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Intravenous inoculation of Salmonella enterica serovar Typhimurium into

mice is a prime experimental model of invasive salmonellosis. The use of

wild-type isogenic tagged strains (WITS) in this system has revealed that

bacteria undergo independent bottlenecks in the liver and spleen before

establishing a systemic infection. We recently showed that those bacteria

that survived the bottleneck exhibited enhanced growth when transferred

to naive mice. In this study, we set out to disentangle the components

of this in vivo adaptation by inoculating mice with WITS grown either

in vitro or in vivo. We developed an original method to estimate the replica-

tion and killing rates of bacteria from experimental data, which involved

solving the probability-generating function of a non-homogeneous birth–

death–immigration process. This revealed a low initial mortality in bacteria

obtained from a donor animal. Next, an analysis of WITS distributions in

the livers and spleens of recipient animals indicated that in vivo-passaged

bacteria started spreading between organs earlier than in vitro-grown

bacteria. These results further our understanding of the influence of passage

in a host on the fitness and virulence of Salmonella enterica and represent an

advance in the power of investigation on the patterns and mechanisms of

host–pathogen interactions.
1. Introduction
Salmonella enterica is a facultative intracellular pathogen capable of causing a

spectrum of diseases in humans and other animals. The cumulative global

death toll from non-typhoidal Salmonella (NTS) gastroenteritis, NTS bacter-

aemia and typhoid fever is substantial [1]. Current measures to control

S. enterica infections are suboptimal, and the increasing prevalence of multi-

drug-resistant strains threatens to limit treatment options [2]. Consequently,

there is a need to develop new therapeutic interventions. Experimental infection

of mice with S. enterica serovar Typhimurium remains an important source of

information about the in vivo dynamics of infection for both enteric and sys-

temic salmonelloses. Variations in microbial loads in the organs of animals

can be quantified post-mortem by plating homogenized tissues on solid culture

medium, and counting the numbers of colony-forming units (CFUs) after incu-

bation. While this method provides accurate estimates of the net growth rates of

bacterial populations, it bears no information about the respective rates of the

underlying processes of bacterial replication, death and migration. For this

purpose, various experimental methods for tracking subpopulations of bacteria

have been developed [3]. In particular, the use of wild-type isogenic tagged

strains (WITS) has enabled a detailed analysis of the bottlenecks undergone

by bacterial populations during the course of infection [4,5]. Libraries of

WITS are constructed by inserting specific 40 base pair-long oligonucleotides

into a non-coding region of the bacterial chromosome. As a result, within a
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Figure 1. Paired numbers of bacteria (CFU) recovered from the livers and spleens of mice at 0.5 h (filled circles) and 6 h (open circles) after inoculation with S.
Typhimurium WITS grown in vitro (left panel) or in vivo (right panel); each dot represents one animal. The dashed lines are isoclines for the total number of CFU
per animal.
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library, all WITS are phenotypically identical, but they can be

identified by quantitative PCR. As this allows the quantifi-

cation of multiple WITS in a mixed culture, it is possible to

compare the neutral genetic diversity in mice inoculated

with the same mixture of WITS. In particular, we recently

demonstrated key differences in the killing and spread of

S. Typhimurium following immunization of mice with either

live or killed vaccines [6].

All WITS experiments consist of infecting mice with a

known mixture of tagged wild-type strains and, after a suit-

able time, recovering the live bacteria from the tissues of

interest. The bacteria are then plated for enumeration of

CFUs and processed by quantitative PCR (qPCR) in order

to assess the relative abundance of the WITS. A critical step

in the analysis of these data is the use of mechanistic math-

ematical models that relate the bacterial numbers and WITS

composition to demographic parameters: replication rates,

death rates and migration rates. Although the population

dynamics of bacteria in single organs can be described with

simple stochastic models [4,5], statistical inference on model

parameters can rapidly become intractable when movements

between multiple compartments are accounted for [6].

Another common point to most published studies of

S. enterica in mice—and more generally of any bacterial patho-

gen in animal models—is that the bacteria in the inoculum

have been grown in vitro. This may result in genetic or epige-

netic differences with bacteria that would enter the host via

natural routes. Our seminal WITS study [4] showed that

in vitro-grown S. Typhimurium undergoes high mortality

upon entering the liver and spleen; but after a few hours, a

drop in bactericidal activity allows bacteria to grow expo-

nentially. Although we showed that the initial control

is mediated by the host’s production of reactive oxygen

intermediates [4], it is not clear whether the subsequent

shift in dynamics is due to bacterial adaptation. In order

to better understand the infection dynamics of in vivo-

passaged bacteria, we recently compared the dynamics of

S. Typhimurium colonization in the organs of mice follow-

ing inoculation with either standard in vitro-grown bacteria

or bacteria freshly extracted from the organs of infected

mice [7]. We found that bacteria transferred after spending

between 0.5 and 24 h in the donor host grew faster in the
recipient host than in vitro-grown bacteria. There was however

no apparent change in the initial drop in total bacterial num-

bers (first 6 h), leading to the hypothesis that in vivo
adaptation did not make S. Typhimurium resistant to the

early bactericidal activity.

In order to unravel the differences between the kinetics of

in vitro-grown and in vivo-adapted S. Typhimurium, we

repeated the transfer experiments from [7] using WITS.

More specifically, our objective was to answer two questions:

does in vivo adaptation affect the initial rates of bacterial repli-

cation and death in the liver and spleen? Do in vivo-adapted

bacteria start moving between the liver and spleen earlier

than in vitro-grown bacteria? We inoculated groups of mice

intravenously with inocula comprising of either an even mix-

ture of eight S. Typhimurium WITS grown in vitro, or an even

mixture of eight WITS, each of them recovered from the

spleen of a donor mouse infected with that single WITS.

Organs (liver and spleen) of recipient mice were harvested

at 0.5, 6, 24, 48 and 72 h post-inoculation (p.i.), live bacteria

from each organ were enumerated on agar plates (figure 1),

and the WITS composition determined by qPCR. The early

dynamics of infection in each organ were modelled as a con-

tinuous-time Markovian process, with transition probabilities

governed by three rates: immigration, replication and death.

