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Abstract: Wheat (Triticum aestivum L.) is the oldest known food crop, and many studies have reported
that wheat shoots (i.e., wheatgrass) possess anti-cancer, anti-inflammatory, and antioxidant activities.
However, the potentially ameliorative effect of wheat shoots on hepatotoxicity caused by high doses of
N-acetyl-para-aminophenol (acetaminophen, APAP) has yet to be reported. C57BL/6 mice received
daily oral TAE (100 or 200 mg/kg), positive control (silymarin 100 mg/kg), or negative control
(saline vehicle) treatments for 7 days prior to intraperitoneal APAP injection. Histological, serum
(ELISA), Western blotting, and quantitative PCR analyses of excised liver tissues were then performed.
Pre-treatment with TAE (100 or 200 mg/kg) ameliorated APAP-induced pathological damage (i.e.,
hepatotoxic lesions), reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) levels, and also ameliorated APAP-induced increases in oxidative stress, thereby inhibiting
oxidative liver damage and reducing the expression of inflammatory cytokines. In addition, TAE
pre-treatment inhibited the expression of Cytochrome P4502E1 (CYP2E1), which is a key enzyme in
the onset of APAP-induced hepatotoxicity, suppressed the expression of the target proteins regulated
by the antioxidant enzyme Nrf2, and suppressed hepatocyte apoptosis. These findings suggest
that TAE is an attractive therapeutic candidate that exhibits potential hepatoprotective activity by
inhibiting oxidative stress, inflammation, apoptosis, and liver damage.

Keywords: acetaminophen; apoptosis; hepatotoxicity; oxidative stress; Triticum aestivum sprouts

1. Introduction

Acetaminophen (N-acetyl-para-aminophenol (APAP)) is a widely used pain reliever
and antipyretic and is considered safe at therapeutic doses [1]. However, as many people
take it, drug addiction is common, and many studies have reported that death can occur as
a result of liver damage and acute liver failure [1]. After ingestion, most APAP (85%) is
conjugated with sulfuric acid or glucuronic acid and excreted in urine without hepatotoxic-
ity. However, 4% is oxidized by cytochrome P450 (CYP450) into N-acetyl-p-benzoquinone
imine (NAPQI), an intermediate metabolite [1]. The transient receptor potential ankyrin-1
(TRPA1) channel is expressed by peptidergic primary sensory neurons [2]. NAPQI is a pow-
erful TRPA1 agonist, and the analgesic effect of APAP causes the action of metabolites of
the parent drug on sensory neuron TRP channels, preventing nerve cells from transmitting
information and thereby attenuating the transmission of pain signals to the brain [3].
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NAPQIs are highly toxic substances that directly damage mitochondria [4] and cause
the induction of inflammatory responses, and play the most important role in initiating
apoptosis [5], which results in the formation of reactive oxygen species (ROS) inside mito-
chondria, and, thus, impairs mitochondrial function [4]. The intentional or unintentional
overuse of APAP can cause severe liver damage and acute liver failure in both humans
and laboratory animals. In addition, most APAPs are metabolized by cytochrome P450
in the liver, and NAPQI production increases, exhausting glutathione (GSH) in the liver
cells, causing severe liver cell death due to cytotoxicity [1]. This results in a secondary
activation of the innate immune response associated with the upregulation of inflammatory
cytokines and the activation of natural killer (NK) cells, NKT cells, and neutrophils [6].
Since the major pathological change in liver damage caused by APAP is oxidative stress, it
is important to discover antioxidants that are effective in alleviating hepatotoxicity [7].

