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Abstract

Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role
in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an
acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The
received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these
echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to
classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-
modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features
that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract
suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is
enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified
plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings
provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other
complex objects.
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Introduction

When orienting in space and searching for food, microchir-

opteran bats continuously emit echolocation signals. The returning

echoes are analyzed in the auditory system to perform the basic

echolocation tasks of detection, localization and classification [1].

Classification of vegetation probably plays a major role in spatial

orientation and in food acquisition. It is fundamental for

recognizing landmarks and vegetation edges which are mandatory

for the route following behavior observed in bats [2]. In addition it is

also very important for finding and recognizing foraging habitats

such as meadows, bushes, trees etc. which are indicators of specific

food sources [3,4]. In all of these cases the vegetation has to be

classified from a relative long distance of up to a few meters. The

behavior of bats in the field indicates that bats notice background

structures within the so called edge space which extends up to

around 6 m [5]. It has also been shown that Natterer’s bats learn to

discriminate conifers from broad-leaved trees and that horseshoe

bats commuting along a hedge of bushes show distinct reactions in

their echolocation behavior when the reflection properties of the

bushes are changed by covering them with velvet (Denziger and

Schnitzler, unpublished data). In addition to the classification of

vegetation types, bats can also identify parts of plants like flowers

and fruits. Glossophagine bats for instance, find new nectar sources

by classifying the shape and texture of flower echoes [6,7].

Plants have complex shapes that cannot be described in terms of

simple geometrical primitives [8]. From an acoustical point of

view, a plant can be approximated as a stochastic array of

reflectors formed by its leaves. McKerrow et al. [9] removed the

leaves from pot plants and discovered that the contribution of

branches to the echoes is minor. In large plants the stem might

also play a role. In broad-leaved plants, the reflectors are relatively

flat and usually large compared to the emitted wavelengths (,0.3–

1.5 cm) in a typical frequency modulated bat call. Hence, the

backscatter from a broad-leaved plant typically is a superposition

of reflections, with statistics determined by the characteristics of

the foliage such as the size and the orientation of the leaves, along

with their spatial distribution. The overall duration of the echoes is

a result of these parameters too. In dense foliage, for instance,

surface leaves will acoustically shadow deeper ones, thus strongly

attenuating the sound waves that penetrate beyond the outer

surface. These properties also apply to conifer trees, except for the

fact that they possess needle-shaped reflectors that are small

relative to a considerable part of the emitted wavelengths. Conifers

are therefore regarded as diffuse scatterers that produce many

small echo components, whereas broad-leaved plants lead to

pronounced amplitude peaks in the echoes, referred to as glints.

Although the importance of classifying complex objects is well

discussed in the scientific bat literature, very little is known about

how bats actually perform classification. Only a few previous

studies directly addressed the question of object classification using

echolocation in bats, and most of them did so in the context of

classifying objects with rather simple shapes [10,11,12], or only a

few reflectors [13,14]. The few experiments that tested the bat’s
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ability to classify relatively complex echoes [15,16] did not suggest

an explicit mechanism to explain it. The studies that examined

classification of simple objects usually assumed simple cues that

could be easily recognized in the temporal, frequency or time-

frequency representation of the echoes as a basis for classification

such as, for instance, a certain notch arrangement in the frequency

domain. This approach is hardly feasible for real plant echoes due

to their complexity and the strong dependency on the angle of

acquisition which makes the ad hoc identification of such features

a difficult task. Another typical approach is to identify peaks

corresponding to reflections from parts of the object and to

compare them to stored echoes that represent known objects or

known geometrical shapes (e.g., edges, corners and surfaces). The

comparison can be done by measuring the difference between the

echoes directly [15] or by comparing certain representative

statistics [17]. Once again, these methods will face severe

difficulties with complex echoes, mainly since the echoes returning

from different reflectors always highly overlap and are very hard to

isolate. A few studies trying to classify complex echoes such as

vegetation echoes [13,18 and Stilz and Schnitzler unpublished

data] relied on extracting one or several parameters (e.g. peak

intensity, average intensity and etc.) from some representation of

the echoes, with a subsequent selection of those parameters that

best assign the plant echoes to their corresponding classes. Thus,

the set of all tested parameters is determined by the experimenter

beforehand. This has advantages and disadvantages: on the one

hand, parameters are usually chosen according to physical or

biological plausibility which simplifies their interpretation, but on

the other hand strong assumptions are made by choosing a fixed

set of candidate parameters since some of the important features

might be overlooked.

In this paper, we propose a new approach to complex echo

classification. We use a linear classification technique that comes

originally from the field of machine learning. We use this technique

to operate directly on the raw spectrogram magnitude of the

echoes, without the intermediate step of specifying some set of

potentially relevant parameters or features. With this approach we

take advantage of the statistical structure of the data itself in order

to identify the best features to classify it. Thus, the technique allows

for the exploration of a wide range of features simultaneously, and

often finds simple ones. This comes at the price that the obtained

results are slightly harder to interpret on first sight, but we will

provide a thorough analysis of the features that are extracted from

the data. Our classifiers are trained on a large database of natural

plant echoes, created with a bat-like ultrasonic frequency

modulated signal. We show that the trained classifiers are able to

classify echoes from previously unseen plants with high accuracy.

At the same time, our method provides a systematic analysis of all

linear features in the echo spectrograms of the database in terms of

their relevance for classifying the underlying plant species. More

over our approach enables classification of vegetation echoes using

a single echo. This coincides with recent work [14] that showed that

bats can classify a complex 3D object using a single ensonifying

position, without the need to integrate the information from echoes

over different acquisition angles. The presented approach provides

many insights regarding the task of plant echo classification and is

sufficiently general to be applied to other types of complex echoes,

for instance from food sources or landmarks.

Results

General Results
A linear SVM classifier is able to distinguish between any of the

five tested plant species and any other species or group of species,

based on a comparison between two single echoes, one from each

class. For the classification task of discriminating one species from

the rest already a simple linear classifier achieves very high

percentage of discrimination (80–97%, see Table 1 for details).

The classification of spruce or corn from the other species is almost

perfect whereas the classification of the three broad-leaved trees,

and especially the beech, from the rest was the most difficult. For

the pairwise classification (Table 2) the relatively poor result for the

classification of beech vs. blackthorn, both broad-leaved trees,

stands out. The relatively high standard deviation in this case

implies that a larger data set might improve performance.