We then estimated the parameters of this model with respect

to the experimental observations at 0.5 and 6 h p.i. using

Bayesian statistics. However, instead of resorting to numeri-

cal simulation of the dynamic process, as in reference [6],

we derived an analytical expression of the probability-

generating function (PGF) that led to a faster and more

accurate estimation of the likelihood function. A detailed

description of the mathematical and computational methods,

which contain substantial improvements from [6], is provided in

appendix A.
2. Results
2.1. Early dynamics (0 – 6 h p.i.)
Mice inoculated with in vitro-grown S. Typhimurium

received on average 135 bacteria (+10% ). After 30 min,

we recovered on average 64 CFU from the organs, equally
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Figure 2. Number of WITS recovered from the livers and spleens of mice in each experimental group at 0.5 h p.i. (top row) and 6 h p.i. (bottom row). Each panel is
a histogram representing five mice.
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Figure 3. Bayesian estimates for the median replication rate a (left panel) and death rate m (right panel) for the in vitro (filled symbols) and in vivo (open symbols) in
the liver (x-axis) and spleen ( y-axis). Three estimates for each parameter in each group and each organ were obtained from three different inoculum sizes.
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split between the liver and spleen (resp. 31 and 33 CFU on

average, n ¼ 5 mice). Within 6 h, the average bacterial loads

had dropped to 12 in the liver and 29 in the spleen. All

eight WITS were recovered from most organs after 30 min

(out of five mice, one animal had one WITS missing from

its spleen and another animal had two missing from its

liver), whereas all organs harvested after 6 h contained

three to six WITS (figure 2). In contrast, the average inoculum

size of in vivo-grown bacteria was around 31 CFU (range 23–

40), and we recovered on average 18 CFU after 30 min (60%

of which in livers). By 6 h p.i., however, bacterial loads had

increased to 20 CFU in livers and 11 CFU in spleens. On aver-

age, around five out of eight WITS were recovered from the

livers of mice inoculated with in vivo-grown bacteria, and

under four WITS from the spleens, with no substantial

change between 0.5 and 6 h p.i. (figure 2).

We then estimated the parameters of stochastic models of

bacterial dynamics relative to the data on WITS frequencies in

mouse organs at 0.5 and 6 h p.i. Because individual S. Typhi-

murium bacteria have been shown to form independent foci

of infection in mouse organs [8], we modelled the dynamics

of a single WITS in a single organ (liver or spleen) governed

by immigration from the bloodstream (from a finite inocu-

lum), replication and death. We assumed that replication

and death rates remained constant over the period of time

considered (6 h).
The results shown in figures 3, 6 and 7 suggest that,

within the liver and the spleen, the per capita net growth

rate during the early period is greater for in vivo-grown bac-

teria than for those grown in vitro, with the death rates for the

in vivo group being less than those for the in vitro group.
2.2. Expansion phase (6 – 72 h p.i.)
In line with our previous study [7], we found that bac-

terial loads in livers and spleens increased steadily in

both experimental groups from 6 to 72 h p.i. (figure 4).

The net growth rate during that period was greater for

in vivo-grown bacteria (average doubling time 4.6 h) than

for in vitro-grown bacteria (average doubling time 6.3 h).

A linear regression of log(CFU) against time confirmed that

the difference in growth rates was statistically significant

(p ¼ 5� 10�7).

In order to detect spillover of bacteria from the organs

back into the bloodstream, we compared the distribution of

WITS between the liver and spleen within each mouse. In

both experimental groups, the correlation of WITS abun-

dances between the liver and spleen was initially low (and

non-significant) for the first 6 h but, by 72 h p.i., the corre-

lation had increased to the point that the bacterial

populations in the liver and spleen were virtually indistin-

guishable (figure 5). However, this increase occurred much
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rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150702

4

more rapidly in recipient mice infected with in vivo-grown

bacteria than in mice infected with in vitro-grown bacteria.

This indicates that spillover started between 6 and 24 h p.i.

in the former group and between 24 and 48 h p.i. in

the latter group. It is worth noting that, by 24 h p.i., the

total bacterial loads in four out of five mice infected with

in vivo-grown bacteria had exceeded the bacterial loads in

their counterparts (figure 4).
3. Discussion
These results cast a new light on the dynamics of bacterial

infection inside hosts. By combining experiments with

tagged strains, mathematical models and statistical analysis,

we have unravelled two effects of the adaptation of S. Typhi-

murium to in vivo growth. Following their transfer from

infected animals to naive animals, bacteria were not only

able to survive the initial bottleneck better than in vitro-

grown bacteria, but they also started their systemic spread

much earlier (probably 24 h earlier). In particular, we have

produced strong evidence against our previous hypothesis

that in vivo adaptation had no effect on the initial killing of
bacteria upon entering the organs [7]. Instead, we suggest

that combined reductions in the replication and death of bac-

teria in the first 6 h of infection underlie variations in total

bacterial numbers similar to those observed in mice infected

with in vitro-grown bacteria.

Although the artificial transfer of bacteria from the organs

of a donor mouse to the bloodstream of a recipient animal

bypasses key steps in the natural route of transmission of a

food-borne pathogen, our findings highlight potential pitfalls

in experimental models of infection that use in vitro-grown

bacteria. Whether S. enterica going through oral–faecal

transmission would exhibit the same adaptations as our

in vivo-grown strains is not known at this point, but it would

be legitimate to expect discrepancies with in vitro-grown bac-

teria. However, the passage protocol that we followed could

bear some resemblance with other routes of infection with

S. enterica occurring naturally. Contamination of open

wounds with S. enterica is a public health concern in develop-

ing countries, and bacterial contamination of blood products,

albeit rare, remains a source of deadly S. enterica infection [9].

