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Abstract 

Mitochondrial health is important in ageing and dysfunctional oxidative phosphorylation (OXPHOS) accelerates age‑
ing and influences neurodegeneration. Mitochondrial DNA (mtDNA) codes for vital OXPHOS subunits and mtDNA 
background has been associated with neurodegeneration; however, no study has characterised mtDNA variation in 
Progressive supranuclear palsy (PSP) or Corticobasal degeneration (CBD) risk or pathogenesis. In this case–control 
study, 910 (42.6% male) neurologically‑healthy controls, 1042 (54.1% male) pathologically‑confirmed PSP cases, and 
171 (52.0% male) pathologically‑confirmed CBD cases were assessed to determine how stable mtDNA polymor‑
phisms, in the form of mtDNA haplogroups, were associated with risk of PSP, risk of CBD, age of PSP onset, PSP disease 
duration, and neuropathological tau pathology measures for neurofibrillary tangles (NFT), neuropil threads (NT), 
tufted astrocytes (TA), astrocytic plaques (AP), and oligodendroglial coiled bodies (CB). 764 PSP cases and 150 CBD 
cases had quantitative tau pathology scores. mtDNA was genotyped for 39 unique SNPs using Agena Bioscience iPlex 
technologies and mitochondrial haplogroups were defined to mitochondrial phylogeny. After adjustment for multiple 
testing, we observed an association with risk of CBD for mtDNA sub‑haplogroup H4 (OR = 4.51, P = 0.001) and the HV/
HV0a haplogroup was associated with a decreased severity of NT tau pathology in PSP cases (P = 0.0023). Our study 
reports that mitochondrial genomic background may be associated with risk of CBD and may be influencing tau 
pathology measures in PSP. Replication of these findings will be important.
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Introduction
Progressive supranuclear palsy (PSP) and Corticobasal 
degeneration (CBD) are rare progressive neurodegener-
ative movement disorders [1, 2]. PSP typically presents 

clinically with early falls, supranuclear vertical gaze 
palsy, parkinsonism, and dementia at about 65 years of 
age [3]. Individuals with CBD often present with pro-
gressive asymmetric rigidity and apraxia, loss of coordi-
nation, tremor, bradykinesia, akinesia, and occasionally 
alien limb syndrome [4, 5]. Both diseases have over-
lapping clinical symptoms with each other and other 
neurodegenerative diseases, such as Parkinson’s dis-
ease (PD) and Alzheimer’s disease (AD) [3, 6–8]. This 
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can result in an inaccurate clinical diagnosis; definitive 
diagnosis is only achieved post-mortem using specific 
neuropathological diagnostic criteria [9, 10].

Neuropathologically, PSP and CBD are characterised 
as primary four-repeat (4R) tauopathies, with tau-pos-
itive aggregates in the form of neurofibrillary tangles 
(NFT), tufted astrocytes (TA), astrocytic plaques (AP), 
neuropil threads (NT), and oligodendroglia coiled bod-
ies (CB), evident in the basal ganglia, diencephalon, and 
brainstem in PSP [11, 12], and in the substantia nigra 
and locus coeruleus in CBD [10]. Although generally 
considered sporadic disorders, MAPT, which encodes 
microtubule associated protein tau, is consistently doc-
umented as a strong genetic risk factor for both PSP 
and CBD [13, 14], and genetic variation in MAPT influ-
ences tau pathology severity in PSP [15]. Other genetic 
factors have also been identified however they do not 
explain complete disease aetiology [11, 13, 14, 16].

Age is the major risk factor for PSP and CBD, and 
mitochondrial health is well-established to contrib-
ute significantly to healthy ageing [17]. Mitochondrial 
dysfunction is also recognised in PSP pathogenesis as 
well as other clinically similar diseases such as PD and 
AD [18–21]. More specifically, defective mitochondria 
generate reactive oxygen species (ROS) which oxidise 
proteins, lipids, and nucleic acids, accelerating the age-
ing process [22]. ROS is suggested to contribute to the 
accumulation of insoluble proteinaceous deposits, such 
as Lewy bodies in PD, and senile plaques and NFT in 
AD [23–25], and dysfunction of complex I in the oxi-
dative phosphorylation (OXPHOS) system has been 
shown to accelerate 4R tau isoform formation in PSP 
cell lines [26] and is defective in the substantia nigra of 
PD patients [27, 28].

