
more stable conformers of a given metabolite. When possible we
used such lowest energy conformers to calculate ΔGr′°. This
approach reduced the deviation in ΔGr′° for some reactions.

Calibrated Quantum-Chemistry Calculations. The
MAEs obtained for Set-2 are relatively large for DFT to be
routinely and reliably used for predicting ΔGr′° across the range
of metabolic reactions. One way to reduce the large errors is to
use alternative and more accurate QC calculations such as the
multireference wave functions-based methods. However, these
methods are computationally very demanding/or even impos-
sible for some of these large species. Alternatively, another way
to reduce such relatively large errors without performing
additional computationally expensive calculations is by calibrat-
ing DFT-predicted ΔGr′° with simple linear regressions. This
approach has been used in the past for reducing the large error
associated with QC prediction of reduction potentials for a
particular category of reductase reactions.10,62 In that work,10

DFT-predicted reduction potentials were calibrated by fitting
Alberty’s empirically predicted numbers to corresponding
experimental references. In our work, we fit the SCAN-DFT
calculated ΔGr′° values with the corresponding experimental
references and extrapolate such fittings to reduce the error
obtained from all functionals. We see a significant improvement
in accuracy when QC-predicted ΔGr′° are corrected using the
equation of best fit. Calibrated QC values reduce the MAE from
the range of 3.48−6.26 to 2.22−3.17 kcal/mol for different
functionals, as shown in Table 4.

Further improvement is observed when the calibration is
performed individually for each reaction category, thus reducing
the MAE to the range of 1.64−2.27 kcal/mol (see Figure S2 for
violin plot). The trend observed in MAEs using calibrated QC
calculations is similar to the trend observed from the
uncalibrated QC calculations, with SCAN/SCAN0 being the
most accurate and the B2PLYP being the least accurate among
all functionals employed in this study. With SCAN/SCAN0,
individual calibration of the entire Set-2 reduces the MAE to
1.64/1.60 kcal/mol, which is similar to what we obtained from
QC calculations without any calibration for Set-1. The scatter
plots of EC-calibrated ΔGr′° with the corresponding exper-
imental reference are shown in Figure 5. It shows that calibrated
QC calculations provide consistent results across all EC
categories, with few outliers in each EC category.

Table 3.MAE (kcal/mol) for Different Exchange-Correlation
Functionals on Set-2

functionals MAE

PBE 4.13
B3LYP 5.07
PBE0 5.17
M06 4.42
SCAN 3.48
SCAN0 4.00
LC-ωPBE 4.42
B2PLYP 6.26

Table 4. MAE (kcal/mol) for Different Exchange-Correlation
Functionals before and after Calibration in Set-2

functionals
MAE before
calibration

MAE after
calibration

MAE EC
calibrated

PBE 4.13 2.48 1.91
B3LYP 5.07 2.58 1.99
PBE0 5.17 2.65 1.76
M06 4.42 2.49 1.81
SCAN 3.48 2.22 1.64
SCAN0 4.00 2.19 1.60
LC-ωPBE 4.42 2.48 1.74
B2PLYP 6.26 3.17 2.27
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This improvement using calibrations is consistent across all of
the functionals and MAEs for all of the functionals employed
before and after calibration for Set-2 (see Table 4). We observed
that based on our preliminary calculations, further improvement
from the use of calibrations may be realized using more
advanced techniques based on machine learning. Currently,
work in this direction is constrained by the limited amount of
data available to train the physics-informed models. Work to
create such a database fromQC calculations is the primary focus
of our laboratory and this benchmark work is the first step in that
direction.
Protonation State of Metabolites. In the literature,19,62 it

has been discussed extensively that the issue of large error from
quantum chemical calculations with negatively charged
metabolites can be circumvented by performing the calculations
at pH = 0.10 The major microspecies generated at pH = 0 are a
protonated counterpart (highest positively charged species) of
the structures generated at pH = 7. Performing calculations at

