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ABSTRACT: Highly quantitative metabolomics studies of complex
biological mixtures are facilitated by the resolution enhancement afforded
by 2D NMR spectra such as 2D 13C−1H HSQC spectra. Here, we
describe a new public web server, COLMARq, for the semi-automated
analysis of sets of 2D HSQC spectra of cohorts of samples. The workflow
of COLMARq includes automated peak picking using the deep neural
network DEEP Picker, quantitative cross-peak volume extraction by
numerical fitting using Voigt Fitter, the matching of corresponding cross-
peaks across cohorts of spectra, peak volume normalization between
different spectra, database query for metabolite identification, and basic univariate and multivariate statistical analyses of the results.
COLMARq allows the analysis of cross-peaks that belong to both known and unknown metabolites. After a user has uploaded
cohorts of 2D 13C−1H HSQC and optionally 2D 1H−1H TOCSY spectra in their preferred format, all subsequent steps on the web
server can be performed fully automatically, allowing manual editing if needed and the sessions can be saved for later use. The
accuracy, versatility, and interactive nature of COLMARq enables quantitative metabolomics analysis, including biomarker
identification, of a broad range of complex biological mixtures as is illustrated for cohorts of samples from bacterial cultures of
Pseudomonas aeruginosa in both its biofilm and planktonic states.

■ INTRODUCTION
Metabolomics is the comprehensive identification and quanti-
fication of the small molecules involved inmetabolic pathways in
a biological system, known as metabolites.1,2 Metabolites are the
substrates and products of many biological processes; therefore,
measuring the metabolic profile captures a snapshot of cellular
activity. Metabolomics is also the most downstream omics
strategy; therefore, it is influenced by upstream genetic and
protein changes or environmental factors, making it uniquely
reflective of the phenotype.3 For these reasons, metabolomics
approaches have proven valuable for diagnostics and monitoring
of the treatment of a multitude of conditions and diseases, the
characterization of regulatory biochemical processes, or
applications in food science and nutrition.4−6

Intrinsic to the majority of successful metabolomics studies is
the ability to accurately detect and quantify metabolites from a
cohort of samples in a highly reproducible manner. Nuclear
magnetic resonance (NMR) spectroscopy is a useful and
powerful tool due to its inherent high reproducibility, resolution,
and quantitative capabilities.7−11 NMR is also nondestructive to
the sample and does not require additional sample derivatization
or separation steps, such as chromatography. NMR is uniquely
adept for quantitative untargeted metabolomics because it can
produce quantitative data for all reasonably abundant known
and unknown metabolites present in a complex mixture in a
single measurement.8,12,13

1D 1H NMR is often utilized due to its short measurement
time and quantitative nature. Several automated tools for 1D 1H

quantitative analysis have been developed such as MetaboLab,14

BATMAN,15 Bayesil,16 AQuA,17 ASICS,18 and rDolphin.19

However, complex mixtures containing metabolites with similar
chemical motifs will cause peak overlap and crowded spectral
regions, making metabolite identification ambiguous and
quantification inaccurate.10 These issues are largely resolved
by collecting 2DNMR spectra, which adds additional resolution
by correlating protons with neighboring nuclei such as carbon-
13 or other protons.13 Although 2D NMR spectra are not
absolutely quantitative due to their dependence on J-couplings
and differential spin relaxation times, peaks belonging to the
same compound in spectra collected under the same parameters
can be directly compared to determine relative concentrations
for the quantitative determination of fold changes and statistical
analysis between cohorts of samples.10 If needed, absolute
quantitation of 2D spectra can be achieved with the collection of
reference spectra, spiking experiments, or specialty techniques
like HSQC0.