Wheat (Triticum aestivum L., (TA), which is the oldest known food crop, remains a
major crop global crop and is an excellent source of biologically active substances [8].
TA shoots (i.e., wheatgrass) are richer than mature plants, witha variety of nutrients,
vitamins, minerals, and proteins [8]. Many studies have also reported that TA possesses
anti-cancer [9], anti-inflammatory [10], and antioxidant [11] properties. TA is effective
for treating several diseases, including atopic dermatitis-like skin lesions [8], alcoholic
liver damage [12], LPS-induced liver injury [13], and allergies [14]. However, no previous
studies have investigated the hepatoprotective effects and mechanisms of TA on the toxic
effects of drug, such as APAP. Due to the nature of liver function, the risk of liver disease
can be lowered by eating foods that prevent liver toxicity. Therefore, the goals of the
present study were to evaluate the effect of TA on APAP-induced hepatotoxicity in mice
and to elucidate the in vivo antioxidant signaling mechanisms that mediate this effect.

2. Results
2.1. Chemical Properties of TAE

During germination, wheatgrass contains a variety of active ingredients: amino
acids, minerals, vitamins and chlorophyll. Among them, GABA [15], a representative
indicator substance, and α-Linolenic acid were analyzed based on the results of previous
studies [16]. To study the potential regulatory role of TAE as a therapeutic agent in
APAP-induced liver damage, the chemical structures of indicator compounds (GABA and
α-linolenic acid) were identified and analyzed using HPLC and UPLC (Figure 1A,B). The
final extraction yield (%) of the TAEs was 25%. Two compounds in the TAE extracts were
identified (Figure 1B), namely GABA and α-linolenic acid, which were also quantified
(Figure 1C). It was confirmed that the extract was detected at the same retention time as
the indicator compound.

2.2. Effect of TAE on APAP-Induced Hepatotoxicity

The histological examination revealed that APAP induced the destruction of the
liver structure around blood vessels, hepatic mesenchymal necrosis, and the infiltration
of inflammatory cells (Figure 2). However, pre-treatment with TAE (100 or 200 mg/kg)
attenuated the formation of liver tissue lesions in a dose-dependent manner, and the TA
group that received the higher TAE pre-treatment TAE (200 mg/kg) was similar in terms of
structural improvement to that of the positive control (silymarin 100 mg/kg) (Figure 2B,C).

Next, we measured and confirmed changes in ALT and AST levels in the serum of
mice with APAP-induced hepatotoxicity (Figure 2D,E). APAP increased serum ALT and
AST levels, and TAE pre-treatment reduced these increases.
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Figure 1. Chemical components of an ethanolic extract of Triticum aestivum sprouts. (A) Chemical
structures of the two identified components (GABA and α-Linolenic acid). (B) Liquid chromatograms of
standard compound mixtures (STD) and Triticum aestivum sprouts extract (TAE). (C) Quantification of
isolated compounds from chromatograms (mean± SD, n = 3). TAE, Triticum aestivum sprouts extract.

Figure 2. Effect of ethanolic Triticum aestivum sprout extract on N-acetyl-para-aminophenol (APAP)-
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induced hepatotoxicity lesions in mice. (A) Experimental scheme. (B) Representative images of
Hematoxylin and eosin (H&E)-stained liver sections from mice (×100 and ×400 magnification);
hepatic architnormalecture with central vein (CV), surrounding hepatocytes (H), nucleus (N), hep-
atic centrilobular mononuclear cell infiltration (long arrow) and hepatic cell necrosis (arrowhead).
(C) Liver tissue damage score. (D) Serum levels of alanine aminotranserfase (ALT) activity, as in-
dicated by ELISA. (E) Serum levels of aspartate aminotransferase (AST) activity, as indicated by
ELISA. All data are shown as mean ± SD. ### p < 0.001 versus Normal group; ** p < 0.01, and
*** p < 0.001 versus APAP group. ALT, alanine aminotransferase; APAP, N-acetyl-para-aminophenol
(acetaminophen); AST, aspartate aminotransferase; TAE, Triticum aestivum sprouts extract.