pH = 0 allows us to ignore the issues of DFT associated with
negatively charged species. Comparing our results at two pH
levels shows that ΔGr′° obtained from SMILES generated at pH
= 7 are most accurate over a diverse data set, with the smallest
MAE being 3.48 kcal/mol. ΔGr′° calculated using SMILES
generated at pH = 0 have relatively large errors with MAEs of
4.72 kcal/mol. At pH = 0, EC2 is the most challenging category
of reactions for which we obtained a large MAE of 6.28 kcal/
mol, whereas the MAE is 4.18 kcal/mol at pH = 7 for the same
set of reactions. Another category where we see large
improvement is EC1, where MAE decreases from 3.99 to 2.58
kcal/mol. We observed that such a large error at pH = 0 comes
mainly from the metabolites containing phosphate groups such
as NAD+/NADP, ATP/ADP/AMP. Because metabolic pro-
cesses in the human body occur at pH = 7 and our results show
that ΔGr′° are most accurate at pH = 7, we recommend
calculatingΔGr′° directly using SMILES generated at pH = 7.We
note that empirical transformation has been used in the

Figure 5. Scatter plot showing theQC (SCAN) calibrated reaction-free energies and the experimental reference for each EC category of reactions. y = x
line is drawn for reference.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c00997
ACS Omega 2021, 6, 9948−9959

9954

https://pubs.acs.org/doi/10.1021/acsomega.1c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00997?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00997?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c00997?rel=cite-as&ref=PDF&jav=VoR


literature to transform other properties calculated at pH = 0 to
pH =7 using Legendre transformation.10

Thermodynamics of Metabolic Reactions Essential for
the Central Metabolism. Thermodynamics plays a very
important role in metabolic modeling and engineering new
synthetic pathways with desired functions. With the increasing
efficiency of high-performance computers and the availability of
highly parallel computational chemistry code NWChem,31 there
is an absolute need to develop nonempirical computational
methods for predicting ΔGr′° of metabolic reactions. Empirical
methods, such as component and group-contribution,18 are
currently used to estimate the standard Gibbs energies of
metabolites, which then are used to estimate theΔGr′°. However,
for some secondary metabolites and cofactors, this empirical
approach cannot be applied because of a lack of experimental
data (e.g., newly designed synthetic pathways that involve
uncharacterized metabolites). These empirical methods use
unconventional approaches to account for crucial molecular-
level effects, such as solvation effects, ionic strength, pH,
conformers, and different protonation states. For example, the
eQuilibrator63 component-contribution method fails to predict
ΔGr′° for reactions with molecules consisting of the functional
groups which are not part of the experimental database used to
build eQuilibrator. In contrast, the QC approach used here is
free from such limitations and provides detailed information
about the structures and thermal properties of metabolites,
including energies, enthalpy, and entropy of metabolites in
solution transformed into Gibbs energy at the given pH and
temperature. Therefore, QC methods can consistently take into
account all possible atoms and functional groups in the
molecule. In eQuilibrator, ΔGr′° are calculated at a constant
temperature of 298.15 K. However, in the human body,
metabolic reactions occur at 310.00 K. Temperature effects
however can be easily addressed in DFT calculations. To study
the effect of temperature on ΔGr′°, we performed calculations at
three different temperatures: 298.15, 310.00, and 320.00 K. The
results are shown in Table 5. Even though the temperature has a
marginal effect on ΔGr′°, a maximum change of 1.40 kcal/mol
can be observed when the temperature is increased from 298.15
to 320 K with the MAE changing by 0.60 kcal/mol in the TCA/
glycolysis cycle.
To assess the impact of QC-based methods for accurately

predicting and understanding the thermodynamics of metabolic
processes, we applied our QC approach to predict the free
energy of reactions from the core metabolism of the eukaryotic
model organism Yarrowia lipolytica.64,65 The important
metabolic reactions of the TCA/glycolysis cycle that are parts
of the central metabolism are shown in Figure 6 and
corresponding results in Table 5. QM predicts the citrate
synthesis reaction (EC 2.3.3.1) of the TCA cycle to be favorable
with a reaction energy of−7.70 kcal/mol, which is similar to the
CCM value −8.27 kcal/mol. As temperature increases, ΔGr′°
decreases to −7.55 and −7.42 kcal/mol at 310 and 320 K,
respectively. The QC value at 298.15 K is the most accurate for
lysase reactions (4.2.1.3) with ΔGr′° value of 2.13 kcal/mol,
which is close to the experimental and CCM values of 1.88 and
1.98 kcal/mol, respectively. The error for the lysase reactions
increases when the temperature increases from 298.15 to 310 K.
We also noticed that the effect of temperature on ΔGr′° is not
consistent; it increases in some cases but decreases in other cases
as the temperature is increased from 298.15 to 320 K. In fact for
EC 1.2.1.12, error decreases as the temperature increases. For
another lysase reaction (4.2.1.3), which involves a trans-