Mitochondria contain their own double-stranded, cir-
cular 16.6 kilo-base pair genome (mtDNA), independent 
to nuclear DNA (nDNA). mtDNA encodes 37 polypep-
tides, of which 13 encode vital OXPHOS subunits. An 
individual cell can contain hundreds to thousands of 
mtDNA copies which significantly affects cellular meta-
bolic background [29]. mtDNA also contains stable sin-
gle nucleotide polymorphisms which define individuals 
to specific haplogroups. Individual mtDNA haplogroups 
have distinctive metabolic demands [30, 31] and haplo-
group bioefficiency has also been shown to affect ageing 
and risk of developing many neurodegenerative diseases, 
including PD and AD [31–34].

Despite evidence reporting mitochondrial dysfunction 
in PSP, no studies have examined if mtDNA background 
influences PSP or CBD risk or if mtDNA variation can 
contribute to overall tau pathology severity. Thus, herein 
we examine the association of mtDNA background with 

PSP and CBD risk and tau pathology severity in two 
autopsy-defined series.

Methods
Study design
1042 pathologically confirmed PSP cases, 171 patho-
logically confirmed CBD cases, and 910 neurologically 
healthy controls were included. All subjects were of self-
reported European descent. PSP samples were donated 
between 1998 and 2016 and CBD samples were collected 
between 1994 and 2017. All samples were obtained from 
the CurePSP Brain Bank at Mayo Clinic Jacksonville 
and were rendered by a single neuropathologist (DWD) 
following published criteria [8, 10, 35]. Controls were 
recruited from 1998 to 2015 through the clinical Neu-
rology department at Mayo Clinic Jacksonville, Florida. 
Demographic information is summarised in Table 1. Age 
of onset and disease duration was unavailable for 606 
PSP and was not available for CBD cases. This study was 
approved by the Mayo Clinic Institutional Review Board 
and individual written consent was obtained from all 
subjects, or their next of kin, prior to commencement.

Neuropathological assessment
Semi-quantitative tau pathology scores in PSP and 
CBD cases were determined by a single neuropathologist 
(DWD) using standardized histopathologic methods and 
phospho-tau immunochemistry. Scores were generated 
in a subset of cases (PSP: N = 764, CBD: N = 150) on a 
four-point severity scale (0 = none, 1 = mild, 2 = moder-
ate, and 3 = severe) [36]. All sections from all cases were 
processed in an identical manner with phospho-tau 
monoclonal antibody (CP13, from Dr. Peter Davies, Fein-
stein Institute, Long Island, NY) and immunohistochem-
istry using a DAKO Autostainer. NFT (PSP: N = 764, 
CBD: N = 150), CB (PSP: N = 763, CBD: N = 150), TA/
AP (PSP: N = 734, CBD: N = 150), and NT (PSP: N = 763, 
CBD: N = 149) were assessed, and overall scores in 17–20 
different, vulnerable neuroanatomical regions in PSP/
CBD were generated for each separate tau pathology 
measure (Additional file  1: Table  S1). Mean semi-quan-
titative measures were then calculated for each PSP/CBD 
patient across all anatomical regions, where a higher 
overall score indicated more severe tau pathology. PSP/
CBD patients who did not have tau scores in a given 
region for a given tau pathology measure had their scores 
imputed by using the mean of the values of the patients 
in the given disease group (PSP or CBD) who did have 
scores. Any patients with missing data for > 50% of neu-
roanatomical regions for a given tau pathology measure 
were not included in any analysis involving tau pathology 
measures. PSP and CBD cases were additionally assessed 
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for Alzheimer-type pathology with thioflavin-S fluores-
cent microscopy. Thioflavin-S predominantly binds to 
3R and 4R tau molecules which form paired-helical fila-
ments in AD pathology [37, 38]. As PSP/CBD are pure 4R 
tauopathies, with straight filament NFT [39], thioflavin S 
is specifically used to assign Braak NFT stage and should 
not detect PSP/CBD NFT. Braak NFT stage [40] and Thal 
amyloid phase [41] were generated for each case based 
on the density and distribution of plaques and tangles, as 
previously detailed [42, 43] (Table 1).