Comparing the task of pairwise classification in general to the

task of one species vs. the rest reveals that the latter is the more

difficult one. This is expected since a group of species always

contains much more intrinsic variation that the classifier has to

learn, but even with this difficulty, our linear classifiers performed

surprisingly well. In the next sections we will mainly discuss

the task of classifying one species against the rest, except for

cases in which the pairwise comparison reveals more interesting

phenomena.

The Decision Echo
The weights of the normal vector to the separating hyperplane

~vv, i.e., the decision echo, has the same dimensionality as the data,

and can assist in better understanding the features that are used by

our machines for classification. Since we are using linear

machines, the class of an echo is actually determined by the sign

of the inner product of the preprocessed echo and the decision

echo, after adding the offset. This means that the regions of the

decision echo that have high absolute (depicted dark or bright in

Table 1. Area under the ROC curve for the five classification
tasks of one species vs. the other four.

apple spruce blackthorn beech corn field

0.88 (0.04) 0.97 (0.02) 0.91 (0.04) 0.81 (0.05) 0.95 (0.02)

The standard deviations are computed from a five-fold cross validation.
Classification performance of the one species vs. the rest task.
doi:10.1371/journal.pcbi.1000032.t001

Author Summary

Bats are able to classify plants using echolocation. They
emit ultrasonic signals and can recognize the plant
according to the echo returning from it. This ability assists
them in many of their daily activities, like finding food
sources associated with certain plants or using landmarks
for navigation or homing. The echoes created by plants are
highly complex signals, combining together all the
reflections from the many leaves that a plant contains.
Classifying plants or other complex objects is therefore
considered a troublesome task and we are far from
understanding how bats do it. In this work, we suggest a
simple algorithm for classifying plants according to their
echoes. Our algorithm is able to classify with high accuracy
plant echoes created by a sonar head that simulates a
typical frequency-modulated bat’s emitting receiving pa-
rameters. Our results suggest that plant classification might
be easier than formerly considered. It gives us some hints as
to which features might be most suitable for the bats, and it
opens possibilities for future behavioral experiments to
compare its performance with that of the bats.

How Can Bats Use Echolocation To Classify Plants?
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the figures) values have more influence on the decision. In order to

interpret the decision echo, we present the decision echoes of the

classification tasks of spruce vs. the rest and corn vs. the rest

together aside an image of the difference between the average

spectrograms of the two classes (Figures 1 and 2). Comparing the

decision echoes and the spectrogram differences (Figures 1C and

1D, 2C and 2D) it becomes clear that in both classification tasks

our classifiers are actually emphasizing the areas in which

the differences between the spectrograms are most salient. The

comparison of the differences between the decision echoes of the

two tasks shows that in the task of classifying spruce from the rest,

the classifier performs a combination of a frequency domain

analysis and a time domain analysis. In the early parts of this task’s

decision echo, low frequencies are inhibitory (with negative values)

while the high frequencies are excitatory (with positive values). In

the later parts (, after 10 ms) the entire decision echo is excitatory

(excluding regions with larger attenuation as will be explained

below). Therefore, classification of spruce can be generally

described as a measurement of the difference between the high

and low frequencies intensities in the spectrogram’s early parts

(frequency domain analysis) and as a measurement of all intensities

in the later parts (time domain analysis). The classification of the

corn field is mainly a time domain analysis. Here the regions in the

decision echo which are compatible with the first and second rows

of the field (compare with the corn spectrogram in Figure 2A) are

excitatory, while the gaps between these rows are inhibitory. The

effect of the frequency dependent atmospheric attenuation of

sound waves is expressed in all of the decision echoes. According

to this attenuation, the higher the frequency of the wave is,

the faster its intensity decreases with the distance. This gives the

decision echoes a triangular shape, meaning that the higher the

frequency, the less the later parts of the spectrograms are used for

classification (gray regions in Figures 1 and 2).

Generation of Artificial Hybrid Spectrograms and Echoes
An alternative interpretation of the decision echo is the

direction in the high-dimensional input space along which the

changes between the two classes are maximal. In other words, for

a pair of species it represents the transition between the two.

Inspired by Macke et al. we calculated for each pair of species the

average spectrogram, and then added the decision echo multiplied

by a positive or negative factor g. By doing this we actually move

along the direction of the maximum change from a mean

representation of the two plants in the directions of each one of

them. We used this method to generate 1000 artificial spectro-

grams that are hybrids of different ratios of the apple vs. corn pair

(500 on each side of the hyperplane see Figure 3).

To generate echoes from the hybrid spectrogram, we propose to

use the random phase method described in the Materials and

Methods section. We did so in order to verify our method, and the

resulting echoes lead to a consistent classification behavior, i.e.,

higher classification performance for larger absolute values of g
(see Figure 3 for more details)

Table 2. Area under the ROC curve for the ten classification
tasks of one species vs. another one.

Species spruce bk. thorn r. beech corn field

apple 0.99 (0.01) 0.93 (0.02) 0.90 (0.03) 0.98 (0.01)

spruce * 0.98 (0.03) 0.99 (0.01) 0.98 (0.02)

bk. thorn * * 0.90 (0.07) 0.98 (0.02)

r. beech * * * 0.95 (0.03)

The standard deviations are computed from a five-fold cross validation.
Classification performance of the pairwise task.
doi:10.1371/journal.pcbi.1000032.t002

Figure 1. Decision echo analysis for the classification task of
spruce vs. the rest. (A) Average spectrogram of the raw data of
spruce. (B) Average spectrogram of the raw data of all the plants except
spruce (i.e. the rest). The color bars for both (A) and (B) are in dB. (C) The
difference of the preprocessed spectrograms of spruce and the rest. (D)
The normal vector (decision echo) to the separating hyperplane
calculated for this classification task. In both (C) and (D) black
represents negative values, white represents positive ones, and gray
is zero.
doi:10.1371/journal.pcbi.1000032.g001

Figure 2. Decision echo analysis for the classification task: corn
vs. the rest. (A) Average spectrogram of the raw data of corn. The
color bars for both (A) and (B) are in dB. (B) Average spectrogram of the
raw data of all the plants except corn (i.e. the rest). (C) The difference of
the preprocessed spectrograms of spruce and the rest. (D) The normal
vector (decision echo) to the separating hyperplane calculated for this
classification task. In both (C) and (D) black represents negative values,
white represents positive ones, and gray is zero.
doi:10.1371/journal.pcbi.1000032.g002

How Can Bats Use Echolocation To Classify Plants?
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Support Vectors
To determine the separating hyperplane, the SVM uses only a

limited number of data points (the ones that are closest to the

hyperplane) which are termed support vectors. The importance of

the ith support vector is weighted by a constant ai. Adding up the

support vectors on each side of the hyperplane separately, with the

proper weighting, provides another view on the classification rule.