2.3. Effect of TAE on APAP-Induced Liver Oxidative Stress

Changes in SOD, GSH, ROS, MDA, and MPO activity levels indicated that APAP
induced oxidative liver damage (Figure 3). More specifically, both SOD and GSH activities
were significantly reduced by APAP treatment, whereas ROS, MDA, and MPO activities
were elevated, and TAE pre-treatment (100 or 200 mg/kg) ameliorated these changes, which
indicates that TAE can inhibit oxidative liver damage in APAP-induced hepatotoxicity.
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Figure 3. Effect of ethanolic Triticum aestivum sprout extract on N-acetyl-para-aminophenol (APAP)-induced liver oxi-
dative stress in mice livers. (A) SOD activity. (B) GSH activity. (C) ROS activity. (D) MDA activity. (E) MPO activity. All 
data are shown as mean ± SD. ###p < 0.001 versus Normal group; *p < 0.05, **p < 0.01, and ***p < 0.001 versus APAP group. 
APAP, N-acetyl-para-aminophenol (acetaminophen); GSH, glutathione; MDA, malondialdehyde; MPO, myeloperoxi-
dase; ROS, reactive oxygen species; SOD, superoxide dismutase; TAE, Triticum aestivum sprouts extract. 
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group (p < 0.01) significantly increased the serum and mRNA levels of TNF-α, IL-6, and 
IL-1β. The present study evaluated whether TAE could inhibit the accumulation of in-
flammatory cytokines at both the serum and mRNA levels. The serum levels of all three 
cytokines were significantly elevated in the APAP group when compared to the control 
group (p < 0.01), whereas the pre-treatment with TAE (100 or 200 mg/kg) reduced cytokine 
levels, with an efficacy similar to that observed in the positive control group (Figure 4A–
C). mRNA analysis also indicated that TAE pre-treatment inhibited the upregulation of 
inflammatory genes in the liver tissues of mice experiencing APAP-induced hepatotoxi-
city (Figure 4D–F). 

Figure 3. Effect of ethanolic Triticum aestivum sprout extract on N-acetyl-para-aminophenol (APAP)-induced liver oxidative
stress in mice livers. (A) SOD activity. (B) GSH activity. (C) ROS activity. (D) MDA activity. (E) MPO activity. All data are
shown as mean ± SD. ### p < 0.001 versus Normal group; * p < 0.05, ** p < 0.01, and *** p < 0.001 versus APAP group. APAP,
N-acetyl-para-aminophenol (acetaminophen); GSH, glutathione; MDA, malondialdehyde; MPO, myeloperoxidase; ROS,
reactive oxygen species; SOD, superoxide dismutase; TAE, Triticum aestivum sprouts extract.

2.4. Effect of TAE on APAP-Induced Inflammatory Cytokine

We compared the results to the control group, confirming that the APAP-induced
group (p < 0.01) significantly increased the serum and mRNA levels of TNF-α, IL-6, and
IL-1β. The present study evaluated whether TAE could inhibit the accumulation of in-
flammatory cytokines at both the serum and mRNA levels. The serum levels of all three
cytokines were significantly elevated in the APAP group when compared to the control
group (p < 0.01), whereas the pre-treatment with TAE (100 or 200 mg/kg) reduced cytokine
levels, with an efficacy similar to that observed in the positive control group (Figure 4A–C).
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mRNA analysis also indicated that TAE pre-treatment inhibited the upregulation of in-
flammatory genes in the liver tissues of mice experiencing APAP-induced hepatotoxicity
(Figure 4D–F).

Figure 4. Effect of ethanolic Triticum aestivum sprout extract on inflammatory cytokine production in mice with N-acetyl-
para-aminophenol (APAP)-induced hepatotoxicity. Inflammatory cytokine levels were confirmed by ELISA and qRT-PCR.
(A) TNF-α expression. (B) IL-6 expression. (C) IL-1β expression. (D) TNF-α mRNA expression. (E) IL-6 mRNA expression.
(F) IL-1β mRNA expression. All data are shown as mean ± SD. ### p < 0.001 versus Normal group; * p < 0.05, ** p < 0.01,
and *** p < 0.001 versus APAP group. APAP, N-acetyl-para-aminophenol (acetaminophen); GAPDH, glyceraldehyde 3
phosphate dehydrogenase; IL, interleukin; TNF-α, tumor necrosis factor-alpha; qPCR: Quantitative polymerase chain
reaction; TAE, Triticum aestivum sprouts extract.