20

The 2D 13C−1H HSQC offers significant resolution enhance-
ment compared to 1D 1H, ameliorating peak overlap. In
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addition, 2D 1H−1H TOCSY spectra aid in metabolite
identification by providing intramolecular chemical connectivity
information within spin systems of metabolites. This combined
2D HSQC and TOCSY approach, as implemented in our
previously described COLMARm web server with its database
of over 750 reference spectra, affords comprehensive, accurate,
and efficient metabolite identification.21 Still, extracting high-
quality quantitative information from spectra remains a major
challenge in NMR-based metabolomics.22 The additional steps
necessary for metabolite quantification, including peak picking,
fitting, andmatching, during the course of the analysis of cohorts
of samples containing hundreds to thousands of peaks per
spectrum can be ambiguous, time-consuming, and tedious.10 A
few tools have begun to take advantage of the increased
resolution offered by 2D NMR to improve quantitative analysis
of 1D 1H spectra. Dolphin combines 1D 1H and 2D J-resolved
spectra to enhance reliability and accuracy of metabolite
matching to reference spectra. In this method, 2D J-resolved
spectra are used to identify targeted metabolites followed by
quantification by lineshape fitting of the corresponding peaks in
the 1D 1H spectra. The user also has options for referencing and
normalization, but quantification by this method is still limited
by the extent of the 1D peak overlap.22 In the R package
specmine, 2D spectra are represented as a matrix, the
dimensionality is reduced to a 1D specmine dataset to reduce
computational cost, and then spectra can be plotted for
visualization, peak detection, and measurement of peak
intensities.23 However, specmine requires coding experience
(in R) and does not perform metabolite identification. Beyond
these recent methods, there are no automated tools available for
the identification and quantification of metabolites in 2D spectra
and subsequent analysis.13

Here, we present the new public COLMARq web server,
which facilitates the semi-automated, quantitative analysis of
cohorts of 2D NMR spectra in an accurate and efficient manner
(Supporting Information Figure S1). The COLMARq workflow
(Figure 1) involves uploading of cohorts of 2D HSQC and 2D
TOCSY spectra, peak picking, peak fitting, peak matching
between samples, data normalization, database query, peak and
metabolite-based statistical analysis, and data export of the
results. This allows the user to easily input NMR spectra and
efficiently arrive at quantitatively interpretable results such as p-
values for metabolite concentration differences between groups
or multivariate analysis. These tasks are performed in an
automated manner while allowing for user input and manual
correction as needed. After explaining the capabilities of
COLMARq, it is demonstrated for a comparative quantitative
analysis of cohorts of P. aeruginosa bacterial cultures in biofilm
versus planktonic growth modes.

■ EXPERIMENTAL SECTION
Sample Preparation. P. aeruginosa strain PAO124 cultures

were grown overnight in lysogeny broth (LB) (Sigma Aldrich)
and diluted to OD600 = 0.1. Then, cultures were scaled and
grown planktonically in 50 mL of LB at 220 rpm at 37 °C for 24
h and as a biofilm on LB plates (28.4 cm2) containing 1.5% (w/
v) agar, statically, at 37 °C in 5% CO2 for 48 h (n = 9) for
metabolomics experiments.
Planktonic cultures were harvested by centrifugation at 4,300

× g for 20 min at 4 °C and washed with 1 mL of phosphate-
buffered saline (PBS). Biofilm cultures were harvested by
scraping with a sterile loop. Samples were immediately
resuspended in 600 μL of cold 1:1 methanol (Fisher)/double

distilled H2O (ddH2O) for quenching. Stainless-steel beads
(SSB14B) (300 μL) (1.4 mm) were added, and cells were lysed
using a Bullet Blender (24Gold BB24-AU byNext Advance) at a
speed of 8 for 9 min at 4 °C.25 An additional 500 μL of 1:1
methanol/ddH2O was added, and the sample was centrifuged at
14,000 × g for 10 min at 4 °C to remove solid debris. Methanol/
ddH2O/chloroform (Fisher) (1:1:1) was added for a total
volume of 24 mL.26,27 The sample was vortexed and centrifuged
at 4,300× g for 20min at 4 °C for phase separation. The aqueous
phase was collected, and the methanol content was reduced
using rotary evaporation, followed by lyophilization overnight.
For NMR measurements, the samples were resuspended in 200
μL of NMR buffer (50 mM sodium phosphate buffer in D2O at
pH 7.2 with 0.1 mM DSS (4,4-dimethyl-4-silapentane-1-
sulfonic acid) for referencing) and centrifuged at 20,000 × g
for 15 min at 4 °C for removal of any residual protein content.
The pellet was washed with 100 μL of NMR buffer, and the
supernatants were combined and transferred to a 3 mm NMR
tube with a Teflon cap and sealed with parafilm.