For an arbitrary pair of two species, a weighted sum of the support

vectors on one side of the hyperplane can be intuitively understood

as the most similar this species can acoustically be to its pair in the

limits of our data set. The spectrograms of the weighted support

vectors for the pair of apple tree and corn field reveals how in

some cases an apple tree can acoustically resemble a corn field and

vise versa (Figure 4).

Frequency vs. Time Information
From the decision echoes we learned that both time and

frequency information are used for classification and that in higher

frequencies the earlier parts of the spectrograms are preferred for

classification, probably due to atmospheric attenuation. Here we

test whether classification is possible when only parts of the

spectrogram’s information are used. We divided the spectrograms

into squares of 5 kHz by 5 ms, and for each square, we trained

and tested SVMs for all the classification tasks in the same manner

described above. We found that already the information contained

in one of the limited squares within the spectrogram is sufficient

for classification with very high (,0.9) performance in all cases

except for beech (Figure 5). However, the exact position of this

limited sensitive region in the time-frequency space can be

significantly different for different classification tasks. In spruce

classification for instance the low frequencies in the beginning of

the echo provide the best classification performance. In blackthorn

on the other hand the later parts of the spectrogram are better for

classification, and there is a wide range of frequencies and times

that can be used with almost equal performance.

Figure 3. The results of generating hybrid sepctrograms of apple and corn. Only (B) and (D) were artificially generated. Color bars are not
presented, but the data are in the spectral power scale. (A) Average spectrogram of apple. (B) The decision echo multiplied by g = 0.07 added to the
average spectrogram. (C) The average spectrogram of corn and apple. (D) Same as B, but with g = 20.07. (E) Average spectrogram of corn. (F) The
decision echo calculated for this task used to create (B) and (D). Dark intensities depict negative values, while white depict positive ones. (G)
Classification performance of echoes created from artificial hybridized spectrograms as a function of the g factor. To measure performance we
divided the spectrograms of each species into 10 groups, each containing 50 spectrograms with a similar g. The units of g are relative, such that g = 1
corresponds to an artificial spectrogram that is as distant to the hyperplane as the most distant original spectrogram. The performance is measured in
the percentages of echoes that were correctly classified according to the expected classification.
doi:10.1371/journal.pcbi.1000032.g003

Figure 4. Spectrograms of the weighted support vectors on
each side of the hyperplane. The color bars are in dB. (A) The apple
spectrograms used as support vectors added up according to their
weights. (B) Same as A for corn. Examining the two weighted
spectrograms, the idea of the support vectors, being the most difficult
data points to separate in the limits of the data set, becomes clearer.
doi:10.1371/journal.pcbi.1000032.g004

How Can Bats Use Echolocation To Classify Plants?
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Generalization over Different Angles
Our classifiers generalized over different aspect angles. This can

already be learnt from the basic experiments since we trained

them by using data from all angles, and then tested them with high

success on data from all angles (Tables 1,2). In a different version

of the one species vs. the rest experiment we trained machines

using training data recorded from all angles except for the tested

one and then tested on data points from only the tested angle. The

classification performance in these experiments stayed as high as in

the ones in which data from all angles were used to train and test

the machines with no significant difference (Two way ANOVA,

F2,60.0.86, P,0.45).

The Effects of Preprocessing on Performance
In order to examine the sensitivity of the performance of our

machines to the preprocessing of the data, we used a cross-

validation approach to estimate the performance while changing

the parameters of the preprocessing steps. This was done on the

training data set as explained in the methods section for two

procedures: the effect of cutting out the echoes in the time domain,

and the effect of the time-frequency resolution (i.e., the DFT

window length used to calculate the spectrogram).

To test the effect of cutting the echo out in the time domain, we

changed the threshold according to which the cutting points were

determined. Cutting the echo improved the classification perfor-

mance by a non significant average of 0.02 (Two way ANOVA,

F2,60.1.78, P,0.18) We attribute this slight improvement to the

registering effect that this procedure has on the echoes. Applying a

threshold is closely equivalent to recognizing the first wave front of

the echoes and this aligns them before any further processing. The

two different cutting criteria (10 or 20 times above noise level)

showed no difference what so ever.

To determine the effect of the DFT window length we varied it

and kept the percentage of the overlap between sequential

windows constant (Figure 6). The extent of the spectrograms in

the temporal direction decreased with window length whereas the

extent in frequency increased such that the overall information

remained constant. Up to a certain window length (1000),

representing a time bin of 1ms (with 80% overlap) the window

length had no significant influence on classification performance.

Above this length however, for the 2000 window, there was an

overall significant decrease (0.07 on average) in classification

performance (2-way ANOVA, F3,80.18.5, P,0.0001). This

decrease mainly affected the three classification tasks blackthorn

Figure 5. Classification performance of four classification tasks when using partial data of the spectrograms for classification. Each
pixel represents the performance when using a square from the spectrogram with a frequency band of 5 kHz and time duration of 5 ms. The color
denotes the area under the ROC curve (AUC) when classifying using only this square of information from the spectrograms. The classification tasks
presented are: (A) Spruce vs. the rest; (B) Blackthorn vs. the rest; (C) Beech vs. the rest; (D) Corn field vs. the rest.
doi:10.1371/journal.pcbi.1000032.g005

How Can Bats Use Echolocation To Classify Plants?
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vs. rest (0.25 on average, 1-way ANOVA, F3,16.24.8, P,326),

beech vs. rest (0.13 on average, 1-way ANOVA, F3,16.6.5,

P,0.005) and corn vs. rest (0.03 by average, 1-way ANOVA,

F3,16.2.85, P,0.07) while the performance of the other two tasks

did not change. The decrease is probably a result of the loss of

time information due to excessive smoothing. In general, the most

suitable window length depends on the specific classification task.

Discussion

General Conclusions
In this work we analyzed the characteristics of a database

containing vegetation backscatter from five plant species ensoni-

fied with a bat-like ultrasonic pulse from different aspect angles.

We used a linear classification technique to find discriminative

features in the backscatter spectrograms that were able to

differentiate between different plant species independent of aspect

angle. In contrast to previous approaches, we did not derive these

features from biological or practical plausibility assumptions.

Instead, discriminative features were learned from the statistical

regularities found in our database. When we tested our classifiers

on a single echo from a new, previously unseen specimen from one

of the species in the database, classification performance was

surprisingly high, ranging between 0.8–0.99. This indicates that

the echoes created by a frequency modulated ultrasonic sweep can

be highly informative about the plant’s species membership. This

forms a possible explanatory basis for some of the observed

abilities of bats in classifying complex objects such as landmarks or

vegetation as indicator for food sources [3,4].