2.5. Effect of TAE on CYP2E1 and Nrf2 Pathway during APAP-Induced Hepatotoxicity

Cytochrome P4502E1 (CYP2E1) is a key enzyme that explains the metabolism of APAP
to the toxic substance NAPQI [1]. Therefore, a Western blot was used to investigate whether
TAE affects the protein expression of CYP2E1 in mice liver. CYP2E1 was significantly
upregulated in the APAP group (p < 0.05). However, pre-treatment with TAE (100 or
200 mg/kg) significantly inhibited CYP2E1 expression in a dose-dependent manner, with
an efficacy similar to that observed in the positive control group (Figure 5A). Nuclear factor
erythroid 2-related factor 2 (Nrf2) is a representative mechanism involved in antioxidant
activity in the body and is a transcription factor that plays an important role in the activation
of cellular antioxidant enzymes against oxidative stress [17]. It is also recognized as
a potential therapeutic target for chemical-induced liver damage [18]. We confirmed
the levels of Nrf2-regulated target proteins such as heme oxygenase-1 (HO-1) and SOD
(Figure 5B). Nrf2 was downregulated in the APAP group (p < 0.05), as expected, and TAE
pre-treatment (100 or 200 mg/kg) ameliorated the suppression of Nrf2, HO-1, and SOD-1
in a dose-dependent manner.
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Figure 5. Effects of ethanolic Triticum aestivum sprout extract on CYP2E1 and Nrf2 pathway proteins in mice with N-acetyl-
para-aminophenol (APAP)-induced hepatotoxicity. (A) Quantitative analysis of CYP2E1 protein expression. (B) Quantitative
expression analysis of Nrf2 regulatory target proteins: Nrf2//β-actin, HO-1/β-actin, and SOD-1/β-actin. All data are
shown as mean ± SD. ### p < 0.001 versus Normal group; * p < 0.05, and *** p < 0.001 versus APAP group. APAP,
N-acetyl-para-aminophenol (acetaminophen); CYP2E1, Cytochrome P4502E1; HO-1, heme oxygenase-1; Nrf2, Nuclear
factor erythroid 2-related factor 2; SOD, superoxide dismutase; TAE, Triticum aestivum sprouts extract.

2.6. Effect of TAE on ASK1 and JNK Phosphorylation

NAPQI generated by an overdose of APAP increases ROS production, causing the
phosphorylation of JNK and can further amplify oxidative stress [4,18]. Additionally, it has
been reported that apoptosis signaling regulatory kinase 1 (ASK1) was identified in the
c-jun N-terminal protein kinase (JNK) cascade during APAP-induced hepatotoxicity [19].
The Western blot analysis revealed that TAE pre-treatment (100 or 200 mg/kg) suppresses
the phosphorylation of both ASK and JNK in a dose-dependent manner (Figure 6), with an
efficacy similar to that observed in the positive control group.

Figure 6. Effect of ethanolic Triticum aestivum sprout extract on JNK phosphorylation in mice with N-acetyl-para-
aminophenol (APAP)-induced hepatotoxicity. (A) Quantitative analysis of phosphorylated ASK1 protein. (B) Quantitative
analysis of phosphorylated JNK protein. The bar graph represents the quantitative band densities of pASK1/ASK1 and
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pJNK/JNK. All data are shown as mean ± SD. ### p < 0.001 versus Normal group; *** p < 0.001 versus APAP group. ASK1,
apoptosis signaling regulatory kinase 1; APAP, N-acetyl-para-aminophenol (acetaminophen); JNK, c-jun N-terminal protein
kinase cascade; TAE, Triticum aestivum sprouts extract.

