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ABSTRACT: Luminescent Möbius strip microstructures have
been created for the first time based on flexible organic single
crystals via a template-free solution self-assembly. We herein
demonstrated a rationally designed morphological evolution
toward Möbius strips from rings and helixes. Our findings lay
the foundation for the future construction of complex matters with
predetermined morphologies and functions from crystal systems.
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Möbius strip, the best known unorientable strip (Figure
1a),1 had been discovered and conceived in 1858 first

by German mathematician Johann Benedict Listing and named
after August Ferdinand Möbius, who completed a similar
conceptualization months later.2,3 It would be fair to say that
the Möbius strip is one of the few icons that originates from

mathematics but has been widely absorbed as high-level
thought by various sciences, arts, and cultures4−8 and even
could serve as a general technical tool for productivity
improvement.9,10 In recent decades, chemists have also been
inspired to create new materials with unique Möbius
topologies, especially at the molecular level,11−19 because not
only do the σ bonds with an axisymmetric electron cloud
distribution endow the molecular skeleton with excellent
flexibility for possible bending and twisting20−25 but also the
synthesis skills have been well-developed to manipulate the
creating and breaking of covalent bonds at will.26,27 However,
for higher-order complex materials of dynamic supramolecular
systems,28 a template-free bottom-up creation toward such
elegant and complicated Möbius strip structures could be
easily achieved by nature8,29 but are presently almost
unthinkable and untouchable for humans,27,30−35 because of
the lack of proven methodologies in manipulating pluralistic
intermolecular forces accurately toward a complex morpho-
logical evolution.

We have been obsessed with creating complex architectures
via a close-to-nature self-evolution approach based on crystal
systems36,37 and target a challenging Möbius strip in this
contribution. To do that, first of all, we need to decompose the
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Figure 1. Schematic representation for the Möbius strips and related
strips. (a) Scope and definition of Möbius strips, non-Möbius strips,
and paradromic strips. (b) Chirality of paradromic strips. (c)
Necessary conditions for Möbius strips.
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Möbius strip into several mechanical processes, which are
twisting, bending, and cyclization (Figure 1b). Accordingly, it
would be a plausible choice to take flexible organic single
crystals as a model system: 1) The self-bending of organic
single crystals has been achieved in our previous study through
solution crystallization, even with a controllable length/width/
curvature.37 We believe that a similar process could also lead to
a self-bending of other flexible organic single crystals. 2)
Organic compounds might crystallize into twisted morpholo-
gies spontaneously when grown from a melt, with or without
additives.38−43 Likewise, one recent example indicated that it is
also possible for crystals to twist when crystallizing from
supersaturated solutions.44 Although all of the current self-
twisting organic crystals were discovered accidentally from
experimental findings, not constructed through a thoughtful
design, we consider that mechanically reconfigurable crystals
with macroscopically twistable natures may have the tendency
of self-twisting during solution growth.45,46 3) The cyclization
might be easily realized by drawing support from soft or hard
templates;47−51 however, we still wish to take a chance on a
template-free approach and count on probability. Also
depending on probability is the number of the twists in one
strip. All twisted strips are paradromic strips. Only those with
an odd number of twists are Möbius strips (Figure 1a). We do
not know yet whether the chirality of Möbius strips is able to
be controlled (Figure 2b). A proper combination of all three
mechanical processes above will lead us to Möbius strips.
For a proof of concept, we devised a flexible halogen-bonded

cocrystal (Figure 2a,b, CCDC 2071222) composed of a newly
designed Schiff base, (E)-2-(((5-ethoxypyridin-2-yl)imino)-
methyl)phenol (EPIMP, CCDC 2071219), and 1,3,5-trifluoro-
2,4,6-triiodobenzene (TFTIB) for the following reasons: 1) A
Schiff base is presently the only type of compound whose
crystals have been systematically studied on the link between
the molecular skeleton and macroscopic mechanical flexibility
(mainly elastic bending).52,53 The additional introduction of
the ethoxy group in EPIMP will further increase the flexibility
of the molecules, thus promoting the flexibility of the
crystals.54 Besides, aromatic Schiff bases exhibit optical
functions (Figure 2c,d);55 thus, luminescent architectures are
predictable. 2) The planar molecule TFTIB with uncommon
C3h symmetry serves as a halogen-bond donor, linking to the
pyridine ring of the Schiff base which is a halogen-bond
acceptor, propitious to generate spatially misfit interactions
(Figure S16), raising the feasibility of twisting morphologies.44