NMR Experiments. NMR spectra were collected at 298 K
on a Bruker AVANCE III HD 850 MHz solution-state
spectrometer equipped with a cryogenically cooled TCI probe.
2D 1H−1H TOCSY spectra were collected (Bruker pulse
program “dipsi2ggpphpr”) with 256 complex t1 and 2048
complex t2 points for a measurement time of 4 h. The spectral
widths along the indirect and direct dimensions were 10,202.0
and 10,204.1 Hz, and the number of scans per t1 increment was
14. 2D 13C−1H HSQC spectra (Bruker pulse program
“hsqcetgpsisp2.2”) were collected with 512 complex t1 and
2048 complex t2 points for a measurement time of 16 h. The
spectral widths along the indirect and direct dimensions were

Figure 1. Workflow for the semi-automated quantitative analysis of
HSQC spectra of metabolite mixtures by the COLMARq web server.
COLMARq allows for upload of cohorts of HSQC andTOCSY spectra,
automated peak picking, peak fitting for quantification, peak matching
between spectra, data normalization via ratio analysis, database query
for metabolite identification, and peak- and compound-based uni- and
multi-variate statistical analyses.
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34,206.2 and 9375.0 Hz, and the number of scans per t1
increment was 32. The transmitter frequency offset values
were 75 ppm in the 13C dimension and 4.7 ppm in the 1H
dimension for all experiments. NMR data was zero-filled four-
fold in both dimensions, apodized using a cosine-squared
window function, Fourier transformed, and phase corrected
using NMRPipe.28

■ RESULTS
The individual steps are listed in the flowchart of COLMARq
(Figure 1), and they are explained in more detail in the
following.
Since most metabolomics studies typically start out with

metabolite identification, COLMARq was designed to work
directly with the results of previous COLMARm session(s) used
for metabolite identification. Hence, for each sample, the
processed 2D HSQC and optionally TOCSY NMR spectra in
the frequency domain are first uploaded to the COLMARmweb
server, followed by peak deconvolution and spectral referencing
(if necessary). It accepts the spectral data formats of Bruker
Topspin (ASCII), Mnova, NMRPipe, and Sparky. If the user has
prior knowledge of the metabolite composition of the samples
and is familiar with the functions of COLMARm, the spectral
files can also be directly uploaded to COLMARq in batch mode.
First, all cross-peaks are identified by automated peak picking,
which is critical for all subsequent steps. COLMARq and
COLMARm support two types of peak pickers: the default
method is our recently introduced deep neural network DEEP
Picker, which has proven highly effective for crowded 2D spectra
of proteins and metabolomics samples.29 As an alternative, a
traditional peak picker can be selected, which is based on a
Laplacian spectral filter amplifying shoulder peaks at the cost of
increased noise and some false positive peak identification in
highly crowded regions. Our traditional peak picker is similar to
existing peak pickers implemented in Mnova and other
tools.30,31

Next, each identified cross-peak is quantified for the purpose
of determining the relative concentration of the metabolite it
belongs to. This is accomplished by numerical fitting of the
cross-peaks using the software “Voigt Fitter” specifically
developed for this task. After appropriate apodization using a
cosine square or 2π-Kaiser window function, NMR lineshapes
follow in good approximation Voigt profiles, which are hybrids
between Lorentzian and Gaussian profiles, along both frequency
dimensions. Each 2D HSQC cross-peak is characterized by
seven parameters: the peak position along each dimension
(which can be off the underlying digital spectral grid), the peak
amplitude or volume, and the peak shape, whereby the peak
shape is determined by its two Voigt parameters along each
dimension. For many 13C−1H HSQC spectra in metabolomics,
the cross-peaks have in good approximation a Gaussian shape
and thus can be fitted with only five parameters. Using the
output of the peak picker as initial values for fitting, the Voigt
Fitter performs a non-linear least-squares fit to simultaneously
optimize peak parameters of all peaks to reproduce the original
spectrum.While nonoverlapping peaks can be fitted individually
quite efficiently, fitting of large overlapping peak clusters
requires simultaneous fitting of N cross-peaks identified in the
cluster. Most non-linear least square fitting algorithms, such as
the Levenberg−Marquardt algorithm and its derivatives,32

involve the iterative diagonalization of a 5N × 5N square
matrix, which computationally scales with O(N3). As a
consequence, for sizable N, the fitting process can become