2.7. Effect of TAE on Hepatocyte Apoptosis in APAP-Induced Hepatotoxicity

APAP-induced hepatotoxicity significantly increased the nuclear transcription of
NF-κB (p65) and Bcl-2-associated X (Bax) and induced the cleavage of cysteinyl aspartate
specific proteinase (caspase)-1, a marker of inflammatory activation (Figure 7A,B). However,
the pre-treatment of TAE (100 or 200 mg/kg) and positive control (silymarin 100 mg/kg)
significantly reduced this elevation. The TUNEL assay showed that the apparent TUNEL-
positive cells were detected by fluorescence in the APAP group, whereas TAE (100 or
200 mg/kg) pre-treatment significantly reduced the number of TUNEL-positive cells
in a dose-dependent manner. In particular, the high TAE (200 mg/kg) pre-treatment
significantly reduced the increased fluorescence intensity, similar to the positive control
(silymarin 100 mg/kg) (Figure 7C).

Figure 7. Effect of ethanolic Triticum aestivum sprout extract on hepatocyte apoptosis in mice with N-acetyl-para-
aminophenol (APAP)-induced hepatotoxicity. (A) Quantification of nuclear translocation of the p65 subunit of NF-κB.
(B) Quantification Bax, Bcl-2, cleaved caspase-1, and caspase-1 protein expression. (C) Quantification and visualization
(×400 magnification) of DNA fragmentation. All data are shown as mean ± SD. ### p < 0.001 versus Normal group;
* p < 0.05, ** p < 0.01, and *** p < 0.001 versus APAP group. APAP, N-acetyl-para-aminophenol (acetaminophen); Bax,
Bcl-2-associated X; Bcl2, B-cell lymphoma 2; Caspase, cysteinyl aspartate specific proteinase; NF-κB, transcription factors
nuclear factor-kappa B; TAE, Triticum aestivum sprouts extract.

3. Discussion

Acetaminophen (APAP) is widely used to cause acute oxidative liver damage in
research models [20]. The compound is generally considered safe, since it is detoxified
and excreted by antioxidant defense mechanisms when taken at appropriate concentra-
tions, and is the main component of a variety of antipyretic and analgesic drugs, such as
Tylenol [1]. However, overdoses of APAP result in the depletion of GSH, which detoxifies
the active metabolite NAPQI, and this results in oxidative damage to cell membranes and
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intracellular macromolecules, thereby damaging liver cells [4,21]. As a result, extensive
research has been conducted to isolate hepatoprotective compounds from traditional herbal
medicines and natural compounds with various pharmacological mechanisms and fewer
side effects [22].

The present study evaluated the hepatoprotective effects of TAE in mice with APAP-
induced hepatotoxicity. Overdoses of APAP result in the release of large amounts of ALT
and AST, which significantly increases blood volume and, thus, can seriously damage
hepatocytes [18]. However, the histopathological results of the present study indicate that
TAE pre-treatment reduced nuclear loss and damage to liver structural morphology, and
TAE pre-treatment also alleviated the APAP-induced elevation of ALT and AST activity.
These findings suggest that TAE pre-treatment can reduce hepatocellular damage during
APAP overdose by inhibiting the release of ALT and AST from the serum.

The production of ROS and prevention of lipid peroxidation are the most common
mechanisms by which natural compounds provide liver protection [18]. Moreover, MDA
is the end-product of lipid peroxidation and indirectly reflects the production of ROS in
organisms [18]. In such ROS-rich environments, MPO, which is an indicator of oxidative
damage, increases in proportion to the degree of penetration by neutrophils, thereby gener-
ating reactive radicals and causing oxidative stress that exacerbates cellular damage [13,18].
In the present study, TAE significantly upregulated the expression of SOD and GSH and
downregulated ROS, MDA, and MPO levels in a dose-dependent manner, which suggests
that TAE can potently inhibit APAP-induced oxidative liver damage.