This study illustrated the benefit of adopting the Bayesian

approach to data analysis. In particular, estimation of the

posterior probability distributions for the parameters of the
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4. Material and methods
4.1. Experimental procedures
4.1.1. Bacterial strains and growth conditions
We used S. enterica serovar Typhimurium WITS strains 1, 2, 11,

13, 17, 19, 20 and 21 which have been described previously [4].

Briefly, strains were constructed by inserting 40 bp signature

tags and a kanamycin resistance cassette between the malXY
pseudogenes of S. Typhimurium JH3016 [10], a gfpþ derivative

of wild-type virulent SL1344, which has an LD50 by the intrave-

nous (i.v.) route of under 20 CFU for innately susceptible mice

[11]. Bacterial cultures for infection were grown from single colo-

nies in 10 ml Luria–Bertani (LB) broth incubated overnight

without shaking at 378C, then diluted in phosphate-buffered

saline (PBS) to the appropriate concentration for inoculation.

4.1.2. Animals and ethics
We used female eight to nine week old C57BL/6 wild-type mice

(Harlan Olac Ltd), which were infected by i.v. injection of bac-

terial suspensions in a volume of 0.2 ml, and killed up to 72 h

p.i. by cervical dislocation. All animals were handled in strict

accordance with good animal practice as defined by the relevant

international (Directive of the European Parliament and of the

Council on the protection of animals used for scientific purposes,

Brussels 543/5) and local (Department of Veterinary Medicine,

University of Cambridge) animal welfare guidelines.

4.1.3. Generation and transfer of in vivo-grown wild-type
isogenic tagged strains

To generate the in vivo-grown WITS, eight C57BL/6 mice were

inoculated i.v. with around 104 CFU of S. Typhimurium each

mouse receiving a different WITS strain. The mice were killed

72 h p.i. by cervical dislocation, and their spleens were removed

aseptically. Each spleen was homogenized using an Ultra-Turrax

T25 blender in 5 ml of distilled water. About 1.163 ml of each

organ homogenate (9.3 ml total) was added to 30.7 ml of PBS

which was further diluted by 10-fold serial dilutions in PBS

prior to i.v. inoculation. The bacterial loads in the spleens

ranged from 1:95� 106 to 5:25� 106 CFU. The transfer of bac-

teria to the first recipient animal was completed in less than

5 min from the death of the donors.

4.1.4. Enumeration and recovery of viable Salmonella
in the tissues

Twenty-five recipient mice were inoculated with an even mixture

of the eight in vitro-grown WITS; the average inoculum size was

135 CFU. Another 25 mice were inoculated with an even mixture

of the eight in vivo-grown WITS; the average inoculum dose was

31 CFU. At each time point (0.5, 6, 24, 48 and 72 h p.i.), five mice

from each experimental group were taken at random and were

killed by cervical dislocation. Their livers and spleens were asep-

tically removed and homogenized separately in 5 ml sterile water

using a Colworth Stomacher 80. If required, the resulting hom-

ogenate was diluted in a 10-fold series in PBS, and LB agar

plates were used to enumerate viable bacteria. Entire organ hom-

ogenates in 1 ml aliquots were inoculated onto the surface of

90 mm agar plates. After an overnight incubation at 378C, colo-

nies were enumerated and total bacteria harvested from the
plates by washing with 2 ml PBS. Bacteria were thoroughly

mixed by vortexting, harvested by centrifugation and stored at

�808C prior to DNA extraction.
4.1.5. Determination of wild-type isogenic tagged strains
proportions in bacterial samples by qPCR

DNA was prepared from aliquots of bacterial samples using a

DNeasy blood and tissue kit (Qiagen). DNA concentration was

determined using a NanoDrop 1000 spectrophotometer

(Thermo Scientific). Approximately 106 total genome copies

were analysed for the relative proportion of each WITS by

qPCR on a Rotor-Gene Q (Qiagen). Duplicate reactions were per-

formed for each sample with primer pairs specific for each WITS

in separate 20 ml reactions (primers; table 1). Reactions contained

10 ml of QuantiTectw SYBRw Green PCR kit reagent (Qiagen),

1 mM each primer, 4 ml sample and DNase-free water to 20 ml.

Reaction conditions were: 958C for 15 min, 35 cycles of 948C
for 15 s, 618C for 30 s and 728C for 20 s. The copy number of

each WITS genome in the sample was determined by reference

to standard curves for each primer pair. It was not possible to

perform a full standard curve for each primer pair on every

rotor; however, individual standards were included on each

rotor run to ensure that the values obtained were in the range

expected. Standard curves were generated for each batch of

PCR reagents by performing qPCRs in duplicate on four

separate dilution series of known concentrations of WITS

genomic DNA.
4.2. The early-dynamics model and its parameters
During the early period (0–6 h p.i.), it is assumed that the only

events that take place in the liver are the following

birth: †�!aL
2†,

death: †�!mL
�,

immigration: � �!nLðtÞ
†:

where a is the birth rate, m the death rate and nðtÞ is the rate at

which new bacteria feed into the liver from the blood at time t.
A similar set of parameters exist for the spleen. No emigration

of bacteria from the liver and spleen to the blood takes place

during the early period. The master equation for this branching

process is (with subscript ‘L’ omitted)

dPkðtÞ
dt

¼
mðkþ1ÞPkþ1ðtÞþaðk�1ÞPk�1ðtÞþnðtÞPk�1ðtÞ
�ððaþmÞkþnðtÞÞPkðtÞ if k .0,
mP1ðtÞ�nðtÞP0ðtÞ if k¼0

8<
:

ð4:1Þ
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where PkðtÞ is the probability of having k bacteria present at

time t.
We can derive an expression for nLðtÞ in terms t as follows.