formation from cis-aconitate to D-threo-isocitrate, CCM
demonstrated this reaction to be neutral (−0.12 kcal/mol),
whereas our QC calculations revealed thermodynamically
favorable at all three temperatures by −3.44 to −2.55 kcal/
mol, respectively. Moreover, CCM predicts an unfavorable
reaction (positive value) for EC-1.1.4.11, whereas QC predicts a
favorable reaction (negative value) with ΔGr′° in the range of
−5.66 to −6.32 kcal/mol. For the oxidoreductase reaction
(1.2.1.M9), in which oxidative decarboxylation of ketoglutarate
occurs to form succinyl-CoA, our QC method predicts ΔGr′°
value of−0.50 kcal/mol whereas CCM overestimates withΔGr′°
value of −6.5 kcal/mol.
Similarly, for another oxidoreductase reaction (EC-1.1.1.37),

the CCM, experiment, and DFT approaches all predict
unfavorable (positive) ΔGr′° with QC overestimating exper-
imental value with an error of 1.58 kcal/mol. For translocase
reaction (6.2.1.5), we obtained an error of −1.61 kcal/mol with
respect to the experimental reference. We calculated small errors
in the range of 0.30 to −0.60 kcal/mol for the lysase reaction
(4.2.1.2), which involves hydrolysis of fumarate to form malate.
The performance of the QCmethod is similar in the glycolysis

cycle. The error obtained from theQCmethod is relatively small
(≤2 kcal/mol with respect to the experiment values) for four out
of nine reactions for which the experimental reference exists.
These reactions correspond to glycolysis reactions EC-5.3.1.9,
2.7.1.11, 4.2.1.11, 2.7.1.40 and have an MAE of 1.89 kcal/mol.
This MAE is similar to that observed for the benchmark Set-1
without calibration and Set-2 with calibration. As discussed

Table 5. SCAN ΔGr′° (kcal/mol) for Different Reactions in
the TCA/Glycolysis Cycle with Corresponding EC
Numbersa9

EC-
numbers CCM expt.

DFT
298.15 K

DFT
310 K

DFT
320 K deviation

Glycolysis

5.3.1.9 0.60 0.80 −0.82 −0.71 −0.62 −1.62
3.1.3.11 −2.72 −4.57 −1.28 −1.39 −1.49 3.29
2.7.1.11 −3.59 −2.31 −4.32 −4.42 −4.51 −2.01
4.1.2.13 4.73 3.52 −1.82 −2.49 −3.06 −5.34
5.3.1.1 −1.31 −1.88 −4.69 −4.75 −4.80 −2.81
1.2.1.12 1.86 3.21 −2.24 −1.67 −1.18 −5.45
2.7.2.3 4.42 4.80 −1.68 −1.75 −1.81 −6.48
5.4.2.12 −1.00 −6.77 −6.79 −6.80
4.2.1.11 −0.98 −0.74 1.22 0.70 0.26 1.96
2.7.1.40 6.62 6.02 7.88 7.67 7.49 1.86
1.2.1.- −9.98b 5.43 5.94 6.37

TCA Cycle
2.3.3.1 −8.27 −7.70 −7.55 −7.42
4.2.1.3 1.98 1.88 2.13 1.60 1.15 0.25
4.2.1.3 −0.12 −3.44 −2.96 −2.55
1.1.1.41 1.29 −5.66 −6.02 −6.32
1.2.1.M9 −6.5 −0.50 −0.26 0.90
6.2.1.5 0.43 1.25 −0.36 −0.85 −1.26 −1.61
1.3.5.1 −5.41 −4.89 −5.12 −5.32
4.2.1.2 −0.84 −0.85 −1.45 −0.96 −0.55 −0.60
1.1.1.37 7.24 7.63 9.21 9.13 9.07 1.58

aEmpirical values calculated with eQuilibrator63 using the compo-
nent-contribution method (CCM)15 are given, when not available the
group-contribution method18 values are provided as a footnote b.
Experimental values are provided as reference when available.
Deviations are calculated using DFT at 298 K and corresponding
experimental value.9 bGCM value.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c00997
ACS Omega 2021, 6, 9948−9959