very slow, even on modern computer workstations. To address
this issue, we implemented in the Voigt Fitter software a
Gaussian mixture-type model algorithm,33 which scales linearly
with N, allowing the rapid fitting of complex spectra with an
essentially unlimited number of both overlapping and non-
overlapping cross-peaks as typically encountered in metab-
olomics spectra. The Gaussian mixture-type model algorithm
solves the problem iteratively where each iteration includes the
following steps: (1) calculate the theoretical spectrum of each
peak using its current peak parameters; (2) aggregate the
theoretical spectra of all peaks to obtain the total theoretical
spectrum; (3) calculate for each individual peak the ratio of its
(theoretical) spectrum and the total (theoretical) spectrum; (4)
deconvolute the experimental spectrum into the spectra of
individual peaks in a way such that the ratio of individual spectral
peaks and the total experimental spectrum is the same as the
ratio obtained in step 3; and (5) fit each peak using the
deconvoluted spectrum as a starting point and update peak
parameters. The algorithm will go back to step (1) until the
change of the peak parameters falls below a predefined cutoff. In
step (5) of the algorithm, the nonlinear least squares fit is
performed sequentially for each individual cross-peak in a five-
dimensional parameter space (in the case of Gaussian peak
shapes), rather than simultaneously for all N cross-peaks in a
5N-dimensional parameter. Hence, the computational effort of
the algorithm scales linearly with N, i.e., O(N), allowing a
dramatic speed-up in the fitting of spectra with large numbers of
peaks as typically encountered in metabolomics applications. In
contrast to other fitting software, Voigt Fitter does not require
the selection of spectral subregions for efficient fitting as it can
autonomously handle entire spectra with several thousand cross-
peaks. Voigt Fitter also does not require the manual addition or
elimination of peaks for improved fitting as DEEP Picker reliably
produces a high-quality set of cross-peaks, including their
positions, lineshapes, and amplitudes, as a starting point for
Voigt Fitter. As a benchmark, the fitting of the 1772 cross-peaks
of a 2D 13C−1H HSQC spectrum of the P. aeruginosa biofilm,
where the largest peak cluster contains 142 peaks, takes only
about 20 s. By contrast, due to its unfavorable scaling property, a
traditional non-least-squares fitting approach takes many hours
or even days. An illustration of a complex spectral region of the
biofilm spectrum and its fitted counterpart is shown in Figure 2,
demonstrating the high accuracy of the Voigt Fitter even for
highly overlapped cross-peak clusters.
The next step in the COLMARq workflow is to match peaks

stemming from the resonance signal of a certain spin of the same
metabolite across the entire batch of spectra. The peak matching
algorithm takes into account peak positions (chemical shifts),
peak heights, possible peak multiplets due to scalar J-couplings,
and peak picking consistency among different spectra. In
metabolomics samples, the vast majority of cross-peaks have
well-defined positions that remain essentially unchanged from
sample to sample. However, a small number of cross-peaks can
move by as much as 0.02 or 0.2 ppm along the proton or carbon
dimension, respectively. This can be caused by slight variations
of sample conditions among replicates, such as alterations in pH.
Besides chemical shift information, the peak matching algorithm
also takes into account peak amplitudes. Specifically, peaks
whose amplitudes are within a factor 10 of each other in different
samples are preferred for matching. If this is not possible within
the chemical shift cutoff, the peak matching algorithm will then
try to match peaks with amplitude ratios exceeding 10.
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Spectral multiplets observed in metabolomics HSQC spectra
should bematched as a group against the same kind of multiplets
in other samples. An example of matched doublets is shown in
Figure 3 (blue cluster). For low sensitivity multiplets (with
amplitudes smaller than 10 times the noise level) or multiplets
that strongly overlap with other peaks, DEEP picker (and Voigt
fitter) may interpret the same feature as a multiplet in some
samples and as a single peak in others. An example of such a case
is also shown in Figure 3 (red cluster) where the consensus peak
was identified as three peaks in Samples #0, #2, and #3 and four
peaks in Sample #1. While the peak matching algorithm will
assign a lower confidence score to these types of imperfect
matching results, they can still be useful for downstream analysis.
Because of the sometimes difficult and ambiguous nature of peak
matching, it is recommended that the user check the peak
matching results using the visualization plots on the web server
to ensure the most accurate downstream quantitative analysis.
The web server was designed with a high level of flexibility,
allowing users to interactively make manual adjustments to the
peak matching result. Based on the user’s assessment of the
confidence in the matching results of individual peaks, they can
be adjusted or discarded during a later stage of the analysis.
Normalization of spectra is important to correct for variations