Once a linear classifier is trained, it can also be used as a

generative model. This means that the learnt features can be used

to generate new artificial examples of the data. In our case we

could create new echoes of a certain plant species or of a

combination of species (Figure 3). In the future we hope to use this

type of artificially generated echoes in behavioral experiments in

order to test the correlation between our linear functions and bat

classification performance.

What Did the Classifiers Actually Learn?
As described in the methods, we designed our preprocessing

procedure in such a way as to minimize the species-specific noise

(due to external or internal recording parameters) to prevent the

classifiers from using it for classification. The probability that such

artifacts still retain some influence on our results is quite low

considering the actual information that leads to a classification

decision as depicted in the decision echoes. All decision echoes (see

examples in Figures 6 and 7) give a higher weight to regions of the

spectrogram where the signal of at least one of the classes is high

above the noise level. Regions with lower signal intensities, i.e.

later in time and higher in frequency, tend to have values close to

zero in the decision echoes. As an additional test, we repeated the

same classification experiments, but this time after preprocessing

the echoes with a Wiener filter [19], which uses the noise spectrum

in order to filter out the noise from the entire signal, not only from

the low amplitude regions. The noise spectrum for each echo was

estimated in the same way as described in the methods. There was

no significant difference in the classification performance of the

classifiers with and without Wiener denoising (F1,48.1.6, P,0.22).

The results after denoising appear to be slightly (but not

significantly) better which implies that the measurement noise

does not contain species-specific artifacts that could be erroneously

used by the algorithm for classification. When examining the

decision echoes it seems that some of them (e.g. corn classifiers, see

Figure 2) use the time structure of the echoes more than the

frequency content, while others (e.g. spruce classifiers, see Figure 1)

use the frequency content more than the time structure. In

general, in all cases both time and frequency information was used

for classification. Regarding the best features of the plants used for

classification, it seems that our classifiers neither use the overall

extent, nor the fine texture of the spectrogram. Instead they rely

on intermediate scale structures, such as the representative

frequency content in a certain time interval or a characteristic

time structure for certain frequencies. In most cases we could

identify a small region in the spectrogram which is already

sufficient for classification. However, the exact position of this

decisive region in the time-frequency plane can significantly

change between the different classification tasks. This means that if

nothing is known about the classified plant species beforehand, a

large proportion of the spectrogram is required to achieve a good

performance over all tasks. Thus, a call with a large frequency

Figure 6. Effect of the DFT window length on classification
performance. (A) The area under the ROC curve (AUC) for four
different window lengths ranging from 250–2000 ms. Average results
are presented together with the blackthorn classification case, in which
the effect was most clear. The difference between a 2000 ms window
length and the other lengths is significant (P,0.05), whereas the
difference between the three other lengths is not. (B) Average
spectrograms for a window length of 2000 ms (first row) and a 250 ms
one (second row) for the classification task of blackthorn vs. the rest. It
can be seen how time information is decreased (i.e. smeared) for the
2000 ms window (first row). This makes separation between the two
classes easier with the 250 ms window (second row) even when only
examining them visually.
doi:10.1371/journal.pcbi.1000032.g006

How Can Bats Use Echolocation To Classify Plants?
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bandwidth, as is observed in frequency modulating bats, is

preferable from the classification point of view.

A plant is a complex object comprised of many reflectors

(mainly the leaves). Although the spatial arrangement of the

different plant species contributes to the echo structure, it can be

helpful to regard the plant leaves as an array of independent,

rather simple reflectors to understand the differences in the

frequency content of species. In our study we found that the most

suitable frequencies for classification are not necessarily the ones

with the best signal to noise ratio (SNR). The highest SNR was

usually attained around 50 kHz, whereas the frequencies with the

best classification performance were in most cases lower,

indicating that the echoes vary more in the lower frequency

range between species.

Some reason for these preferred frequency bands can be found

in radar theory [20]. The cross section of a reflector depends on

the geometry of the reflector in relation to the wavelength of the

sound pulse. For a simple spherical reflector, the intensity of the

echo depends on the ratio between the sphere’s circumference and

the wavelength of the emitted signal. This ratio defines three

regions: (1) The Rayleigh region - if the circumference is smaller

than the wavelength the intensity of the reflections decreases

rapidly when decreasing the radius of the sphere. (2) The

resonance region - if the wavelength is of the same order as

the circumference (up to ,10 times larger) the intensity of the

reflection oscillates depending on the ratio mentioned above. (3)

The optic region - if the circumference is much larger than the

wavelength the intensity of the reflection is equal in all frequencies.

This division into three domains exists also in reflectors with a

more complex shape, but then the cross section will also depend

on the angle of ensonification. The borders of these regions when

considering the extreme frequencies of our emitted signal (25 and

120 kHz) are such that reflectors larger than 14 cm will be in the

optic region for all frequencies, and reflectors smaller than

0.03 cm will be in the Rayleigh region for all frequencies. The

reflectors in between will be in all three regions depending on the

frequency. From the point of view of classification, it is clear that

the Rayleigh region is the most advantageous since at a given

frequency, the intensity of the reflection changes with the

circumference, therefore providing direct information about the

reflectors size. Clearly, this presupposes that the intensity is high

enough to be perceived. The optic region on the other extreme

provides no frequency information that could be used for

classification, since the reflections in all frequencies are redundant.

Obviously, the time structure can still be different. The resonance

region shows a more complex interdependence between frequency

and reflector size than both extremes, but a suitable classifier

might be able to use this information.

In order to relate this theoretical framework to our data, we

have to provide some approximation of our reflector’s circumfer-

ence. This is not easy, for the leaves on plants comprise of a range

of many sizes, and they are not simple spheres. In the case of

spruce, its needles prevent us from doing this, but it is safe to

Figure 7. The area under the ROC curve (AUC) for all of the
broad-leaved trees pair-wise classification, when using partial
information from the spectrograms, limited to frequency
bands of 10 kHz. The graphs show a relative preference for the low
frequencies information, but the exact slope is task-specific.
doi:10.1371/journal.pcbi.1000032.g007