DNA preparation and genotyping
Genomic DNA and mtDNA was extracted from periph-
eral blood lymphocytes from control subjects and from 
frozen cerebellum brain tissue from PSP and CBD cases 
using Autogen Flex Star and Autogen 245T (Holliston, 
MA) methods respectively. mtDNA in all samples was 
genotyped on two high multiplex custom-designed iPlex 

assays (consisting of 39 mtDNA SNPs—Fig.  1) using 
Sequenom MassARRAY iPlex technology (MALDI-TOF 
MS) and  iPlex® Gold chemistry technology [44]. PCR 
and sequence-specific extension primers were designed 
through Sequenom’s MassARRAY Typer 4.0 Designer 
software (version 0.2) (Additional file  1: Table  S2), part 
of the Assay Design Suite (Agena Bioscience™, San 
Diego, USA), and were manufactured by Integrated DNA 
Technologies (IDT, San Diego, USA). Genotypes were 
determined by Sequenom MassARRAY ® Bruker mass 
spectrometry (Agena Bioscience, San Diego, CA, USA) 
[44] and were accepted if intensities were > 5 from the 
base line intensity (< 5 was considered noise). Individu-
als with a genotyping call rate > 95% were accepted and 
had mtDNA haplogroups determined. Genotyping analy-
sis was conducted using Sequenom’s Typer 4.0 Analyzer 
software (version 25.73). Additional details are provided 
in Additional file 1: Supplementary Methods.

Table 1 Summary of cohort characteristics in N = 1042 PSP cases, 171 CBD cases, and N = 910 controls

The sample median (minimum, maximum) is given for continuous variables. CB = coiled bodies; NFT = neurofibrillary tangles; TA = tufted astrocytes; AP = astrocytic 
plaques; NT = neuropil threads

Variable PSP cases (N = 1042) CBD cases (N = 171) Controls (N = 910)

Age (years) 75 (45, 98) 70 (46, 96) 79 (41, 102)

Sex

 Male 564 (54.1%) 89 (52.0%) 388 (42.6%)

 Female 478 (45.9%) 82 (48.0%) 522 (57.4%)