3) It should be noted that TFTIB is often used for static
quenching of luminescence in π−π stacking along with other
chromophores;56−58 however, in our case, due to the
significant size differences, there is no π−π stacking between
EPIMP and TFTIB, only halogen bonding, which is beneficial
for the presence of luminescence.59,60 The halogen-bonded
cocrystal EPIMP-TFTIB emits bright yellow luminescence
with an absolute quantum yield (ΦPL) of 15.87% (Figure 2c-e),
higher than twice that of the green-light-emitting single-
component EPIMP crystal (ΦPL = 7.45%).
Macroscopically, the cocrystals show multidimensional

flexibility (Figure 1c), including elastic bending when applying
force at both the (001) and (010) crystal faces and plastic
twisting into left- and right-handed helixes when applying
torsion forces at the two ends (Figure 2f, Movie S1, and
Figures S12−S15).61 Additionally, the cocrystal possesses a
centrosymmetric structure with the space group P21/c (Figure
2a), satisfying one necessary condition for constructing Möbius

Figure 2. Multidimensional flexibility of the halogen-bonded cocrystal
EPIMP-TFTIB. (a, b) Formation of the cocrystal (a) and
corresponding crystal face identification (b) by X-ray crystallography.
(c−e) Photoluminescence of the single-component EPIMP crystal
and the cocrystal, including the microphotographs (c and d,
respectively) of both under bright (left) and dark field (right),
absorbance and fluorescence spectra of both (e), and the
corresponding CIE 1931 chromaticity diagram (e, inset) with a CIE
coordinate of (0.422, 0.555) for the EPIMP crystal and a CIE
coordinate of (0.455, 0.535) for the cocrystal. (f) Flexibility of the
cocrystal, including elastic bending and recovering at (001) and (010)
crystal faces (left) and plastic twisting into left- and right-handed
helixes (right). Schematic models (top) and the corresponding
microphotographs under bright (middle) and dark (bottom) fields.
Conditions: bright field, standard white light source; dark field, 365
nm UV light source; scale bar, 1 mm.
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strips, that the two ends of the crystals are capable of
connecting together structurally after twisting an odd multiple
of 180° (Figure 1c).
A self-deformation of both the bending and twisting of the

cocrystals through a bottom-up solution crystallization is what
we pursue.37 For that, we screened a variety of solvents and got
some elementary results. An unsaturated solution of 1:1
EPIMP and TFTIB (molar ratio, with a concentration of Cinitial
for both) was placed in a glass container with a cover and
maintained at a constant temperature Tconstant (Figure 3a). One

slide glass was preplaced at the bottom of the container for
further crystal growth through slow solvent evaporation. The
self-twisting crystals were found in polar organic solvents
(methanol, ethanol, acetonitrile, and acetone). The self-
bending crystals were found in a benzene series (benzene,
toluene, m-xylene, p-xylene, and isopropylbenzene). When a
concentrated solution was diluted with a large amount of
water,48 straight crystals emerged on the slide glass. Further
experiments on the twisting and bending were carried out in
acetonitrile (MeCN) and toluene systems.37

It should be noted that all the crystals self-twist into left-
handed (M) and right-handed (P) helixes when crystallizing
from single MeCN solvent (Figure 3b,c and Figure S21), and
their rates are almost equal. We have tried to add some chiral
additives (D-/L-limonene, D-/L-tartaric acid, D-/L-malic acid) to
regulate the chirality of the helixes, but no positive effects were
achieved.62 The helixes were determined by X-ray crystallo-
graphic methods as the cocrystals (Figure S9). It is worth
noting that the EPIMP itself cannot crystallize into helixes
under identical operating conditions. As the Tconstant value rises,
the width barely changes while the pitch of the helixes
becomes shorter (Figure 3d), which is consistent with
conventional cognition.44 What is really encouraging is that
the helix still maintains the ordered structure of a single crystal
(Figure 3e,f). Unexpectedly, we found that helixes with the
same chirality could further assemble into a chiral superhelix
whose chirality is consistent with the helixes (Figure 3g). With
the increase in Cinitial, there is a growing trend toward
superhelixes, and the number of the strands of helixes in the
superhelix expands as well (Figure S20). To the best of our
knowledge, this is the only case so far of a higher-order helix,
i.e., superhelix, composed of crystals.