Figure 8. The correlation between the distance from the
separating hyperplane and the fourth moment of the echoes.
o – regular data point, * – support vectors. Correlation values are
indicated in rectangles in upper right corner. (A) The comparison for the
task of classifying apple and spruce reveals a high correlation between
the distance and the fourth moment. (B) The comparison for the task of
classifying beech and blackthorn reveals no correlation between the
distance and the fourth moment, implying that the fourth moment
cannot be used to classify the two. This figure also visualizes how the
task in (A) is easy for the SVM compared to the one (B).
doi:10.1371/journal.pcbi.1000032.g008
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assume that it’s very small radial dimension (up to a few

millimeters) is equivalent to relatively high frequencies, above

100 kHz, and therefore most of its reflectors will behave according

to the Rayleigh domain. Corn leaves on the other extreme are very

long, and will therefore probably mainly behave according to the

optic domain. As for the three broad-leaved trees, we use the

roughly approximated average leaf length (calculated by measur-

ing a variety of leaves) in order to estimate the relevant wavelength

range. Apple and beech trees exhibit the largest leaves among the

three, with an average length of around 8 cm. This is equivalent to

a wavelength of a few kHz. Its reflectors should therefore behave

according to the resonance domain when the emitted signals have

frequencies of up to a few dozens of kHz, and according to the

optic domain with higher frequencies. Blackthorn trees exhibit

smaller leaves, with an average length of about 3 cm. This is

equivalent to a wavelength of roughly 10 kHz, resulting in its

reflectors being in the resonance domain for most of the

frequencies of the signals emitted in this research.

Spruce classification is probably easiest to explain by to this

approach. Its many reflectors in the Rayleigh region result in lower

intensities in the low frequencies of its echoes (Figure 2). This

means that it can be well classified by its lack of low frequency

content. Indeed, as can be seen in the decision echo and time-

frequency classification performance (Figures 3C and 7A), the

information in low frequencies provide the best classification

performance for spruce.

Corn field in contrast should not contain much frequency

information, and truly its decision echo doesn’t seem to be using

any obvious frequency information (Figure 2D), and so does the

time-frequency classification performance graph imply (Figure 5D).

In the case of the three broad-leaved trees (apple, beech and

blackthorn) the effects of frequency are less obvious. We therefore

examined the classification performance of each pair when only

using parts of the spectrograms with a limited bandwidth of

10 kHz while retaining the entire time information. For all pairs,

classification was best at low frequencies (Figure 7). For beech vs.

blackthorn and apple vs. blackthorn, all frequency bands between

25–80 kHz lead to a similar classification performance, whereas in

beech vs. apple, performance begins to drop already at the 30–

40 kHz band. These could be explained by the above argumen-

tation: all three plants exhibit leave sizes in a considerable large

range such that for our emitted call all three species probably have

reflectors both in the resonance and in the optic regions. Apple

and beech trees, however, have bigger leaves than blackthorn and

thus should have more reflectors in the optic region and less in the

resonance region, particularly at higher frequencies. As a

consequence, apple and beech should be harder to discriminate

in this frequency range.

Are the Extracted Discriminative Features Available to
the Bat Brain?

Since the intent of our study is to test which features of plants

echoes might enable bats to classify the plants, we have to examine

if the information used by our classifiers is – at least in principle –

available to the bat brain.

After the preprocessing of the received echoes our classifiers

were trained to recognize plant species based on the magnitude of

their spectrograms. This information is easily accessible to the bats

through the spectro-temporal decomposition of the echo in the

cochlea [21]. We ignored the phase information which to date has

not unequivocally been proven to be used by bats. We also did not

cross-correlate the recorded echoes with the emitted signal. This is

often done in echolocation studies, thus revealing the impulse

response (IR) of the ensonified object, although it is not known

whether bats can actually use the IR. Finally, we use a time

resolution of about 1ms which is far above the minimum time

resolution which has been reported for bats [22,23]. Thus it seems

highly probable that the information used by our classifier is

available to bats. Experimental evidence suggests that bats can

extract information with a much higher resolution than required

(see [23] for a summary).

Do the Results Extend to More General Natural Scenes?
The classifiers were able to classify a plant correctly at

acquisition angles that were not present in the training set, i.e.,

our classifiers generalize to a certain degree over the angle of

acquisition. This result was unexpected, since in acoustics, as

opposed to vision, a slight change of the acquisition angle can

result in a very large change in the echo, as has been shown for

plants [9,11]. However, we noted above that our classifiers use

intermediate-scale features which probably vary more slowly over

the angle of acquisition. Moreover, most of the species in our

database contain leaves in all orientations such that the local

statistics do not change significantly with acquisition angle, even

when the individual echoes vary considerably.

An issue that was not tested in this work is the generalization

over distance, i.e. the ability to use the same classifiers on objects

that were ensonified from different distances. The two main

limiting factors regarding this generalization are the attenuation of

the echoes and the change of the beam width. The attenuation

affects the echoes in two ways: 1) The SNR of the entire echo

deteriorates, in a frequency dependent manner. 2) The geometric

attenuation increases with the square of the distance, and therefore

the attenuation rate within the echo will change when it returns

from different distances. The first problem of the overall SNR

could be dealt with, up to a limit, by increasing the intensity of the

emitted signal. In addition, our classifiers do not require the fine

texture of the spectrograms for classification, and therefore can

probably tolerate a certain deterioration of the SNR without a

significant drop in performance. The second problem could be

overcome – at least in principle – by using the absolute distance as

measured by the arrival time of the echo to compensate for the

attenuation differences within the echo.

As for the beam, its width will widen the further the emitter is

from the plant, thus increasing the ensonified region. The larger

the emitter distance, the more reflectors will contribute to the

echoes. Taking into account the intermediate features used by our

classifiers, we hypothesize that as long as our beam is wide enough

to capture them, classification performance will stay high. A too

wide beam, however, could introduce new echoes from other

reflectors, which leads to a smearing effect due to the arrival of

more reflections at close instants in time, and thus to a slow

deterioration of classification performance. Although bat beams

are usually much wider than the one used by us, it is clear that

there exists a distance range in which the echo statistics are similar

to our setting.

Relation to Behavioral Studies
In one of the few reported works dealing with the bat’s ability to

classify complex echoes, Grunwald et al. [14] found that bats can

distinguish the fourth moment of artificially created echoes. They

conclude that bats might be using the changes in the fourth

moment to facilitate navigation guided by echolocation. We tested

this conclusion in the light of our results for two pair-wise

classification tasks. To this end we calculated the fourth moment of

each echo and compared it to its distance from the hyperplane (see

methods). The results (Figure 8) show that in the rather simple task

of classifying a conifer tree (spruce) from a broad-leaved tree
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(apple) the distance from the hyperplane of each echo is linearly

correlated with its fourth moment (R, = 0.64, P,0.00001).