Age of onset (years) 68 (41, 90) – –

Disease duration (years) 7 (1, 32) – –

PSP clinical subtype

 Richardson 568 (74.4%) – –

 Non‑Richardson 195 (25.6%) – –

Braak stage

 0 113 (14.8%) 20 (13.3%) –

 I 127 (16.6%) 32 (21.3%) –

 II 223 (29.2%) 50 (33.3%) –

 III 234 (30.6%) 39 (26.0%) –

 IV 50 (6.5%) 7 (4.7%) –

 V 11 (1.4%) 1 (0.7%) –

 VI 6 (0.8%) 1 (0.7%) –

Thal phase

 0 336 (44.0%) 82 (54.7%) –

 1 125 (16.4%) 30 (20.0%) –

 2 52 (6.8%) 14 (9.3%) –

 3 188 (24.6%) 19 (12.7%) –

 4 43 (5.6%) 3 (2.0%) –

 5 20 (2.6%) 2 (1.3%) –

CB tau pathology score 1.50 (0.25, 2.36) 0.76 (0.23, 1.75) –

NFT tau pathology score 2.23 (0.83, 2.89) 2.19 (0.99, 2.67) –

TA/AP tau pathology score 1.00 (0.06, 2.00) 0.52 (0.24, 1.04) –

NT tau pathology score 2.15 (0.35, 2.90) 2.52 (1.23, 2.95) –
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Mitochondrial DNA haplogroup assignment
Mitochondrial DNA haplogroups were manually defined 
to mitochondrial phylogeny [45, 46] (Fig. 1). Haplogroups 
and sub-haplogroups were determined whereby patterns 
of mtDNA SNPs had to sequentially be present down the 
phylotree and not present in other phylogenetic clades 
(refer to Additional file 1 for further details). For use in 
secondary analysis, super-haplogroups were determined 
by combining phylogenetic-related haplogroups together 
(Additional file 1). Over 95% of individuals in European 
populations classify as one of the following mtDNA hap-
logroups—H, V, J, T, I, X, W, U, or K [47], therefore indi-
viduals with a non-European mitochondrial haplogroups 
(e.g. non-N, A, F, and B) were removed from analysis.

Statistical analysis
Associations of mitochondrial haplogroups with risk of 
PSP and CBD (each separately versus controls) were eval-
uated using logistic regression models that were adjusted 
for age and sex. Odds ratios (ORs) and 95% confidence 

intervals (CIs) were estimated. In analysis of only PSP 
or CBD patients, linear regression models were used to 
assess associations of mitochondrial haplogroups with 
PSP disease duration, age of PSP onset, and tau pathol-
ogy scores of; CB, NFT, TA, AP, and NT. Models were 
adjusted for age of PSP onset and sex (models involv-
ing PSP disease duration), for sex (models involving age 
of PSP onset), and for age at death, sex, Braak stage, and 
Thal phase (models involving CB, NFT, TA, AP, and NT 
tau pathology scores).

Haplogroups that occurred in < 10 subjects for a given 
association analysis were not included in that analy-
sis. For the primary analysis (i.e. all analysis not involv-
ing super-haplogroups), a Bonferroni correction was 
applied for multiple testing separately for each group of 
similar statistical tests. Specifically, P values ≤ 0.0021 
(associations with PSP), ≤ 0.0024 (associations with 
CBD), ≤ 0.0026 (associations with disease duration 
and age of PSP onset), ≤ 0.0024 and ≤ 0.0045 (associa-
tions with tau pathology scores in either PSP or CBD 
cases respectively) were considered to be statistically 

Fig. 1 Schematic overview of the mitochondrial phylotree and unique SNPs which define European mitochondrial haplogroups. Mitochondrial 
SNPs highlighted in red indicate SNPs genotyped using Sequenom iPlex technology (Agena Bioscience, San Diego, CA, USA) to determine 
mitochondrial DNA haplogroups. Adapted from Phylotree [45]



Page 5 of 11Valentino et al. acta neuropathol commun           (2020) 8:162  

significant. No adjustment for multiple testing was made 
for secondary analysis involving super-haplogroups and P 
values ≤ 0.05 were considered significant. A power analy-
sis regarding associations of mitochondrial haplogroups 
with disease risk and tau pathology scores is displayed in 
Additional file 1: Table S3. Statistical analyses were per-
formed using R Statistical Software (version 3.6.1).

Results
Mitochondrial DNA haplogroup frequencies in our con-
trol cohort were representative of European populations 
(Table  2) [46] and were considered an appropriate ref-
erence cohort to investigate mtDNA background asso-
ciations with risk of PSP and CBD. Individuals carrying 
non-European mtDNA haplogroups (non-N, A, F, and 
B) were previously removed to ensure individuals from 
European descent were assessed. In analysis that was 
adjusted for age and sex, to remove possible confound-
ing influences, and after correcting for multiple testing 
(P ≤ 0.0021 considered significant), there were no sig-
nificant associations between individual mtDNA hap-
logroups and PSP risk (all P ≥ 0.041, Table  2). We did 
observe a significant association between mtDNA haplo-
group H4 and an increased risk of CBD (5.3% vs. 1.2%, 
OR = 4.51, P = 0.001, Table 2). Secondary analyses exam-
ining associations of mtDNA super-haplogroups with 
risk of PSP and CBD are displayed in Additional file  1: 
Table S4; no strong associations were identified.