First, the rate with which the expected value of Xt in the

blood, E½Xblood,t�, decreases can be expressed as

dE½Xblood,t�
dt

¼ �cLE½Xblood,t� � cSE½Xblood,t� ¼ �cE½Xblood,t�,

(i.e. c ¼ cL þ cS) where cL and cS are the rate constants for bacteria

moving from the blood to the liver and spleen, respectively;

consequently,

E½Xblood,t� ¼ nB,0 e�ct, ð4:2Þ

where nB,0 ¼ E½Xblood,0�: We ignore bacterial replication and death

in the blood, on the basis that bacteria are known to reside there

for a very short period of time (which we checked a posteriori
with our parameter estimates). Given also the uncertainty in

inoculum sizes and the lack of data on bacterial loads in the

blood, it appeared very unlikely we would be able to recover

any information on the values of additional parameters from the

data. The rate nLðtÞ with which bacteria move from the blood to

the liver at time t is proportional to E½Xblood,t�with rate constant cL,

nLðtÞ ¼ cLE½Xblood,t�;

therefore, from (4.2),

nLðtÞ ¼ cLnB,0e�ct, ð4:3Þ

from which we have that nLð0Þ ¼ cLnB,0: If we let bL denote nLð0Þ,
then (4.3) can be rewritten as

nLðtÞ ¼ bL e�ct, ð4:4Þ

where bL ¼ nLð0Þ and c is an immigration constant. We assume

that, for the wth WITS, nB,0 ¼ m½w�.
An analogous case exists for the spleen, and we will use u to

represent the vector of parameters for both liver and spleen:

kaL, mL, cL, aS, mS, cSl.
4.2.1. Data
Data were provided from the mouse experiments using S. enterica
WITS grown in vitro or in vivo. The observed data were not the

number of WITS n, but the corresponding number u of CFU;

however, for the early-dynamics model, we have used u as a

proxy for n.

For each of the in vitro and in vivo groups, eight WITS were

present in the inocula, and the number u of CFU (and thus the

number of WITS n) present in the liver and spleen 0.5 h and

6 h p.i. were recorded. Five mice were used for each time point.

Let m½1�, . . . , m½8� denote the frequencies of the eight WITS

injected. If D½i�t denotes the liver and spleen WITS frequencies

from the ith mouse for time point t following inoculation

D½i�t ¼ fn
½i,w¼1�
L,t , . . . , n½i,w¼8�

L,t g< fn½i,w¼1�
S,t , . . . , n½i,w¼8�

S,t g,

where n½i,w�L,t is the frequency of the wth WITS present in the liver

of the ith mouse for time point t, then the total data D across all

mice and time points is

D ¼ D½1�0:5 < � � �< D½5�0:5 < D½1�6 < � � �< D½5�6 ,

for both the in vitro and in vivo groups. For each group, there are

three estimates of fm½1�, . . . , m½8�g.
4.2.2. Parameter estimation
Parameters u for both the in vitro- and in vivo-grown S.
Typhimurium can be estimated using Bayesian inference.

More precisely, we can estimate the posterior distribution
pðujD, m½1�, . . . , m½8�Þ via the relationship

pðujD, m½1�, . . . , m½8�Þ ¼ pðuÞpðDjm½1�, . . . , m½8�, uÞÐ
u

pðuÞpðDjm½1�, . . . , m½8�, uÞdu : ð4:5Þ

As the mice and WITS are independent of each other, the

likelihood pðDjm½1�, . . . , m½8�, uÞ can be factorized as follows

pðDjm½1�, . . . , m½8�, uÞ ¼
Y

t[f0:5,6g

Y5

i¼1

pðD½i�t jm½1�, . . . , m½8�, uÞ, ð4:6Þ

where

pðD½i�t jm½1�, . . . , m½8�, uÞ ¼
Y8

w¼1

pðn½i,w�L,t jm½w�, uÞ

�
Y8

w¼1

pðn½i,w�S,t jm
½w�, uÞ: ð4:7Þ

Consequently, determining the posterior probability distribu-

tion requires the estimation of pðn½i,w�t jm½w�, uÞ for each n½i,w�t [ D:
This is described in appendix A.

A robust method for the estimation of the denominator of

(4.5) is Markov chain Monte Carlo (MCMC)-based nested
sampling [12]. Here, the multivariate integral in the denominator

of (4.5) is equated to the univariate integral
Ð 1

0 f�1ðjÞdj, where

f�1ðjÞ is that likelihood l such that pðLðuÞ . lÞ ¼ j: In contrast

to the multivariate integral, the univariate integral can be readily

estimated by standard numerical methods.

Nested sampling is a sequential process. Starting with a

population of particles fuig drawn from the prior distribution

pðuÞ, the point umin with the smallest likelihood lmin is recorded

along with the associated probability j: Point umin is then

replaced by a new point drawn randomly (via MCMC) from

the restricted prior pðujLðuÞ . lminÞ: As this process is repeated,

the population of points moves progressively higher in likeli-

hood, and the associated restricted priors are nested within

each other. The resulting sequence of points fðlmin, jÞg produces

the plot required for
Ð 1

0 f�1ðjÞdj.

A drawback of the original version of nested sampling is that

it will underestimate the integral if a likelihood function is multi-

modal. Feroz et al. [13] developed a version of nested sampling

that can cope with multimodal likelihood functions, but Brewer

et al. [14] designed a computationally more eloquent approach

to this problem called diffusive nested sampling.

Rather than confining sampling to a succession of nested

restricted priors, diffusive nested sampling uses one or more par-

ticles to explore a mixture of nested priors, with each

successive distribution occupying about e�1 times the enclosed

prior mass of the previous distribution. This not only allows

lower (earlier) levels to be resampled to improve accuracy, but

also allows sampling across multimodal likelihood functions.

We performed diffusive nested sampling with 10 000 iterations

of a single particle and a maximum of 30 nested levels. For the

sake of computational expediency, parameter space was

restricted to [0, 2] for each parameter. The uniform prior was

used. This parameter space was sufficiently large to illustrate

the differences of interest between the posterior distributions in

spite of the truncation of cL in figure 6f.
In order to monitor the progress of the estimation of

pðujD, m½1�, . . . , m½8�Þ, posterior distributions based on subsets

of D were used: pðujD½i�0:5, D½j�6 , m½1�, . . . , m½8�Þ: These distribu-

tions, computed from likelihood pðD½i�0:5, D½j�6 jm½1�, . . . , m½8�, uÞ,
required less time to compute but could be estimated in parallel

to each other and then combined as described in appendix A.