Metabolic activation by APAP induces inflammatory cell infiltration and the overex-
pression of inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, ultimately leading
to inflammation [18]. In the present study, APAP injection significantly upregulated
both the serum and mRNA levels of TNF-α, IL-6, and IL-1β, whereas TAE pre-treatment
down-regulated them. Thus, the hepatoprotective effects of TAE in this APAP-induced
hepatotoxicity model are also associated with anti-inflammatory activity.

Oxidative stress plays an important role during APAP-induced hepatotoxicity [13,18].
Since the NAPQI toxins produced by APAP are metabolized by the CYP pathway, and
especially by CYP2E1, the antioxidant properties of TAE in APAP-induced hepatotoxicity
may be partially related to the inhibition of CYP enzymes [18,23]. Furthermore, because
CYP2E1 is a major contributor to APAP-induced hepatotoxicity, the inhibition of CYP2E1
may be a promising therapeutic strategy for addressing APAP-induced hepatotoxicity.
In our study, APAP injection significantly increased CYP2E1 expression, whereas TAE
pre-treatment significantly suppressed CYP2E1 upregulation in a dose-dependent manner.
Thus, we suggest that the hepatoprotective action of TAE is also mediated by the removal of
NAPQI toxins. It has been demonstrated that the activation of Nrf2 by pharmacologically
active agents or genetic manipulation plays an important role in protecting the liver from
APAP-induced hepatotoxicity in mice and in alleviating chemically induced oxidative
stress damage [17]. Thus, the Nrf2-regulated antioxidant system plays a key role in mitigat-
ing chemically induced oxidative stress damage [17,18]. Interestingly, TAE pretreatment
confirmed that the protein levels of Nrf2, HO-1, and SOD-1 were significantly reduced
by APAP injection, and particularly significantly inhibited these reductions in HO-1 and
SOD-1.

The upstream kinase of JNK activation is activated by ASK1 in APAP-induced liver
injury [19]. In the present study, TAE pre-treatment inhibited the APAP-induced phospho-
rylation of ASK1 and JNK. Therefore, TAE exhibited hepatoprotective activity through the
inhibition of ASK1 phosphorylation during APAP-induced hepatotoxicity and suppression
of oxidative stress by downregulating JNK phosphorylation.

The APAP-induced upregulation of Bax is attenuated by the inhibition of JNK acti-
vation [19,23,24]. APAP has been reported to induce and inhibit the expression of Bax
(pro-apoptotic factor) and Bcl-2 (anti-apoptotic factor), respectively, and the upregulation
of the Bax/Bcl-2 ratio damages the mitochondrial membrane and induces a caspase-
dependent apoptosis pathway [24,25], with resulting hepatocyte death that could promote
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the onset and progression of liver disease [25]. The findings of the present study indicate
that APAP overdose induces typical signs of apoptosis, including caspase 1 activation and
DNA fragmentation. However, TAE pre-treatment suppresses these signs, which clearly
indicates that it contains an active ingredient with therapeutic potential for hepatotoxicity.

4. Materials and Methods
4.1. Chemicals and Reagents

The APAP, silymarin, chloroform and isopropanol used in the present study were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Cytokine measurement ELISA
kits were purchased from BioLegend (San Diego, CA, USA). Specific antibodies used for
Western blotting were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA)
and Abcam (Cambridge, UK). Commercial kits for measuring serum levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST), reactive oxygen species (ROS),
superoxide dismutase (SOD), glutathione (GSH), myeloperoxidase (MPO) activity, and
malondialdehyde (MDA) were purchased from BioVision (Milpitas, CA, USA).