Associations of individual mtDNA haplogroups with 
tau pathology scores of CB, NFT, TA, and NT in PSP 
and of CB, NFT, AP, and NT in CBD are summarised in 
Tables  3 and 4, respectively. After correction for multi-
ple testing (P ≤ 0.0024 considered significant) and when 
adjusting for age at death, sex, Braak stage, and Thal 
phase, PSP individuals with a haplogroup HV and HV0a 
background (N = 10) had significantly lower NT pathol-
ogy (P = 0.0023, Table 3) compared to other individuals; 
mean NT tau pathology scores were 0.35 units lower for 
haplogroup HV and HV0a cases (Additional file 1: Figure 
S1A). Additionally, although not quite statistically sig-
nificant, mean NFT tau pathology score was 0.09 units 
lower for individuals with PSP and mtDNA haplogroup 
T, T1, and T2 backgrounds (N = 85) compared to other 
individuals (P = 0.009, Additional file 1: Figure S1B). No 
super-haplogroups reported significant associations 
with tau pathology measures in PSP in secondary analy-
ses (Additional file  1: Table  S5). No individual mtDNA 
haplogroups were significantly associated with any tau 
pathology measures in CBD (Table  4), however in sec-
ondary analysis super-haplogroup UK reported a lower 
CB tau pathology (Additional file 1: Table S6, P = 0.014).

Mitochondrial DNA background was not strongly 
associated with age of onset or disease duration in PSP 

(Additional file 1: Table S7); however, there was a sugges-
tive association between mtDNA haplogroup W (N = 11) 
and a longer disease duration in PSP (P = 0.004, Addi-
tional file  1: Figure S1C). Key findings of our study are 
summarised in Additional file 1: Figure S2.

Discussion
Mitochondrial health plays a significant role in ageing 
and the development of neurodegenerative diseases, 
including tauopathy [17–21]; however population spe-
cific mtDNA variation has not been investigated in PSP 
and CBD. Our findings indicate that major mtDNA hap-
logroups do not associate with risk of PSP; however, indi-
viduals with mtDNA sub-haplogroup H4 background 
may be at an increased risk of CBD. In PSP cases, indi-
viduals with mtDNA haplogroup HV/HV0a backgrounds 
had a decreased NT tau pathology and individuals with 
a haplogroup T (including T1 and T2) background had 
mildly reduced NFT tau pathology levels. No mtDNA 
haplogroups were significantly associated with tau 
pathology severity in CBD cases.

mtDNA sub-haplogroup H4, which was associated 
with an increased risk of CBD, is defined by a synony-
mous coding variant rs41419549 which is located in 
the NADH dehydrogenase subunit-2 (MT-ND2) (Addi-
tional file 1: Figure S2). ND2 has been identified to play 
a central role in the assembly of complex I subunits [48]. 
CBD pathology occurs in the substantia nigra and locus 
coeruleus [9], which may indicate that mtDNA haplo-
group H4 has a tissue specific effect on mitochondrial 
functionality in those regions. Albeit interesting, the 
absence of a H4 association with any tau pathology sever-
ity measure in CBD suggests that the presence of haplo-
group H4 may be accelerating degeneration rather than 
enhancing tau aggregation. Despite the strong effect size 
(OR = 4.51) and the fact that this association survived a 
stringent Bonferroni correction for multiple testing, as 
the H4 mtDNA haplogroup occurred in a small number 
of CBD patients (N = 9), validation of this finding will be 
important.