However, since we were using only linear machines, our classifiers

have no access to higher order statistics such as the fourth

moment. This means that information sufficient to classify the two

trees is also available in the low order statistics of the echoes. In

the case of a difficult classification task (blackthorn vs. beech) on

the other hand, we found a close to zero linear correlation between

the distance from the hyperplane of the echo and its fourth

moment (R, = 0.1, P,0.00001). Moreover when examining the

data (Figure 8B) it is obvious that only the fourth moment is not a

sufficient statistic for discriminating between these two broad-

leaved tree species. In contrast, the SVM is able to find features

that are sufficient for reliable classification of this pair already by

relying on simple first- and second-order statistics.

Wichmann et al. have shown the relevance of a hyperplane

calculated from the data to human categorization performance

[24,25]. They compared SVM-based classification with human

performance on a task of image gender classification, and found

that SVMs are able to capture some of the essential characteristics

used by humans for classification. Furthermore, Wichmann and

Macke were able to show that the distance from the separating

hyperplane could be used to predict the certainty with which these

decisions are made. Despite the fact that it is known that the brain

can perform classification of nonlinear data, these works always

used linear machines just as we did. In the future we would like to

use the SVM as echo generators in order to test the relevance of

our calculated hyperplanes to performance of the bat brain.

Final Conclusion
We have found that the highly complex echoes created by

ensonifying plants with a frequency modulated bat like signal

contain vast species specific information that is sufficient for their

classification with high accuracy. From the point of view of a bat,

we prove that it can use a single echo received by one ear, with a

surprisingly simple receiver, having a relatively low time resolution

and no access to the impulse response, to extract the information

required for classification. We also demonstrate how it can then

apply a basic linear hyperplane that could be easily implemented

by a neuronal apparatus, in order to classify the vegetation echoes.

These findings could explain some of the abilities observed in

natural bat behavior such as using landmarks for navigation, and

finding food sources on specific vegetation.

Materials and Methods

Data Acquisition
A biomimetic sonar system consisting of a sonar head with three

transducers (Polaroid 600 Series; 4-cm-diam circular aperture)

connected to a computer system was used to create and record

vegetation echoes. The sonar head was mounted on a portable

tripod. Its central transducer served as an emitter (simulating the

bat’s mouth) and the two side transducers functioned as receivers

(simulating the ears). Backscatter received from the emitted signal

was amplified, A/D converted, and recorded by a computer. The

emitted signal resembles a typical frequency modulated bat call in

terms of its duration and frequency content (Figure 9A). It

comprises a four millisecond linear down-sweep from 140 to

25 kHz. We excited the emitter with a constant amplitude, but

due to the speakers frequency response an uni-modal response

function was created with a maximum around 50 kHz, providing

an intensity of 112 dB (SPL) at the maximal frequency in a

distance of 1m from the emitter. Most of the signal energy was

contained in the frequency band between 25–120 kHz. The

combined frequency response of our emitter and receivers resulted

in a frequency response that resembles the one of a typical

frequency modulated bat call. In contrast to bats our emitted

sound pulse had a rather narrow beam width, with its first null for

50 kHz occurring around 15u, much lower than known for bat

calls [26].

The recorded back scatter or echo (both terms will be equally

used in this paper, Figure 9B) was digitized at a sampling rate of

1 MHz and with a 12-bit resolution. The length of the recorded

echo was very long (40 ms corresponding to 6.8 m). It included a

long tail of noise after the part with echoes returning from the target.

This enabled exact estimation of the noise for each recording.

All recordings were performed in the field with real plants as

targets. Five plant species were chosen, representing a variety of

the common species available in the local bats environment. The

species were:

N Apple tree (Malus sylvestris) – This species has large leaves,
in a spacious arrangement. The trees were covered with
fruit.

N Norway spruce tree (Picea abies) – This was the only conifer
tree that was ensonified. Its branches are spread homo-
genously and evenly covered with needles. Will be referred
to as spruce throughout the paper.

N Common beech tree (Fagus sylvatica) – This species is
characterized by large flat leaves that are on each branch
usually arranged in the same plane. Will be referred to as
beech throughout the paper.

N Blackthorn tree (Prunus spinosa) – This species has smaller
leaves than the other broad-leaved trees, without any
specific orientation. This species was usually found in a
formation of a hedge rather then as a single tree like the
other trees.

N Corn field (Zea mays) – Whole fields of each specimen were
ensonified exhibiting a typical row structure.

50 specimens of each species were ensonified, each one from 25

different aspect angles on an equally spaced 565 grid centered at

the horizon and the midline of the tree. This was done by starting

at the top most left point on the grid, 10 degrees above the horizon

and 10 degrees left to its midline and then turning the sonar head

right in sequential steps of 5 degrees along the 5 points of the first

row. Next the head was lowered by 5 degrees and the procedure

was repeated, this time towards the right. This procedure provided

1250 echoes for each species from each ear. The distance between

plant and tripod was always 1.5 m, and the height of the tripod

above ground was set to 1.35 m. The acquisition of data from

different angles enabled us to test for the ability to identify species

independent of the aspect angle. This is commonly done in image

classification research [27], in which images of the same object are

taken from different angles in order to test view point invariance.

All of the signal processing was performed with matlab 7.0

Signal Preprocessing
The recorded echoes went through several three preprocessing

steps.

1. In the first step the echo regions were cut out from the recorded

signal in the time domain. For each recorded signal we

estimated its noise level, using the last 5000 time samples of the

signal. We then cut out the back scatter region or echo defined

by the points in time for which the signal exceeded a preset

threshold for the first and last time. The echoes between these

two time points remained unchanged. The most suitable
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threshold above noise was found by using a cross-validation

approach (see below). The cutting procedure was used to

identify the first and the last wave front of each echo train, and

so ensured that any further analysis of an echo will start at the

first wave front and end with the last one. As a result of this step

the echo differed in their duration, so we zero-padded their

terminal part to match them to the longest one.

2. The next step transferred the cut echoes from the time domain

into the time-frequency space by calculating the magnitude of

their spectrograms (Figure 9C). We chose to perform the

subsequent analysis in the time-frequency space both for

technical considerations and from a biological point of view.

On the technical side only this domain enabled us to

simultaneously investigate the information contained both in

time and in frequency domains. In addition, previous work

showed that the time-frequency representation gives better

object recognition performance [28]. From a biological point of

view there are many models that describe the filtering activity

of the auditory system; almost all are based on some form of

time-frequency decomposition of the signal [21]. Instead of

committing to one of these models we preferred to use the raw

time-frequency data to avoid the possible information loss due

to any specific model assumptions.