The cocrystals crystallize into bent morphologies in a single
toluene solvent (Figure 3a and Figure S10). We tried to
control the curvature of the bent crystals but found that it
changes at different regions of one crystal and thus cannot be
fitted by an arc.37 Further attempts were carried out until
spiral-like morphologies appeared regularly at extremely dilute
Cinitial values (Figure 4a−d). The left-handed (M) and right-
handed (P) spiral lines are nearly equal in number.
Interestingly, the spiral-like crystals were observed to grow in
a bent shape with an outside-in direction, which is the opposite
of the inside-out direction when we draw spiral lines
mathematically (Figure 4d). We fitted each spiral line in
polar coordinate systems with a modified Archimedes spiral, r
= a + b(2π/360)θ, where a and b are constants that a affects
the origin of the coordinate and b determines the distance
between two adjacent rounds, r is the radial distance, and θ is
the polar angle. We drew polar coordinates artificially; thus,
there will be a subjective influence on the numerical value of a.
Still, regularity has been discovered in b and θ that, as the
Tconstant rises, the distance between two adjacent rounds (2πb)
decreases while the number of rounds of the spiral line (θ)
increases (Figure 4a−d). It is good to perceive a few sparse
rings coming into view when observing the slide glasses
(Figure S24). We considered them as single-crystal rings, as
the bent crystal still maintains the ordered structure of a single
crystal based on the selected area electron diffraction pattern
(Figure 4e,f). It is better to state here that the rings are rare in
number (less than one-tenth of all bent crystals) and random
in location (Figure 4g), mainly because the formation of the
rings here is a template-free process, embodied as uncontrol-
lable cyclization (Figures S22 and S23).48,63

Further bending of the twisted crystals is seldom carried out
by researchers,64 whereas such multidimensional flexibility is
one of the vital structural foundations for Möbius strips
(Figure 5a, Movie S2, and Figure S17). To make Möbius
strips, we integrated the formation conditions of the helixes
and rings, using a mixed solvent of MeCN and toluene (1:1
volume ratio, Figure 3a). Most of what we obtained were bent
helixes as we might have guessed, but a few Möbius and non-
Möbius paradromic strips were noticed at a very low
probability (less than one-tenth of all crystals; Figure 5b−d

Figure 3. Helixes. (a) Schematic representation for the preparation of
the helixes, rings, and Möbius strips. (b) Microphotographs and
schematic representations of the helixes in left-handed (M) and right-
handed (P) helixes under bright and dark fields. (c) Scanning electron
microscope images with partial enlargements and schematic
representations of the helixes in left-handed (M) and right-handed
(P) helixes. (d) Statistical pitch and width of the helixes changing
along with the variation of Tconstant, with error bars added. (e, f)
Transmission electron microscope images (e) and corresponding
selected area electron diffraction patterns (f) of one helix. (g)
Microphotographs and schematic representations of the superhelixes
in left-handed (M) and right-handed (P) modes under bright and
dark fields. Conditions: bright field, standard white light source; dark
field, 365 nm UV light source.
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and Figures S26 and S27). Even so, we call it a success that this
work presents the first Möbius strip in molecular crystal
systems. Although a crystallographic identification of the
Möbius strips cannot be completed because of the very small
amount of samples, it is reasonable to believe them to be
single-crystal Möbius strips because both the helixes and rings
are single crystals.
It is important to note that the successful creation of Möbius

strips is a small-probability event, though a very rational design
has been carefully proposed and carried out by us. There have
been too many unsuccessful cases to show (Figure S27). First,
because of the template-free process, the cyclization for both
the rings and Möbius strips is not guaranteed. Second, the
flexibility of the crystals is an elusive factor, making it unable to
control when the flexibility is good and hard for self-
deformation when poor. Otherwise, the problem of the
uncontrollable chirality should be of concern, which limits

the possibility for future multifunctional applications. Basically,
our Möbius strip is a major breakthrough and is sure to
become a classic. As in the well-known dictum by Richard
Phillips Feynman, “What I cannot create, I do not under-
stand”,65,66 a successful design is the most powerful tool to
enrich our cognitive systems. In addition to the creation, we
are the first to introduce functionality (photoluminescence)
into Möbius strip microstructures. This contribution will guide
the future creation of single-crystal systems with versatile
microstructures and functions.58,67,68
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Chemicals and instruments, detailed experimental
procedures, crystal morphology calculations, fluores-
cence lifetime measurements, X-ray diffraction patterns,
X-ray single crystal diffraction characterization, origin of

Figure 4. Spiral lines and rings. (a−d) Microphotographs under
bright (left) and dark (right) fields of the spiral lines with a variable
Tconstant = 293 K (a), 303 K (b), and 313 K (c) and corresponding
statistics of the parameters (a, b and θ) for drawing a spiral line (d),
with error bars added. Inset of (d): schematic representations for the
growth process of the spiral lines (top left) and the mathematical
expression for the spiral line (bottom left). (e, f) Transmission
electron microscope image (e) and corresponding selected area
electron diffraction pattern (f) of one self-bending crystal. (g)
Microphotographs of several rings with different diameters under
bright (left) and dark fields (right). Conditions: bright field, standard
white light source; dark field, 365 nm UV light source; scale bar, 5
μm.