Regarding mtDNA haplogroup HV/HV0a, which was 
associated with less NT tau pathology in PSP cases, 
haplogroup HV is defined by a single missense variant 
rs193302980 in the cytochrome-b subunit of complex III 
(MT-CYB) and haplogroup HV0a is defined by a unique 
variant rs35788393 located adjacent to MT-CYB in the 
coding region for tRNA-threonine (Additional file 1: Fig-
ure S2). Cytochrome-b is a vital component of complex 
III and ND6 is a subunit of complex I. Both complex I 
and III are important components of the OXPHOS path-
way, and have been identified as major drivers of neuro-
degeneration and dysfunction of complex I has also been 
shown to accelerate 4R tau isoform formation in PSP 
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cell lines [26, 27]. Again, despite the statistically signifi-
cant association between mtDNA haplogroup HV/HV0a 
background and NT severity, replication of this finding 
will be key given that there were only 10 HV/HV0a PSP 
cases.

Although this is the first study to report significant 
associations of mtDNA variation background with 
CBD risk and with tau pathology in PSP, several limita-
tions need to be acknowledged. First, to the best of our 
knowledge, all participants in our study were of European 

descent based on both self-reported ethnicity as well as 
mtDNA haplogroup profile (non-European haplogroups 
were excluded). Nonetheless, given the absence of avail-
able genome-wide population control markers, which 
would have allowed us to adjust our regression models 
for genetic background (in the form of top principal com-
ponents from genetic data), we cannot rule out the pos-
sibility that population stratification could have had an 
effect on our results.

Table 2 Associations of individual mitochondrial DNA haplogroups with risk of PSP and CBD (compared to controls) were 
evaluated using multivariable logistic regression models adjusted for age and sex

After applying a Bonferroni correction for multiple testing, association P values ≤ 0.0021 (PSP vs. controls analysis) and ≤ 0.0024 (CBD vs. controls) are considered 
statistically significant
a Statistical tests were not performed for these haplogroups owing to their rare frequency (< 10 subjects in the given haplogroup for the given comparison [PSP vs. 
controls or CBD vs. controls]). OR = odds ratio; CI = confidence interval at 95%

Mitochondrial DNA 
Haplogroup

Haplogroup frequency, No. (%) PSP versus controls CBD versus controls

Controls (N = 910) PSP patients 
(N = 1042)

CBD patients 
(N = 171)

OR (95% CI) P value OR (95% CI) P value

Na 2 (0.2%) 0 (0.0%) 0 (0.0%) – – – –

N1 5 (0.5%) 6 (0.6%) 0 (0.0%) 1.08 (0.33, 3.58) 0.90 – –

I 31 (3.4%) 23 (2.2%) 2 (1.2%) 0.56 (0.32, 0.98) 0.041 0.24 (0.06, 1.05) 0.058

W 15 (1.6%) 22 (2.1%) 3 (1.8%) 1.37 (0.70, 2.67) 0.36 1.27 (0.35, 4.54) 0.72

X 8 (0.9%) 18 (1.7%) 5 (2.9%) 1.90 (0.81, 4.43) 0.14 3.48 (1.07, 11.33) 0.039

R and  R0a 6 (0.7%) 10 (1.0%) 2 (1.2%) 1.33 (0.48, 3.72) 0.58 – –

HV and HV0a 22 (2.4%) 16 (1.5%) 2 (1.2%) 0.67 (0.35, 1.30) 0.24 0.54 (0.12, 2.35) 0.41

H, H1, H2, H3, and H4 423 (46.5%) 469 (45.0%) 84 (49.1%) 0.94 (0.78, 1.13) 0.50 1.11 (0.79, 1.55) 0.54

H 199 (21.9%) 200 (19.2%) 30 (17.5%) 0.84 (0.68, 1.05) 0.14 0.76 (0.49, 1.17) 0.21

H1 145 (15.9%) 171 (16.4%) 31 (18.1%) 1.03 (0.80, 1.31) 0.84 1.16 (0.75, 1.79) 0.52

H2 36 (4.0%) 34 (3.3%) 5 (2.9%) 0.78 (0.48, 1.27) 0.32 0.65 (0.25, 1.73) 0.39

H3 32 (3.5%) 49 (4.7%) 9 (5.3%) 1.47 (0.93, 2.33) 0.10 1.76 (0.81, 3.83) 0.16

H4 11 (1.2%) 15 (1.4%) 9 (5.3%) 1.18 (0.54, 2.60) 0.68 4.51 (1.8, 11.31) 0.001

V 18 (2.0%) 29 (2.8%) 3 (1.8%) 1.37 (0.75, 2.50) 0.31 0.79 (0.23, 2.79) 0.72

JTa 2 (0.2%) 3 (0.3%) 0 (0.0%) – – – –

J1, J1d, J2a, and J2b 93 (10.2%) 125 (12.0%) 18 (10.5%) 1.23 (0.92, 1.64) 0.15 1.11 (0.65, 1.92) 0.70