The resulting posterior probability distributions for par-

ameters aL, mL, cL, aS, mS and cS associated with the in vitro
and in vivo groups are shown in figures 6 and 7. Posterior

pðzjD, m½1�, . . . , m½8�Þ for parameter z [ faL, mL, cL, aS, mS, cSg
was produced by averaging the posteriors obtained with
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respect to the three inoculum sizes used for each group

(figures 8 and 9). Separation between the in vitro and in vivo
distributions for parameter z is measured by AUC, which is

equal to the probability that z randomly chosen from the

in vivo distribution will be less than z randomly chosen from

the in vitro distribution.

Kaiser et al. [15] have also modelled birth–death–immigra-

tion in order to estimate parameters but they used a more

simplified model regarding immigration. In contrast, we allowed

for the fact that immigration is inhomogeneous as there is a finite
number of bacteria immigrating from the bloodstream into the

organs. Furthermore, their parameters were estimated using

maximum-likelihood without taking into account parameter

uncertainties.

Table 2 lists the resulting mean values for the parameters

contained in u according to pðzjD, m½1�, . . . , m½8�Þ:

Ethics. All animal work was approved by the ethical review committee
of the University of Cambridge and was licensed by the UK Govern-
ment Home Office under the Animals (Scientific Procedures) Act 1986.
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Appendix A. The probability of a number
of bacteria
The following sections describe the steps taken to deriving an

expression for the number of bacteria n at time t starting from

a PGF. Figure 10 highlights the main steps of the derivation.
A.1. Probability-generating function
Our approach to the estimation of pðn½i,w�t jm½w�, uÞ has been to

use a PGF.
A PGF for the branching process can be defined as

Gðz, tÞ ¼
X1
nt¼0

znt pðntjm, uÞ, ðA 1Þ

where z is a real or complex number. A virtue of using a PGF

is that, in principal, probabilities can be extracted from PGFs

by differentiation; for example, in the case of (A 1), we have

pðntjm, uÞ ¼ 1

nt!

@nt

@znt
Gðz, tÞ

����
z¼0

: ðA 2Þ

The following partial differential equation can be derived

from (A 1) (theorem A.2):

@

@t
Gðz, tÞ ¼ ½aðtÞz� mðtÞ�ðz� 1Þ @

@z
Gðz, tÞ þ nðtÞðz

� 1ÞGðz, tÞ: ðA 3Þ

If there is no immigration (i.e. nðtÞ ¼ 0) and the branching

process begins from a single particle (i.e. X0 ¼ 1), then (A 3)

can be solved [16] to give

Gðz, tÞ ¼ 1þ 1

e4ðtÞ=ðz� 1Þ �
Ð t

0 aðtÞ e4ðtÞ dt
, ðA 4Þ

where 4ðtÞ ¼
Ð t

0½mðtÞ � aðtÞ�dt.

In order to allow for immigration (i.e. nðtÞ . 0), we con-

sider a single bacterium appearing in the liver from the
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Figure 9. Box plots of the component distributions used for the posterior distributions for (a) aS, (b) mS and (c) cS shown in figure 7.

Table 2. Mean values and 95% credible intervals (highest probability density intervals) for parameters aL, mL, cL, aS, mS and cS associated with the
in vitro and in vivo groups. Values are restricted to the interval [0, 2] for each parameter. Uniform prior distributions over [0, 2] were used for every parameter.

parameter meaning

mean and 95% HPD interval

in vitro in vivo

aL birth rate in liver 0.758 (0.10 – 1.25) 0.486 (0.10 – 0.97)

mL death rate in liver 1.187 (0.58 – 1.86) 0.433 (0.06 – 1.06)

cL blood-to-liver rate 0.708 (0.34 – 1.10) 1.302 (0.42 – 1.97)

aS birth rate in spleen 0.793 (0.26 – 1.38) 0.404 (0.06 – 1.06)

mS death rate in spleen 1.041 (0.43 – 1.70) 0.429 (0.06 – 1.06)

cS blood-to-spleen rate 0.850 (0.35 – 1.34) 0.852 (0.15 – 1.66)
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blood not at time 0 but at some later time u . 0. If we denote

the PGF for this delayed process by G(z, t, u) for t � u, then

we can derive an expression for G(z, t, u) in a manner analo-

gous to that for (A 4), in which the lower limits for the

integrals of (A 4) and definition of function 4ðtÞ are replaced

with u
Gðz, t, uÞ ¼ 1þ 1

e4ðt,uÞ=ðz� 1Þ �
Ð t

u aðtÞ e4ðt,uÞ dt
, ðA 5Þ
where

4ðt, uÞ ¼
ðt

u
½mðtÞ � aðtÞ�dt: ðA 6Þ

According to reference [16], we can write the PGF for

when X0 ¼ j as follows

Hðz, tjjÞ ; E½zXt jX0 ¼ j�

¼ Gðz, t, 0Þjexp

ðt

0

½Gðz, t, uÞ � 1�nðuÞdu
� �

: ðA 7Þ



Use probability generating function G (z, t) (Equation� pending �)

Re-express G(z, t) as expectation H (z, t|ξ) (Equation �pending�)

Approximate inversion of H (z, t|ξ) using Cauchy contour integral (Equation�pending�)

Result is p̂ (Xt = n|X0 = ξ) (Equation � pending �)

Figure 10. The main steps taken for deriving an expression for the number of bacteria n at time t starting from a probability generating function. j is the number
of bacteria when t ¼ 0, and z is a real or complex number.
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We can solve (A 7) by letting the birth and death rates be

constant over time, as follows.