2. The spectrograms were calculated with a Hann window and an

80% overlap between sequential windows. The window length

of the DFT, and therefore the time-frequency resolution was

treated as a free parameter that had to be determined. The

most suitable length was found by using a cross validation

approach (see below). The performance for various window

lengths is presented in the results section. Unless stated

otherwise, the results shown in the figures or discussed in the

text, were created with a window length of exactly 1000 points,

therefore providing a 1 ms time resolution (smoothed by

the overlap) and a 1 kHz frequency resolution. We cut the

spectrogram’s frequency range so that it contained only

the region of the emitted frequencies main intensity (i.e., 25–

120 kHz). Through the remainder of the text we shall use

the term spectrogram to describe the magnitude of the

spectrogram.

3. The next step was intended to reduce the noise, and to avoid

possible classification artifacts. This issue is not trivial, since the

recordings of different plant species differed in their noise

characteristics. There are many reasons for these species-

specific noise characteristic. The recording of different species

on different days can result in temperature variations of the

environment which in turn leads to a different atmospheric

attenuation. The varying recording locations can create a

species-specific background noise. The noise characteristics

also depend on the recording parameters, since two of the

plants were recorded with a gain that was 2.5 times lower than

the other three. Indeed a control experiment showed that a

classification above chance level was possible by using

spectrogram regions that contained only noise. The first noise

reducing step was actually obtained in the first preprocess

described above of cutting out the echo in the time domain. By

doing this we ensured that only the parts of the echo that had a

certain level above the noise went through any following

analysis. We now aimed to exclude noise regions from the

spectrograms frequency-time domain. To do so we computed

the magnitude of the spectrogram of the noise signal of each

echo (using the last 5000 time samples of the signal). We then

selected for every spectrogram the maximum noise intensity at

each frequency, thus calculating the maximum noise spectrum.

This maximum noise spectrum was used as a threshold. For

each time bin (i.e. column of the spectrogram) we set to zero

any pixel of the spectrogram that was lower than five times the

value of the maximum noise spectrum at that particular

frequency. This procedure actually zeroed major parts of the

spectrogram, thus ensuring that our classifier was only using

the parts of the echo that were significantly above the noise

level. For further comments regarding classification according

to noise see the discussion section. Figure 10 shows examples of

acquired data after the preprocessing.

Machine Learning Computation and Preprocessing
For all training experiments described in the following

paragraphs, the data was divided into a training (four fifth) and

Figure 9. Summary of the materials and methods. (A) The basic setup of the experiments, in which a sonar head on a tripod was used to
ensonify plants. The emitted signal’s spectrogram is presented with the time signal under it and the frequency dependent intensity curve on the
right. (B) An example of a time domain back scatter recorded from a single apple tree. The amplitude is in arbitrary units. (C) The spectrogram of the
time domain signal of B, created after cutting the echo out of the time signal. The spectrogram’s frequency range was cut between 120–25 kHz, and
it was threshold leaving only the regions that are high above noise. (D) An illustration of the classification by SVMs. Following PCA, each spectrogram
is represented by a 250-dimentional data point (shown in the figure as a 2-dimentinal point) belonging to one of two classes (circles or rectangles).
The SVM then learns the best hyperplane for the training data. The data points that are closest to the hyperplane (denoted as full shapes) are called
the support vectors and define the orientation of the hyperplane.
doi:10.1371/journal.pcbi.1000032.g009
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a test set (one fifth). This was done such that all the angular echoes

of a specific plant individual were attributed either to the test or to

the training set, but never to both, to prevent leakage of

information from the test set to the training set, which might

result in an overestimation of the generalization performance.

We performed two kinds of classification experiments. The first

was a pairwise classification in which we trained ten machines, to

distinguish between any possible pair of species. In the second, we

trained five machines, each capable of distinguishing between one

species and the other four. It should be mentioned that our

classifiers categorize the plant using only a single echo. This is

different from all the previous plant echo classification studies.

PCA
After applying the above preprocessing methods, with a DFT

window of 1000, each echo was represented by a 95 (frequency

bins)690 (time bins) = 8550-dimensional spectrogram, assuming

here that the 1000 point window was used. Next each spectrogram

was rearranged as a 8550-dimensional vector (simply by

concatenating its columns) which left us with a total of 6250

echoes, each represented by a 8550-dimensional vector. We used

Principle Component Analysis (PCA) to reduce the dimensionality

of the data before applying the machine learning algorithms. We

did this by projecting each data vector on the 250 eigenvectors

with the highest eigenvalues. In every experiment, the eigenvectors

were calculated for the covariance matrix of the training set

exclusively. As a common PCA pre-process all 8550-dimensinal

data vectors were first normalized to have equal energy. The PCA

transformation reduced the dimensionality of the data so that each

echo could now be represented by a 250-dimensional vector. The

number 250 was another free parameter that was chosen via cross-

validation (see below).

Classification by Support Vector Machines (SVM)
We used linear Support Vector Machines (SVM, [29,30],

Figure 9D) as our classification algorithm. To implement the SVM

we used the free ‘‘spider’’ software (http://www.kyb.mpg.de/bs/

people/spider). An SVM is a state-of-the-art learning algorithm

based on statistical learning theory. A linear SVM can be

intuitively interpreted in a geometrical way as a separating

hyperplane that divides the data set into two classes by minimizing

the classification error of a training set and at the same time by

maximizing its distance from the data points that are closest to it

(Figure 9D). The hyperplane is simply a multidimensional plane

that has the same dimensionality as the data points which

correspond, in our case, to the spectrograms of the echoes after the

above preprocessing. In many cases a perfect separation of the

data into two classes is not possible due to outliers, or due to an

overlap of the classes. Therefore the learning algorithm is adjusted

to enable a certain amount of misclassified points. For this purpose

a new constant C is introduced, that defines the penalty for

misclassified points. This constant is known as the free parameter

of the SVM - and as the other free parameters - it was determined

by cross validation.

After training the SVM, classification was performed according

to the following calculation:

class~sign S~vv,~xxTzbð Þ

where ~vv is a vector normal to the hyperplane~xx is a test echo (after

Figure 10. Raw data after preprocessing. In all rows the species from left to right are: apple, spruce, blackthorn, beech, and corn field. In all
spectrograms, color bars are in dB. The units in the time signals are arbitrary. (A) The average spectrogram of each plant species. (B) The average
envelope of the time signal of each plant species. (C) The corresponding example of a single spectrogram of each plant species (the effect of applying
the threshold is noticeable). (D) The corresponding example of a single echo of each tree in the time domain.
doi:10.1371/journal.pcbi.1000032.g010
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preprocessing) and b is an offset (also calculated by the learning

algorithm). The offset is equivalent to the free parameter in a three

dimensional plane, and changing it moves the hyperplane along its

normal direction When the result is +1 the echo will be classified as

belonging to one species or species group and when it is 21 it will

be classified as belonging to the other species or species group. It

should be noted that SVMs is a non parametric method that

makes no prior assumptions on the data and learns the

classification rule using the data itself.