J1 72 (7.9%) 98 (9.4%) 17 (9.9%) 1.23 (0.89, 1.69) 0.21 1.35 (0.76, 2.39) 0.30

J1da 1 (0.1%) 0 (0.0%) 0 (0.0%) – – – –

J2a 13 (1.4%) 24 (2.3%) 1 (0.6%) 1.77 (0.89, 3.53) 0.10 0.49 (0.06, 3.84) 0.50

J2b 7 (0.8%) 3 (0.3%) 0 (0.0%) 0.39 (0.10, 1.52) 0.17 – –

T, T1, and T2 77 (8.5%) 102 (9.8%) 22 (12.9%) 1.20 (0.88, 1.64) 0.26 1.72 (1.02, 2.89) 0.042

Ta 0 (0.0%) 2 (0.2%) 1 (0.6%) – – – –

T1 17 (1.9%) 22 (2.1%) 4 (2.3%) 1.10 (0.58, 2.10) 0.77 1.16 (0.37, 3.6) 0.80

T2 60 (6.6%) 78 (7.5%) 17 (9.9%) 1.19 (0.84, 1.70) 0.33 1.74 (0.97, 3.11) 0.063

U, U1, U3, U5, and U6 130 (14.3%) 138 (13.2%) 19 (11.1%) 0.88 (0.68, 1.15) 0.36 0.71 (0.42, 1.19) 0.19

U 44 (4.8%) 56 (5.4%) 7 (4.1%) 1.07 (0.71, 1.61) 0.74 0.84 (0.36, 1.92) 0.68

U1a 1 (0.1%) 1 (0.1%) 0 (0.0%) – – – –

U3a 8 (0.9%) 0 (0.0%) 0 (0.0%) – – – –

U5 74 (8.1%) 80 (7.7%) 12 (7.0%) 0.92 (0.66, 1.28) 0.60 0.79 (0.41, 1.51) 0.48

U6a 3 (0.3%) 1 (0.1%) 0 (0.0%) – – – –

K 78 (8.6%) 80 (7.7%) 11 (6.4%) 0.92 (0.66, 1.28) 0.62 0.72 (0.37, 1.41) 0.35
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Table 3 Associations of individual mitochondrial DNA haplogroups with CB, NFT, AP, and NT tau pathology scores in PSP 
cases with measured tau pathology scores (N = 764) from linear regression models that were adjusted for age at death, 
sex, Braak, and Thal phase

Regression coefficients are interpreted as the increase in mean CB, NFT, AP, or NT tau pathology scores for patients in the given mitochondrial DNA haplogroup 
compared to patients not in the given haplogroup (non-haplogroup). P values ≤ 0.0024 are considered statistically significant after applying a Bonferroni correction 
for multiple testing
a Statistical tests were not performed for these haplogroups owing to their rare frequency (< 10 PSP cases in the given haplogroup). CB = coiled bodies; 
NFT = neurofibrillary tangles; AP = astrocytic plaques; NT = neuropil threads; CI = confidence interval

Mitochondrial 
DNA 
Haplogroup

No. (%) 
in haplogroup 
(N = 764)

Association with CB tau 
pathology score

Association with NFT tau 
pathology score

Association with AP tau 
pathology score

Association with NT tau 
pathology score

Regression 
coefficient 
(95% CI)

P value Regression 
coefficient 
(95% CI)

P value Regression 
coefficient 
(95% CI)