Let aðtÞ ¼ a and mðtÞ ¼ m, then (A 6) becomes

4ðt, uÞ ¼
ðt

u
½mðtÞ � aðtÞ�dt ¼

ðt

u
ðm� aÞdt ¼ ðm� aÞðt� uÞ,

and the integral of (A 5) becomesðt

u
aðtÞ e4ðt,uÞ dt ¼

ðt

u
a eðm�aÞðt�uÞ dt ¼ a

m� a
[eðm�aÞðt�uÞ � 1]:

This results in (A 5) becoming

Gðz, t, uÞ ¼ 1þ 1

eðm�aÞðt�uÞ=ðz� 1Þ � a=ðm� aÞ½eðm�aÞðt�uÞ � 1�

¼ 1þ ðz� 1Þðm� aÞ eða�mÞðt�uÞ

m� azþ aðz� 1Þ eðm�aÞðt�uÞ ,

ðA 8Þ
from which we immediately have
Gðz, t, 0Þ ¼ 1þ ðz� 1Þðm� aÞ eða�mÞt
m� azþ aðz� 1Þ eðm�aÞt : ðA 9Þ

From (A 8) and (4.4), we can write the integral of (A 7) as
ðt

0

½Gðz, t, uÞ � 1�nðuÞdu

¼
ðt

0

b e�cuðz� 1Þðm� aÞ eða�mÞðt�uÞ

m� azþ aðz� 1Þ eðm�aÞðt�uÞ du, ðA 10Þ
from which we can derive the expression (theorem A.3)
ðt

0

½Gðz, t, uÞ � 1�nðuÞdu ¼ b e�ctðz� 1Þða� mÞ
ðm� azÞðcþ a� mÞ 2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2,

aðz� 1Þ
az� m

� ��
�

eða�mþcÞt
2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2,

aðz� 1Þ eða�mÞt
az� m

� ��
,

ðA 11Þ
where 2F1 is the Gauss hypergeometric function,

2F1ða, b; c, xÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

xk

k!
,

with ðqÞk denoting the falling factorial:

ðqÞn ¼
1 if n ¼ 0
qðqþ 1Þ � � � ðqþ n� 1Þ if n . 0:

�

Finally, substituting (A 9) and (A 11) into (A 7) leads to

the relationship
Hðz, tjjÞ ¼ 1þ ðz� 1Þðm� aÞ eða�mÞt
m� azþ aðz� 1Þ eðm�aÞt

� �j

� exp
b e�ctðz� 1Þða� mÞ
ðm� azÞðcþ a� mÞ 2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2,

aðz� 1Þ
az� m

� ���

� eða�mþcÞt
2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2,

aðz� 1Þ eða�mÞt
az� m

� ���
:

ðA 12Þ
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A.2. Inversion of the probability-generating
function

Extracting probabilities from PGFs is called inversion, and in

the case of PGF Hðz, tjjÞ, we have

pðXt ¼ njX0 ¼ jÞ ¼ 1

n!

@n

@zn Hðz, tjjÞ
����
z¼0

: ðA 13Þ

Although inversion of a PGF via differentiation is analy-

tically correct, it can be a formidable task to undertake,

depending on the complexity of the PGF. An alternative

approach is to use the inversion formula based on the

Cauchy contour integral [17],

pnðtÞ ¼
1

2pi

þ
G

Gðz, tÞ
znþ1

dz, ðA 14Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and G is a closed contour around 0 in the

disc of convergence. If we choose G to be a circle of

radius r (0 , r , 1) and use the change of variable z ¼ reui,

then [17]

pnðtÞ ¼
1

2prn

ð2p

0

Gðreui, tÞ e�nuidu: ðA 15Þ

A trapezoidal approximation of the integral in (A 15) leads

to the following approximation of pnðtÞ [17]

p̂nðtÞ ¼
1

2n‘rn

X2n‘�1

j¼0

Gðre jpi=n‘, tÞ e�jpi=‘, ðA 16Þ

with error 1 ¼ pnðtÞ � p̂nðtÞ given by

1 ¼
X1
j¼1

pnð1þ2j‘ÞðtÞr2jn‘:

Here, ‘ is an integer to control the round-off error, and we can

set ‘ ¼ 1 [18,19]. The error is related to the radius r of the disc

of convergence for (A 14) by [17,18]

1 � r2n

1� r2n : ðA 17Þ

If r is sufficiently small such that (A 17) becomes 1 � r2n,

then we will have 1 � 10�h when r¼ 10�h=2n [17].

We can reduce the computation of (A 16) by a factor of 2

by taking the real-valued part of it [17–19]

p̂nðtÞ¼ <
1

2nrn

X2n�1

j¼0

Gðrejpi=n, tÞe�jpi

8<
:

9=
;

¼ 1

2nrn

X2n�1

j¼0

<{Gðrejpi=n, tÞe�jpi}

¼ 1

2nrn

X2n

j¼1

ð�1Þj<{Gðrejpi=n, tÞ}

¼ 1

2nrn Gðr, tÞþð�1ÞnGð�r, tÞþ2
Xn�1

j¼1

ð�1Þj<ðGðrejpi=n, tÞÞ

8<
:

9=
;

ðA18Þ
In the context of conditional probability pðXt ¼ njX0 ¼ jÞ
and PGF Hðz, tjjÞ, (A 18) becomes

pðXt¼njX0¼jÞ

¼ 1

2nrn Hðr,tjjÞþð�1ÞnHð�r,tjjÞþ2
Xn�1

j¼1

ð�1Þj<ðHðrejpi=n,tjjÞÞ

8<
:

9=
;

ðA19Þ

A.3. Combining posterior probabilities
Because of the probabilistic independences present within

the data, we were able to combine posterior distributions

of the form pðujD½i�0:5, D½j�6 , m½1�, . . . , m½8�Þ by application of

theorem A.1

pðu [ FjD, m½1�, . . . , m½8�Þ ¼ kpðu [ FÞ�4

�
Y

i[f1,2,3,4,5g
j[f5,4,3,2,1g

pðu [ FjD½i�0:5, D½j�6 , m½1�, . . . , m½8�Þ,

where F is a path-connected subset of parameter space and k
is the normalization constant. Note that any permutation of

f1, 2, 3, 4, 5g could be used for j.