in the total sample amount or overall sample concentration

between replicates or cohorts, which may occur during sample
collection, sample preparation, or data acquisition.34−36 For
solution NMR-based studies in which the total volume of each
sample can be controlled during sample preparation, the
potential global dilution factor for each sample should be
accounted for during data analysis. For this purpose,
COLMARq supports the widely used median fold change
method,34 which works well when many metabolites have a
similar concentration across all samples. This method
determines the median fold change between samples as a robust
estimate of the dilution factors between samples. Specifically, the
COLMARq normalization tool estimates the normalization
factors between a reference sample specified by the user and all
other samples. For each pair of samples, the tool calculates the
fold-change ratio of all matched peaks, rank orders the ratios,
and then uses the mean of the median 30% fold-change ratios as
the normalization factor. The accuracy of this approach depends
on the quality of peak matching in the previous step. As
mentioned above, the COLMARq server gives users the option
to manually adjust peak matching and exclude matched peaks
that have a low confidence score.
As an example, we uploaded cohorts of nine spectra from P.

aeruginosa planktonic and biofilm cultures to COLMARq for
statistical analysis. A screenshot of the normalization plot of the
web server is displayed in Figure 4A. Peak volumes of Sample #3
were divided by the corresponding peak volumes of Sample #2,
which was chosen as the reference spectrum, and the resulting
peak volume ratios were rank ordered. Figure 4A shows the
logarithm of the ratios vs peak number, giving rise to a
characteristic rotated sigmoidal curve. The tails on both ends
show peaks that mostly differ between samples (smallest ratios
on the left and largest ratios on the right), while the relatively flat
center reflects that the dilution factor between the samples is
minimal. Averaging the median 30% of ratios results in a
normalization factor of 1.005 for this sample, indicating that any
dilution effect for Sample #3 vs Sample #2 is minimal. This type
of normalization plot can be generated for each sample to obtain
a visual impression of potential dilution effects and determine
whether the underlying assumption of this method is valid,
namely, that the majority of ratios between metabolites are, in
good approximation, constant as manifested in a flat middle
range of the rotated sigmoidal curve. The peak volumes of each
spectrum are then divided by the normalization factor to make
them quantitatively comparable to the reference spectrum and
to each other for subsequent statistical analysis.
Once cross-peaks are quantified and matched across all

samples, statistical analysis can be performed in a standard
manner. Although statistical analysis tools are widely available,
the COLMARq server also provides limited univariate and
multivariate statistical analysis capabilities to readily give users
information about cross-peaks or metabolites that have
statistically significant concentration differences between
cohorts. The user can sort the uploaded samples into two
groups with the option to selectively exclude samples from
statistical analysis. At this time, COLMARq provides peak-based
p-value analysis (t test), including a histogram of all p-values. For
the p-value calculation, the two cohorts are assumed to be both
normally distributed with equal variance. COLMARq also
allows users to perform a peak-based principal component
analysis (PCA) as an unsupervised multivariate statistical
analysis method commonly used in metabolomics for the visual
clustering of samples in a score plot based on the covariation of
cross-peak volumes to assess separation between cohorts.

Figure 2. Selected region of the 13C−1HHSQC spectrum of the biofilm
(A) and the reconstructed spectrum by COLMARq (B) from the fitted
peaks. Contour lines are plotted using a logarithmic scale and the fitted
cross-peaks are indicated by plus symbols that are color coded
according to the cross-peak amplitudes (logarithmic scale, see color
sidebar). Residual fitting errors are plotted in both panels (A) and (B)
as red (positive) and blue (negative) contour lines using the same scale.
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For metabolites and peaks that are observable in some
samples and unobservable in others, it is generally useful to set
the missing amplitudes to either 1/2 or 1/3 (default) of the
detection limit of the experiment, rather than setting them to
zero. In COLMARq, the peak amplitude detection limit can be
defined by the user as a fixed multiple of the noise level

automatically determined for each spectrum. For this purpose,

from all observable peaks, an empirical relationship between

peak volumes and peak amplitudes is established, which is then

used to estimate the peak volume of peaks with amplitudes at 1/

3 of the peak height detection limit.

Figure 3. Example of twomatched (consensus) cross-peaks across the 13C−1HHSQC spectra of four different P. aeruginosa samples. A high sensitivity
doublet is labeled by blue ellipses whereas a low sensitivity multiplet is labeled by red ellipses containing either 3 or 4 individual cross-peaks across the
different spectra. Individual peaks that belong to these two consensus peaks are labeled as green circles. All other peaks that were part of other
consensus peaks are labeled as small orange circles, and nonconsensus peaks that appear only in one spectrum are labeled as black circles.