4.2. Ethanolic Extraction

Wheat sprouts were obtained from the National Institute of Crop Science (Jeonbuk,
Korea) and freeze-dried. Seeds were germinated on sterilized organic peat moss, and
TA shoot extraction was performed as described previously [8]. Briefly, the shoots were
powdered, and 30 g portions were ultrasonically extracted in 30% ethanol and filtered
using Whatman filter paper (grade no. 1, diameter: 15 cm). These were stored at −80 ◦C
until further analysis.

4.3. Chemical Analysis

The γ-Aminobutyric acid (GABA) contents of the TAEs, were measured using an
OPA/FMOC derivatization reagent in high-performance liquid chromatography (HPLC;
Agilent Technologies, Santa Clara, CA, USA), according to the manufacturer’s protocol.
Meanwhile, the α-linolenic acid contents were measured using ultra-performance liquid
chromatography (UPLC) on a Waters Acquity system (Waters, Milford, MA, USA). The
UPLC was performed using 0.1% H3PO4 (pH 2.87) and, CH3CN as solvents (A and B,
respectively), a mobile phase flow rate of 0.6 mL/min, detection at UV 206 nm, and
temperature of 30 ◦C.

4.4. Experimental Design and Animals

Male C57BL/6 mice (6 weeks, 20–23 g, n = 35) were purchased from Samtako Bio Korea
(South Korea). All mice were provided with adequate food and water and were housed in
an animal room under standard conditions (21–24 ◦C, humidity, 45–60%, 12 h photoperiod).
Mice were divided into 5 groups (mice/group). During a 7-day pre-treatment period, a TA
group and positive control group were orally administered TAE (100 or 200 mg/kg) and
silymarin (100 mg/kg) [26], respectively, whereas the vehicle group (control group) and
APAP group received only phosphate-buffered saline (PBS). The TAE concentrations used
in the experiment were based on data from previous studies [13]. Then, after the 7-day
pre-treatment and 15 h of fasting, all individuals, except those in the control group, received
intraperitoneal (i.p.) injections of APAP (300 mg/kg) [6]. Finally, at 24 h after injection, the
mice were euthanized, and blood and liver samples were collected (Figure 2A). All animal
procedures were approved by the Jeonbuk National University Laboratory Animal Care
and Use Committee and were performed according to the Experimenta Ethics Committee
(JBNU 2021-022).

4.5. Histological Observation

To evaluate the degree of APAP-induced hepatotoxicity, liver tissue samples were
fixed in 10 % formalin and then embedded in paraffin wax. In order to evaluate the degree
of liver tissue damage and nuclear DNA fragmentation, tissue samples embedded in
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paraffin were cut to a thickness of 5 µm and attached to a glass slide. After staining with
hematoxylin-eosin (H&E), the degree of damage to the liver tissue was observed under an
optical microscope (Olympus, Tokyo, Japan). Histopathological alterations were evaluated
by randomly selecting 4 tissue samples per group. The liver tissue damage score was
scored on a scale of of 0–4 and was evaluated as previously described [27].

4.6. ALT and AST Assays

Blood samples were obtained from a vein, and the serum was separated by centrifu-
gation at 3500× g for 10 min. To evaluate liver function, serum alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) activities were measured using commercial
diagnostic assay kits.

4.7. Cytokine Analysis

Levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-
1β) were commercially available ELISA kits, according to the manufacturer’s instructions.

4.8. Gene Expression Analysis

RNA was treated with Tirol reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions to dissolve the cell membrane, added to chloroform, and
centrifuged to separate layers. After that, the aqueous phase was picked and transferred to
a new tube, and isopropanol was added to extract only RNA, followed by centrifugation.
Then, RNA pellet was used in 75 % ethanol to remove Na+ attached to the RNA. Total RNA
was reverse transcribed into cDNA using PrimeScriptTM II 1st Strand cDNA synthesis
kit (Promega, Madison, WI, USA). The qRT-PCR was performed using a SYBR Green
Master Mix (Thermo Fisher Scientific Inc., Waltham, MA, USA) on StepOne Real-Time PCR
System (Applied Biosystems). Mouse primers of inflammatory cytokines are described in
Table 1, and all gene expression values were normalized according to the expression of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) [27].