Interpretation of the Results
The normal vector of the hyperplane is a weighted linear

combination of the training data points:

~vv~
X

i

yiai~xxi ð2Þ

Where yi is the sign (61) attributed to each training data point

according to its class label. The weights ai are a result of the learning

procedure, and for most points they will be zero. Only the points

that are closest to the hyperplane on both sides are assigned non-

zero weights. These points are called support vectors, and actually

define the orientation of the hyperplane. They can be interpreted as

the most difficult points to separate in the limits of the data set. In

visual classification studies the normal vector ~vv is interpreted as the

decision-image [24,25], so we will call it in our context the

decision-echo. The decision-echo can assist in better understand-

ing the features that are used by the machine for classification. It has

the same dimensionality of the data points after preprocessing, and

since we were only using linear machines, the class of an echo is

actually determined according to the sign of the inner product of the

echo and the decision echo added to the offset. This means that the

regions of the decision echo that have high absolute (non zero)

values are more important for classification. An alternative

interpretation for this vector is the direction along which the

change between the two classes is maximal.

In addition to classification, one can calculate for each echo its

distance from the hyperplane by:

d ið Þ~S~vv,~xxTzb

~vvk k : ð3Þ

This measurement provides additional information regarding

the ordering of our data points according to the classifier and can

be used for further understanding of our performance.

Model Selection by Cross-Validation
The four parameters of our model (i.e., the threshold above

noise for the cut in time domain, the DFT window length, the

number of principal components for projection and the C

parameter of the SVM) were all determined using a five-fold

cross validation. This means that for each possible value of the

parameters, the training data set is divided into five sets of equal

size, and each set serves as a test set for a classifier trained with this

specific value on the other four sets. The value yielding the highest

average classification rate was then chosen (see performance

measurement below). It is important to note that this procedure

was executed exclusively on the training set.

The first parameter – the threshold above noise level (step 1 of

preprocessing) was determined independently of the other three,

after they were already set. For this parameter the values 1, 10 and

20 times above noise level were tested.

The latter three parameters were determined via a cross

validation on a 3-dimensional grid of parameter combinations.

This means that for each possible combination of the free

parameters on the grid the cross validation procedure was

executed. The combination yielding the highest average classifi-

cation rate was then selected. The possible values for these three

parameters were as following: In the case of the window length the

values 250, 500, 1000 and 2000 were tested. For the dimension-

ality reduction via PCA we tested the values 150, 200, 250 and 300

principle components and the values for C were evenly chosen on

a logarithmic scale between 1 and 100000. For both the C

parameter and the number of principle components the different

parameters did not change the results significantly. The best

parameters were 250 principle components and C = 10. The

results for the best values for the DFT window length and the time

domain threshold parameters are presented in detail in the results

section.

Performance Measurement
We also used a five-fold cross validation approach to test for

possible overfitting of the classifiers, i.e over adjustment of the

classifiers to the specific training sets in a way that does not

represent the actual real world data. To do this we divided the

entire data (i.e. not only the training set) into five equal sized parts

each containing a training set (four fifth) and a test set (one fifth) in

the same way that was described above. For each of these five

parts the entire process of finding the best parameters was

executed on the training set and the performance was then tested

on the relative test set. This procedure created the standard

deviations of the performance measures that are presented in the

results section.

We used the area under the Receiver operating characteristic

(ROC) curve to measure the performance of our classifying

machines. The ROC curve is commonly used in psychophysics to

estimate performance while changing a parameter. It is created by

plotting the true positive rate (TP) on the Y axis and the false

positive rate (FP) on the X axis, while changing a parameter. In

our case the parameter along which TP and FP were plotted is the

offset b of the hyperplane. Varying the offset is equivalent to

moving the hyperplane along its normal direction (in parallel to

itself). It is obvious that on one extreme case the rate of true and

false positives will both be zero, and on the other extreme they will

both be 1. Calculating the area under the ROC curves (depict as

the AUC) evaluates the performance for all possible settings of b.

The area ranges between 0.5–1, where 0.5 means a random

classifier, and 1 means a perfect one. Any other value can be

interpreted as the probability of ranking a positive data point

higher than a negative one in a randomly drawn pair from the test

data set. The standard deviations of the performance values were

calculated for the results of the five different cross validation folds.

In order to compare classification performance of machines

trained under different conditions (for instance when changing one

of the above parameters), the classification performance measures

were first transformed using the arcsin transformation:

Y~arcsin
ffiffiffiffi
P
p� �

, ð4Þ

where P is the area under the ROC curve for a certain

classification task. The transformed data was then tested for

normality using both the Kolmogorov-Smirnov and the Shapiro-

Wilk parametric tests, which found no significant deviations from

normality in all cases. Therefore we used a two-way analysis of

variance (repeated measures ANOVA) test to compare the
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classification performance, with a Tukey post hoc test in cases of

more than two treatments. An alpha of a = 0.05 was used to

determine significance. A one-way ANOVA test with a Bonferroni

correction was used in the cases where the effects of a treatment

were tested on the classification of a single plant species.

Generating Echoes from Spectrograms
Generating an echo from a spectrogram without phase

information is impossible. In the case of our complex echoes

however, the phase information is nearly random, as would be

expected from a signal that is a superposition of echoes returning

from many reflectors. We therefore used each column of the

spectrogram as a spectrum and generated the corresponding part

of the echo using a random phase. In order to prevent

discontinuities when concatenating these time signals we randomly

altered the phase of the frequency with the highest energy in the

last created time signal such that the intensity and first derivative

of its beginning matched the ones of the end of the previous time

signal. This was repeated until the intensity difference was no

more than 1% of the highest intensity in the last generated echo

part and the first derivative of the two had the same sign. The

random phase method might create problems if the spectrograms

are calculated with a high overlap, because in this case the phase

information in neighbouring columns is highly dependent.

To verify this method and make sure that no artefacts are

created, we tested whether the random phase echoes change their

class membership when analysed with our trained classifiers. For

the pair apple vs. corn, for which we presented the hybrid

spectrograms in the Results, we trained a classifier on original

spectrograms that were created with a 10% overlap between

adjacent FFT windows, and used the spectrograms of the random

phase echoes as a test set. Non of the echoes changed its class after

the random phase manipulation, which means that our classifiers

treated the random phase echoes as representing the plant species

they were supposed to imitate.
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