A.4. Accuracy
The expected number of bacteria at time t is given by

E½XtjX0 ¼ j� ¼
X1
n¼0

npðXt ¼ njX0 ¼ jÞ,

but it is also given by

E½Xt� ¼
@

@z
Gðz, tÞ

����
z¼1

,

and if E½X0� ¼ j, then (theorem A.4)

E½XtjX0 ¼ j� ¼ ðjþ JÞ eða�mÞt � Je�ct,

where J ¼ b=ðcþ a� mÞ:
An assessment of the accuracy of using (A 19) can be

made by comparing the true expected value based on

Etrue½XtjX0 ¼ j� ¼ ðjþ JÞ eða�mÞt � J e�ct,

with the expectation estimated using those values of

pðXt ¼ njX0 ¼ jÞ obtained from (A 19)

Ê½XtjX0 ¼ j� ¼
X1
n¼0

np̂ðXt ¼ njX0 ¼ jÞ:

As an example of such a comparison, the expected values

obtained when using aL ¼ 0:394, mL ¼ 0:804, cL ¼ 0:704 and

nB,0 ¼ 124 were

Etrue½X6jX0 ¼ 0� ¼ 21:02081255 and

Ê½X6jX0 ¼ 0� ¼ 21:02081257:

Theorem A.1. Let u be a point in parameter space and F a path-
connected subset of that space. Let A1, . . . , AS be sets of data that
are independent of each other given u [ F, then

pðu [ FjA1, . . . , ASÞ ¼ kpðu [ FÞ1�S

�
YS

i¼1

pðu [ FjAiÞ,
ðA 20Þ

where k is the normalization constant.
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Proof.

pðu [ FjA1, . . . , ASÞ

¼ pðu [ FÞpðA1, . . . , ASju [ FÞ
Z1���S

, ðA 21Þ

¼ pðu [ FÞ
Z1���S

YS

i¼1

pðAiju [ FÞ, ðA 22Þ

where Z1���S is a normalization constant ensuring thatP
F pðu [ FjA1, . . . , ASÞ ¼ 1. Now,

pðu [ FjAiÞ ¼
pðu [ FÞpðAiju [ FÞ

Zi
, ðA 23Þ

where Zi is a normalization constant, thus,

pðAiju [ FÞ ¼ Zipðu [ FjAiÞ
pðu [ FÞ ; ðA 24Þ
therefore,

pðu [ FjA1, . . . , ASÞ ¼
Z1 � � �ZS

Z1���S

� �
pðu [ FÞ1�S

YS

i¼1

pðu

[ FjAiÞ: B

Theorem A.2.

@G
@t
ðz, tÞ ¼ ðaz� mÞðz� 1Þ @G

@z
ðz, tÞ þ be�ctðz

� 1ÞGðz, tÞ: ðA 25Þ
20150702
Proof. [16, p. 201] Consider the PGF Gðz, tÞ ¼
Pþ1

k¼0 zkPkðtÞ:
From the master equation (4.1), we have
@G
@t
ðz, tÞ ¼

Xþ1

k¼0

zk dPkðtÞ
dt

¼
Xþ1

k¼0

zkðmðk þ 1ÞPkþ1ðtÞ þ aðk � 1ÞPk�1 þ b e�ctPk�1ðtÞ � ððaþ mÞk þ b e�ctÞPkðtÞÞ,

and then

@G
@t
ðz, tÞ ¼

Xþ1

k¼0

zkmðk þ 1ÞPkþ1ðtÞ þ z2
Xþ1

k¼2

zk�2aðk � 1ÞPk�1 þ z
Xþ1

k¼01

zk�1b e�ctPk�1ðtÞ

� z
Xþ1

k¼1

zk�1ðaþ mÞkPkðtÞ �
Xþ1

k¼0

zkb e�ctPkðtÞ

¼ m
@G
@z
ðz, tÞ þ az2 @G

@z
ðz, tÞ þ b e�ctzGðz, tÞ � ðaþ mÞz @G

@z
ðz, tÞ � b e�ctGðz, tÞ B

Hence, the differential equation

@G
@t
ðz, tÞ ¼ ðaz� mÞðz� 1Þ @G

@z
ðz, tÞ þ b e�ctðz� 1ÞGðz, tÞ: ðA 26Þ

Note: In the above proof, we can use aðtÞ in place of a and

mðtÞ in place of m.
Lemma A.1.

ð1

0

tbð1� tÞcð1� xtÞa dt ¼ Bðbþ 1, cþ 1Þ2F1ð�a, b

þ 1; bþ cþ 2; xÞ: ðA 27Þ

where B(a, b) is the beta integral and 2F1 is the hypergeometric
function given by

Bða, bÞ ¼
ð1

0

ta�1ð1� tÞb�1 dt,

2F1ða, b; c; xÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

xk

k!
:

Proof. Because

ð1� xtÞa ¼
X1
k¼0

a
k

� �
ð�xtÞk ¼

X1
k¼0

ð�aÞk
xk

k!
tk, ðA 28Þ
we haveð1

0

tbð1� tÞcð1� xtÞa dt ¼
X1
k¼0

ð�aÞk
xk

k!