Table 1. Primer sequences for qPCR.

Gene Base sequence (5′-3′) Size (bp)

mTNF-α-F TAGCCAGGAGGGAGAACAGA
127mTNF-α-R TTTTCTGGAGGGAGATATGG

mIL-6-F GACAACCACGGCCTTCCCTA
302mIL-6-R GGTACTCCAGAAGACCAGAGGA

mIL-1β-F GCAACTGTTCCTGAACTCAACT
89mIL-1β-R ATCTTTTGGGGTCCGTCAACT

mGAPDH-F GAAGGTGAAGGTCGGAGT
226mGAPDH-R GAAGATGGTGATGGGATTTC

TNF-α, tumornecrosis factor-α; IL-, Interleukin-; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

4.9. Biochemical Analysis

Fresh liver tissue from each specimen was washed in cold PBS and stored at−80 ◦C for
further analysis. Levels of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide
dismutase (SOD), and glutathione (GSH) activity were later analyzed using a commercially
available kit according to the manufacturer’s protocol.

4.10. Protein Expression Analysis

Mice liver tissue was washed with fresh PBS and homogenized using radioimmuno-
precipitation assay (RIPA) buffer. Protein was quantified using the BCA protein assay
kit, and Western blotting was performed as previously [27]. Briefly, proteins were sepa-
rated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, USA) and quan-
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tified using specific antibodies and an enhanced chemiluminescent developing reagent
(Advansta, San Jose, CA, USA).

4.11. DNA Fragmentation Analysis

DNA fragmentation was assessed using a terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay [27]. Tissue section slides were evaluated according to
the manufacturer’s instructions and analyzed using a confocal microscope (Axio Vert.A1;
ZEISS, Dublin, CA, USA).

4.12. Statistical Analysis

All experimental results are expressed as mean ± S.D. Statistical analyses were per-
formed using GraphPad Prism (v.5.0) and one-way analysis of variance (ANOVA) was
used to identify differences among the groups. The Bonferroni post hoc test was used for
post-test comparison to the control and treatment groups. Statistical significance was set at
p < 0.05.

5. Conclusions

The present study provides evidence for the hepatoprotective effects of pre-treatment
with an ethanolic Triticum aestivum sprout extract in hepatotoxic environments. In summary,
TAE pre-treatment was demonstrated to inhibit oxidative stress, inflammation, apoptosis,
and liver damage during APAP-induced hepatotoxicity. Although the effects of TAE on
other liver diseases remain unknown, the present study provides evidence that supports
the use of traditional herbal medicines and natural compounds that may have fewer side
effects than conventional drugs. The study indicates that TAE pre-treatment is an attractive
candidate therapy for the prevention of hepatotoxicity. Meanwhile, the specific molecular
mechanisms and precise targets of TAE are still unknown, and further studies are needed.
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Abbreviations

ALT Alanine aminotransferase
APAP Acetaminophen (N-acetyl-para-aminophenol)
AST Aspartate aminotransferase
Bax Bcl-2-associated X
Bcl2 B-cell lymphoma 2
Caspase Cysteinyl aspartate specific proteinase
CYP2E1 Cytochrome P4502E1
GSH Glutathione
HO-1 Heme oxygenase-1
HPLC High-performance liquid chromatography
MDA Malondialdehyde
MPO Myeloperoxidase
NAPQI N-acetyl-p-benzoquinone imine
NF-κB Transcription factors nuclear factor-kappa B
Nrf2 Nuclear factor erythroid 2-related factor 2
qPCR quantitative polymerase chain reaction
ROS Reactive oxygen species
SOD Superoxide dismutase
TAE Triticum aestivum sprouts extract
UPLC Ultra-performance liquid chromatography
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