Figure 4.COLMARq can (optionally) perform data normalization and peak-based statistical analysis. For normalization, peak volumes are divided by
matched peaks of a user-selected reference spectrum and the log10(ratios) are rank ordered and plotted versus the number of peaks (A). The average
ratio of the flat central part, calculated as the median of the 35−65% percentile ratios, determines the normalization factor for each spectrum and all
peaks are divided by this factor. After peak-based statistical analysis, COLMARq displays the p-value histogram (B) showing the distribution of p-values
from t-tests. In this example, a high number of significant differences between cohorts reflect the inherent metabolic heterogeneity of the P. aeruginosa
planktonic and biofilm cultures.
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In our demonstration with P. aeruginosa, a total of 1302
distinct cross-peaks were picked in each spectrum with 782
peaks showing a significant difference between cohorts with p <
0.05. A screenshot of the p-value histogram from the web server
(Figure 4B) including only peaks present in all 18 spectra shows
a substantial number of cross-peaks whose volumes systemati-
cally differ between cohorts (histogram bar on very left)
reflecting the inherent metabolic heterogeneity of the P.
aeruginosa planktonic and biofilm cultures. Of the significantly
different peaks, 493 do not match to any known metabolites in
the database, highlighting the potential of peak-based statistical
analysis for the characterization also of unknown metabolites.
COLMARq also provides metabolite database query

capabilities directly adopted from COLMARm. If an exper-
imental consensus peak is within the predefined frequency cutoff
of a database peak, it is classified as a “matched peak”. The
“matching ratio” is then defined as the ratio of the number of
matched peaks to the total number of peaks of the database
compound.21 The default cutoff parameters for the 1H and 13C
chemical shift differences are set at 0.04 and 0.4 ppm,
respectively, and the lowest accepted matching ratio is set to
0.6. Users can alter these three parameters on the web server
interface and repeat database query to see how they affect the
returned matched metabolite list. If needed, users also have the
option to interactively edit the cross-peaks matched to each
metabolite database peak by drag and drop.
COLMARq aims at detecting all possible metabolite matches,

whereby user visualization plays an important part to narrow

down and confirm the true matches. In our demonstration with
P. aeruginosa using cutoff parameters of 0.3 ppm for 13C and 0.03
ppm for 1H with a peak matching ratio of 0.6, a total of 169
metabolites were matched to the spectra. After manual editing,
66 metabolites were determined to be highly confident hits,
marked as good or fair, and quantified. The total matched
compound list included 68 tentative hits that were matched due
to a peak overlap between similar metabolites but do not contain
unique peaks. This can occur in highly crowded spectral regions
pertaining to highly similar compounds such as carbohydrates
and nucleotides, which comprise 47 of the 68 tentative hits. An
additional 22 compounds were matched, but because they were
present at low abundance with weak and missing peaks in many
spectra, they were not quantified. If desired, the user can set
stricter cutoff parameters to reduce the number of incomplete
matches. Figure 5A shows a screenshot from the web server as an
example of four interactive HSQC and TOCSY plots zoomed in
on ametabolite match. The blue circles mark the expected cross-
peak positions for this metabolite from the database, and the
pink circles in the TOCSY mark expected TOCSY cross-peaks.
As previously mentioned, the user can drag and drop the blue
circles to select which experimental peaks are the best match for
this metabolite. Another example of metabolite matching with
more samples is shown in Supporting Information Figure S3.
In addition to the cross-peak based p-value analysis of Figure

4B, users can also perform compound-based p-value calcu-
lations. In this case, the relative concentration of a compound is
calculated from the weighted average peak volume over all its