Figure 5. Möbius strips. (a) Schematic representation and
corresponding microphotographs of the elastic bending and
recovering of a plastic twisted cocrystal under bright and dark fields.
(b−d) Microphotographs of the self-deformed Möbius strips under
bright and dark fields: left-handed (M) with a twisting angle of 1 ×
180° (b), right-handed (P) with a twisting angle of 3 × 180° (c), and
right-handed (P) with a twisting angle of 27 × 180° (d). Conditions:
bright field, standard white light source; dark field, 365 nm UV light
source.
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mechanical properties, additional graphs, and energy
framework (PDF)
Movie of the flexibility of a single crystal of the halogen-
bonded cocrystal (MP4)
Movie of the elastic bending of a twisted halogen-
bonded cocrystal (MP4)
Single-crystal structure of the single-component crystal
EPIMP, CCDC 2071219 (CIF)
Single-crystal structure of the halogen-bonded cocrystal
EPIMP-TFTIB, CCDC 2071222 (CIF)
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Synthesis of Belt- and Möbius-Shaped Cycloparaphenylenes by
Rhodium-Catalyzed Alkyne Cyclotrimerization. J. Am. Chem. Soc.
2019, 141, 14955−14960.
(20) Pauling, L. The Nature of The Chemical Bond. Application of
Results Obtained from the Quantum Mechanics and from a Theory of
Paramagnetic Susceptibility to the Structure of Molecules. J. Am.
Chem. Soc. 1931, 53, 1367−1400.
(21) Pauling, L. The Nature of the Chemical Bond; Cornell University
Press: 1960.
(22) Moore, J. W.; Stanitski, C. L.; Jurs, P. C. Principles of Chemistry:
The Molecular Science; Cengage Learning: 2009.
(23) Tanaka, T.; Osuka, A. Chemistry of meso-Aryl-Substituted
Expanded Porphyrins: Aromaticity and Molecular Twist. Chem. Rev.
2017, 117, 2584−2640.
(24) Sung, Y. M.; Oh, J.; Cha, W.-Y.; Kim, W.; Lim, J. M.; Yoon, M.-
C.; Kim, D. Control and Switching of Aromaticity in Various All-Aza-
Expanded Porphyrins: Spectroscopic and Theoretical Analyses. Chem.
Rev. 2017, 117, 2257−2312.
(25) Bettens, T.; Hoffmann, M.; Alonso, M.; Geerlings, P.; Dreuw,
A.; De Proft, F. Mechanochemically Triggered Topology Changes in
Expanded Porphyrins. Chem. - Eur. J. 2021, 27, 3397−3406.
(26) Service, R. F. How Far Can We Push Chemical Self-assembly?
Science 2005, 309, 95−95.
(27) Koner, K.; Karak, S.; Kandambeth, S.; Karak, S.; Thomas, N.;
Leanza, L.; Perego, C.; Pesce, L.; Capelli, R.; Moun, M.; Bhakar, M.;
Ajithkumar, T. G.; Pavan, G. M.; Banerjee, R. Porous Covalent
Organic Nanotubes and Their Assembly in Loops and Toroids. Nat.
Chem. 2022, 14, 507−514.
(28) Lehn, J.-M. Perspectives in Chemistry-Steps towards Complex
Matter. Angew. Chem., Int. Ed. 2013, 52, 2836−2850.
(29) Pleshe, E.; Truesdell, J.; Batey, R. T. Structure of a Class II
TrmH tRNA-Modifying Enzyme from Aquifex Aeolicus. Acta
Crystallogr. 2005, F61, 722−728.
(30) Geng, Z.; Xiong, B.; Wang, L.; Wang, K.; Ren, M.; Zhang, L.;
Zhu, J.; Yang, Z. Moebius Strips of Chiral Block Copolymers. Nat.
Commun. 2019, 10, 4090.
(31) Zhang, F.; Nangreave, J.; Liu, Y.; Yan, H. Structural DNA
Nanotechnology: State of the Art and Future Perspective. J. Am.
Chem. Soc. 2014, 136, 11198−11211.
(32) Goldstein, R. E.; Moffatt, H. K.; Pesci, A. I.; Ricca, R. L. Soap-
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