ð1

0

tbþkð1� tÞc dt: ðA 29Þ

Now

Bðbþ k þ 1, cþ 1Þ ¼ Gðbþ k þ 1ÞGðcþ 1Þ
Gðcþ bþ k þ 2Þ

¼ ðbþ 1Þk
ðcþ bþ 2Þk

Gðbþ 1ÞGðcþ 1Þ
Gðcþ bþ 2Þ

¼ ðbþ 1Þk
ðcþ bþ 2Þk

Bðbþ 1, cþ 1Þ, B

henceð1

0

tbð1� tÞcð1� xtÞa dt ¼ Bðbþ 1, cþ 1Þ2 F1ð�a, b

þ 1; bþ cþ 2; xÞ: ðA 30Þ
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ðt

0

½Gðz, t, uÞ � 1�nðuÞdu ¼ b e�ctðz� 1Þða� mÞ
ðm� azÞðcþ a� mÞ 2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2;

aðz� 1Þ
az� m

� ��

� eða�mþcÞt
2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2;

aðz� 1Þ eða�mÞt
az� m

� ��
:

Proof. We haveðt

0

½Gðz, t, uÞ � 1�nðuÞdu ¼
ðt

0

b e�cuðz� 1Þðm� aÞ eða�mÞðt�uÞ

ðm� aÞ � aðz� 1Þ½1� eða�mÞðt�uÞ�du:

Consider the variable change x ¼ eða�mÞðt�uÞ, so that

u ¼ ð1=ðm� aÞÞ logðxÞ þ t and dx ¼ ðm� aÞx du, thenðt

0

½Gðz, t, uÞ � 1�nðuÞdu ¼
ð1

eða�mÞt

bxð�c=ðm�aÞÞe�ctðz� 1Þ
ðm� aÞ � aðz� 1Þð1� xÞdx

¼
ð1

eða�mÞt

b e�ctxð�c=ðm�aÞÞðz� 1Þ

ðm� azÞ 1þ aðz� 1Þ
m� az

x
� �dx

¼ b e�ctc

a

ð1

eða�mÞt
xð�c=ðm�aÞÞð1þ cxÞ�1 dx, ðA 31Þ

where c ¼ aðz� 1Þ=ðm� azÞ:
To compute (A 31), we can use the identity (lemma A.1)ð1

0

tbð1� tÞcð1� xtÞa dt ¼ Bðbþ 1, cþ 1Þ2F1ð�a, bþ 1; bþ cþ 2; xÞ,

as follows

b e�ctc

a2

ð1

eða�mÞt
xð�c=ðm�aÞÞð1þ cxÞ�1 dx

¼ b e�ctc

a

ð1

0

xð�c=ðm�aÞÞð1þ cxÞ�1 dx�
ðeða�mÞt

0

xð�c=ðm�aÞÞð1þ cxÞ�1 dx

 !

¼ b e�ctc

a

ð1

0

xð�c=ðm�aÞÞð1þ cxÞ�1 dx� eða�mþcÞt
ð1

0

yð�c=ðm�aÞÞ 1þ cy
eðm�aÞt

� ��1

dy

 !

¼ b e�ctc

a
B
�c

m� a
þ 1, 1

� �
2

F1 1,
�c

m� a
þ 1;

�c
m� a

þ 2; � c

� �

� b e�ctc

a
ðeða�mþcÞtÞB �c

m� a
þ 1, 1

� �
2

F1 1,
�c

m� a
þ 1;

�c
m� a

þ 2; � c eða�mÞt
� �

:

Finally, given that

B
�c

m� a
þ 1, 1

� �
¼ a� m

cþ a� m
, ðA 32Þ

we haveðt

0

½Gðs, t, uÞ � 1�nðuÞdu ¼ b e�ctðs� 1Þða� mÞ
ðm� asÞðcþ a� mÞ 2F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2;

aðs� 1Þ
as� m

� ��

� eða�mþcÞt
2 F1 1,

�c
m� a

þ 1;
�c

m� a
þ 2;

aðs� 1Þ eða�mÞt
as� m

� ��
: B
Theorem A.4.

The expected number of bacteria at time t is given by

E½Xt� ¼ ðjþ JÞ eða�mÞt � J e�ct, ðA 33Þ

where J ¼ b=ðcþ a� mÞ:
Proof. From the PGF of the branching process (A 1), we have

@

@s
Gðz, tÞ ¼

X1
n¼0

pnðtÞnzn�1, ðA 34Þ
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thus

@

@z
Gðz, tÞ

����
z¼1

¼
X1
n¼0

n pnðtÞ ¼ E½Xt�, ðA 35Þ

hence

@

@t
E½Xt� ¼

@

@t
@

@z
Gðz, tÞ

����
z¼1

� �
¼ @2

@t@z
Gðz, tÞ

����
z¼1

: ðA 36Þ

Now, if rates m and a are assumed to be constant

over time, and nðtÞ is written as b e�ct (4.4), then (A 3) can

be written as

@

@t
Gðz, tÞ ¼ ðaz� mÞðz� 1Þ @

@z
Gðz, tÞ þ b e�ctðz� 1ÞGðz, tÞ,

ðA 37Þ

in that case

@2

@t@z
Gðz, tÞ ¼ @

@z
@

@t
Gðz, tÞ

� �
¼ aðz� 1Þ @

@z
Gðz, tÞ

þ ðaz� mÞ @
@z

Gðz, tÞ

þ ðaz� mÞðz� 1Þ @
2

@z2
Gðz, tÞ þ b e�ctGðz, tÞ þ b e

� ðz� 1Þ @
@z

Gðz, tÞ;
therefore

@2

@t@z
Gðz, tÞ

����
z¼1

¼ ða� mÞ @
@z

Gðz, tÞ
����
z¼1

þ b e�ctGð1, tÞ

¼ ða� mÞ @
@z

Gðz, tÞ
����
z¼1

þ b e�ct,

because G(1, t) ¼ 1. From (A 35) and (A 36), we can rewrite

this as the differential equation

d

dt
E½Xt� ¼ ða� mÞE½Xt� þ b e�ct: ðA 38Þ

Solving (A 38) as a first-order differential equation gives

E½Xt� ¼ w eða�mÞt � b e�ct

cþ a� m
, ðA 39Þ

where w is a constant. This constant can be dealt with as

follows. If j is the initial number of bacteria, then

E½X0� ¼ j, consequently, setting t in (A 39) equal to 0 gives

w ¼ jþ b

cþ a� m
,

and the resulting expression for the expected number of

bacteria at time t is

E½Xt� ¼ ðjþ JÞ eða�mÞt � J e�ct, ðA 40Þ

where J ¼ b=ðcþ a� mÞ: B
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