Figure 5. The COLMARq user interface enables visual inspection of the metabolite matches after database query for metabolite identification. The
user can click through each metabolite match for visual inspection of the specific spectral regions of both the HSQC (left) and TOCSY (right)
spectrum of each sample for judging the match (A). Panel (A) shows the spectra of two representative samples of each cohort matched to aspartate for
Cohort 1 in the top row and Cohort 2 in the bottom row. In the HSQC spectra, the blue circles represent the expected database peaks for a metabolite,
the red circles indicate the consensus peak position from user spectra for each expected metabolite peak, and the green circles mark the peaks the user
selects for quantification, which can bemanually edited. In the TOCSY spectra, the pink circlesmark expected cross-peaks for ametabolitematch.With
its high peak matching ratio in the HSQC and the presence of the expected TOCSY cross-peaks, aspartate is a good match. The chart shown in panel
(B) reports the quantitative information for each peak of the metabolite match, denoted by its unique peak index, including mean values of peak
volumes with their standard deviations for each cohort along with t-scores and p-values from t tests.
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cross-peaks. By default, all cross-peaks have the same weight, but
users have the option to adjust the weights. For example, users
can assign lower or even zero weight to weak peaks so that the
relative concentration is dominated by the strongest and, hence,
most quantitative peaks of a metabolite. Using a weight of zero
to exclude peaks is useful in the case that one or more peaks
belonging to a metabolite are overlapped with a peak from
another metabolite allowing the inclusion of only unique peaks
for accurate quantification. For P. aeruginosa, of the total 66
matched metabolites, 52 display a significant concentration
difference between cohorts (p < 0.05). Figure 5B shows a chart
with statistical information for an example metabolite match.
The chart includes for each peak the mean and standard
deviation for each cohort and the t-score and p-value between
cohorts.
The COLMARq server provides several flexible options for

the user to download both intermediate and final results for
subsequent use. For example, users have the option to download
the matched peak list with peak volumes in text format so that
they can be used as input for further statistical analysis using the
user’s preferred software. Users can also download numerical
peak-based or compound-based p-value results.

■ DISCUSSION
The high complementary of NMR to mass spectrometry makes
NMR a powerful method for the targeted and untargeted
quantitative analysis of metabolomics samples.8 Due to NMR’s
unique versatility, it is not a surprise that there exist a variety of
different NMR approaches, each with its own pros and cons.
High-throughput applications involving large cohorts of samples
typically rely on 1D 1H experiments as it requires measurement
times of only around 15 min per sample. On the flip side, the
ability to uniquely identify a large number of metabolites from
1D spectra alone is limited due to crowded spectral regions that
are difficult to deconvolute. In addition, strong peak overlap and
background signals can compromise quantitation of individual
peaks. It is therefore common to assist 1D NMR-based
metabolomics studies with a very small number of 2D NMR
experiments of selected samples for the verification of
metabolite assignments.37 2D NMR spectra, such as 13C−1H
HSQC, 1H−1H TOCSY, or 1H−1H COSY, provide vast
resolution enhancement over 1D. However, the collection of
2D NMR spectra for samples that are limited by sensitivity,
rather than the sampling of the indirect time domain, is typically
associated with significantly prolongedmeasurement times. This
applies in particular to 13C−1H HSQC spectra at 13C natural
abundance. At the same time, the first-rate resolution properties
make them particularly well suited for semi-automated,
quantitative analysis. For other 2D NMR spectra, nonuniform
sampling along the indirect dimension or ultrafast 2D NMR can
provide a significant speed-up over the traditional 2D NMR
acquisition method.38 Compared to 1D NMR, 2D NMR-based
metabolomics is more involving during the NMR data
acquisition stage. On the other hand, the 2D method offers a
substantial time gain together with higher accuracy during the
analysis part of a project.
Despite their widespread use for resonance assignment and

metabolite identification purposes, it is still very uncommon to
use 2D NMR spectra for fully quantitative metabolomics
analysis. A number of standalone software has been introduced
for the quantitative analysis of 2D NMR cross-peaks by peak
fitting, including NMRPipe,28 FMLR,39 PINT,40 INFOS,41 and
FitNMR,42 using a range of different models for the peak shapes

from Gaussian to lineshapes directly mirroring the apodization
function used. These software programs have not been designed
for the typical metabolomics workflow involving cohorts of
complex spectra from different samples that require peak
matching, which may explain their lack of routine usage in
metabolomics. COLMARq offers a convenient integration by
directly using metabolite assignments (from COLMARm) for
quantification of cohorts of spectra, peak matching, normal-
ization, and statistical analysis. COLMARq is the first publicly
available web server to facilitate metabolite identification and
fully quantitative analysis of 2DNMR spectra for metabolomics.