9955

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c00997?rel=cite-as&ref=PDF&jav=VoR


earlier, it is difficult to accurately calculate ΔGr′° for reactions
that primarily consist of multiple metabolites with phosphate
groups (e.g., 1.2.1.12, 2.7.2.3, 4.1.2.13, 5.3.1.1) compared to
other reactions in both TCA and glycolysis. For the specific case
of the reaction EC 1.2.1.-, QC gives us ΔGr′° in the range of

5.43−6.37 kcal/mol, whereas eQuilibrator is unable to calculate
ΔGr′° for this reaction, so we used a less accurate group-
contribution value of −9.98 kcal/mol as empirical ΔGr′° value,
which is quite different than our QC estimated value. In this
preliminary study, we determined that a certain combination of

Figure 6.Different reactions studied in tricarboxylic acid cycle (TCA) and glycolysis with corresponding EC numbers. QC predicted and experimental
(when exists) reaction free energies are provided in parentheses.
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tools and parameters can predict Gibbs free energy change of a
biochemical reaction within a standard error of ∼1.5 kcal/mol,
which is comparable to the error in the experimental
measurements themselves. Our work will expand the coverage
of thermodynamic property data in the biochemistry database of
KBase, which also includes the KEGG and MetaCyc reactions
and metabolites. Experimental data is currently very limited;
however, less computationally expensive group-contribution
methods have been applied to further expand this coverage, even
these methods only cover 54% of the biochemistry database,
leaving large numbers of reactions with completely unknown
thermodynamic properties. Additionally, these group and
component-contribution methods often carry errors far higher
than 1.5 kcal/mol.

■ CONCLUSIONS
Computational chemistry calculations continue to make
considerable progress and are approaching a state where
predictions of thermochemical parameters can be obtained for
metabolites and reactions of biochemical interest. With growing
high-performance computing (HPC) power, electronic calcu-
lations of large biomolecular systems are more feasible today
than ever before, and the computational chemistry NWChem
code is capable of using a highly parallelized infrastructure for
the accurate prediction of thermodynamic parameters. In this
report, we assess the accuracy of the nonempirical computa-
tional methods based on quantum mechanics for predicting
standard Gibbs reaction energies of metabolic reactions with the
goal of developing an accurate automated quantum chemical
modeling approach, which can help fill in the gaps in the existing
thermodynamic databases that are typically used for construct-
ing genome-scale metabolic models.
We have developed a software stack for ab initio quantum

mechanical prediction of standard metabolite and reaction
Gibbs free energies using a QC approach. Using this workflow,
we have benchmarked several QC methods for predicting
standard Gibbs energies for a range of biological reaction types,
defined by top-level EC number, and we compared the best DFT
method with experimental data in the NIST Thermodynamics
of Enzyme-catalyzed Reactions database. A comparison between
predictions and experimental data in the first set of diverse
reactions revealed that meta-GGA SCAN, when used with 6-
311++G** as the basis set and SMD as implicit solvation model,
can predict the reaction-free energies with a mean absolute error
of 1.74 kcal/mol on Set-1. We observed a relatively large error of
3.48 kcal/mol in Set-2 that when combined with simple
calibration can be reduced to 1.64 kcal/mol, which is near the
benchmark chemical accuracy of 1 kcal/mol desired from DFT
calculations. We further assessed the performance of our best
QC-based methods for different categories of reactions. We
found that SCAN provided the most accurate results for EC3
and EC5. We show that error increases as the number of
metabolites increases in reactions. Error also increases as the
negative charge on metabolites increases from−1 to−4. Finally,
we developed an automated pipeline to carry out the first-
principles quantum mechanical calculations and integrated the
workflow within the KBase module for access by the broader
research community. In the future, we will be able to predict
thermodynamic properties for nearly all of the biochemistry
database of KBase with far greater accuracy than ever done
before by applying the best quantum mechanical calculations at
a large scale to compute these properties, which will
subsequently enhance all metabolic models that use these

properties to predict thermodynamic flux inmicrobes, fungi, and
plants. The predcition of such biophysical and biochemical
properties can be accelerated by using domain-aware machine
learning models by incorporating metabolic network based
knowledge and QM simulated data.
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