13C−1H HSQC spectra have a very clean baseline void of a
background signal in most regions, which makes them
particularly suitable for the highly quantitative analysis of a
large number of peaks. COLMARq is best used in combination
with COLMARm, where for each sample a COLMARm analysis
for metabolite query is performed first. This is followed by the
simultaneous uploading of all COLMARm sessions into
COLMARq for quantification. For experienced users, the
COLMARm upload step can be circumvented, and the spectra
corresponding to all samples can be uploaded in batch mode to
COLMARq for analysis. Normalization of peak volumes from
different spectra is known to be important. The median ratio
method implemented in COLMARq assumes that the
concentration of a majority of metabolites remains unchanged,
giving rise to the flipped sigmoidal profile of the rank-ordered
ratios with an extended flat part in the middle percentile range.
The graphical representation of this relationship by COLMARq
(Figure 4A) allows the user a quick assessment whether this
assumption is fulfilled and the normalization procedure is
appropriate for a particular study.
The analysis of a large number of cross-peaks across a cohort

of samples afforded by 2D NMR-based metabolomics also
allows a meaningful analysis of the p-value distribution in the
form of a histogram (Figure 4B). For two sample cohorts that
are statistically indistinguishable, the p-value histogram should
be flat, i.e., each p-value from 0 to 1 has the same probability.43

Therefore, the p-value histogram provides a straightforward
visual assessment whether the two cohorts are inherently
different in their metabolomic makeup. This is particularly
useful for pilot studies based on a relatively small number of
samples to decide whether a larger scale study, for example, for
the characterization of putative biomarkers, is warranted. A key
advantage of 2D NMR-based metabolomics is that it works
equally well for targeted and untargeted studies, including
biological samples that are not commonly studied, involving
potentially large numbers of cross-peaks belonging to both
known and unknown metabolites. Such high-quality informa-
tion is harder to obtain from 1D NMR-based metabolomics
unless the metabolite composition, as for example for human
serum, is mostly known.
COLMARq is largely automated by taking advantage of the

very accurate peak identification performance by DEEP Picker
as input for Voigt Fitter for quantification. In addition, manual
editing is made possible, which is the most useful for peak
matching between multiple spectra in strongly overlapped
regions that show variations in peak positions between samples
or for weak peaks that only show up in subsets of spectra. As a
demonstration, we used COLMARq for the efficient, semi-
automated analysis of metabolite extracts from cohorts of nine P.
aeruginosa planktonic and biofilm cultures each. With over
32,000 spectral cross-peaks to analyze across all 18 2D HSQC
spectra, manual analysis is tedious and can take months. Batch
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uploading of the 18 sets of 2D HSQC and TOCSY spectra to
COLMARq (∼30 min), automatic peak picking, fitting, and
matching between spectra (∼2.5 h), metabolite query against
the database (few seconds), and normalization and statistical
analysis (few seconds) were completed with the COLMARq
server in only about 3 h. Manual adjustment of the automated
peak matching between spectra to ensure accurate selection of
peaks within multiplets and between samples is the most time-
consuming step when working with a larger volume of samples.
COLMARq provides visualization of all matched peaks and
metabolites for a user-friendly approach to inspection and
judgment of matches. The highly interactive nature of the web
server facilitates simple adjustments during the course of all
analysis steps. The user can go from the collected NMR spectra
to a list of metabolites with their fold-changes, p-values, and a
PCA plot between hours to a few days, depending on the
number of samples and amount of manual adjustments required.
In the P. aeruginosa samples, 66 metabolites were judged as good
or fair database matches and 52 of these metabolites showed a
significant difference between cohorts (p < 0.05). For a recent
study, these results were exported and the metabolites were
mapped tometabolic pathways to provide information about the
differential metabolism of P. aeruginosa in the two growth
modes.44 COLMARq is not limited by sample type and
therefore should be useful for the analysis of a wide variety of
metabolomics applications.
In summary, the main goal behind the new COLMARq web

server is to provide users a simple, intuitive, and versatile peak
picking, fitting, and matching tool for a widest possible range of
NMR-based metabolomics studies that is publicly accessible.
The quantification, matching, and assignment of all peaks from
the sample cohorts represent a comprehensive and fully
quantitative approach for the downstream analysis in both
targeted and untargeted metabolomics studies. COLMARq
allows users to take full advantage of the resolution and
quantitative power of 2D NMR-based metabolomics measure-
ments, considerably facilitating the accurate, semi-automated,
and efficient analysis of metabolomics data.
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