P value Regression 
coefficient 
(95% CI)

P value

I 18 (2.4%) 0.05 (−0.11, 
0.21)

0.53 0.05 (−0.09, 
0.20)

0.47 −0.03 (−0.20, 
0.13)

0.70 0.01 (−0.17, 
0.18)

0.94

W 16 (2.1%) 0.03 (−0.14, 
0.20)

0.70 0.09 (−0.07, 
0.25)

0.26 −0.10 (−0.27, 
0.08)

0.29 0.05 (−0.13, 
0.23)

0.59

X 17 (2.2%) −0.12 (−0.28, 
0.05)

0.16 −0.07 (−0.22, 
0.08)

0.38 −0.07 (−0.24, 
0.10)

0.41 −0.12 (−0.30, 
0.06)

0.18

R and  R0a 5 (0.7%) – – – – – – – –

HV and HV0a 10 (1.3%) −0.04 (−0.25, 
0.17)

0.70 −0.09 (−0.29, 
0.10)

0.36 −0.28 (−0.49, 
−0.06)

0.012 −0.35 (−0.58, 
−0.13)

0.0023

H, H1, H2, H3 
and H4

337 (44.1%) 0.02 (−0.03, 
0.06)

0.54 0.04 (0.00, 0.09) 0.055 0.01 (−0.04, 
0.06)

0.81 0.05 (0.00, 0.10) 0.065

H 150 (19.6%) 0.03 (−0.03, 
0.09)

0.28 0.05 (−0.01, 
0.11)

0.082 0.01 (−0.05, 
0.08)

0.70 0.05 (−0.02, 
0.11)

0.14

H1 120 (15.7%) −0.02 (−0.09, 
0.04)

0.48 0.01 (−0.05, 
0.07)

0.70 −0.04 (−0.11, 
0.03)

0.30 0.00 (−0.07, 
0.07)

0.95

H2 25 (3.3%) 0.02 (−0.12, 
0.15)

0.82 0.09 (−0.04, 
0.22)

0.16 0.04 (−0.10, 
0.18)

0.61 0.06 (−0.08, 
0.21)

0.41

H3 32 (4.2%) −0.01 (−0.13, 
0.11)

0.92 0.00 (−0.11, 
0.11)

0.97 0.09 (−0.04, 
0.21)

0.17 0.05 (−0.08, 
0.18)

0.42

H4 10 (1.3%) 0.11 (−0.10, 
0.32)

0.31 −0.11 (−0.30, 
0.09)

0.28 −0.03 (−0.28, 
0.21)

0.78 0.00 (−0.23, 
0.23)

0.99

V 19 (2.5%) −0.05 (−0.20, 
0.11)

0.55 −0.12 (−0.27, 
0.02)

0.095 0.06 (−0.10, 
0.21)

0.49 −0.10 (−0.27, 
0.07)

0.24

J1 and J2a 88 (11.5%) −0.01 (−0.08, 
0.07)

0.84 0.01 (−0.06, 
0.08)

0.80 0.00 (−0.08, 
0.08)

0.95 −0.06 (−0.15, 
0.02)

0.12

J1 69 (9.0%) 0.01 (−0.07, 
0.10)

0.73 0.03 (−0.05, 
0.10)

0.51 0.01 (−0.08, 
0.10)

0.77 −0.05 (−0.14, 
0.04)

0.31

J2a 17 (2.2%) −0.11 (−0.28, 
0.05)

0.18 −0.07 (−0.22, 
0.08)

0.36 −0.05 (−0.22, 
0.13)

0.61 −0.14 (−0.31, 
0.04)

0.13

T, T1 and T2 85 (11.1%) −0.02 (−0.10, 
0.05)

0.57 −0.09 (−0.17, 
−0.02)

0.009 0.02 (−0.06, 
0.10)

0.61 −0.04 (−0.12, 
0.04)

0.37

Ta 2 (0.3%) – – – – – – – –

T1 19 (2.5%) 0.04 (−0.12, 
0.19)

0.62 −0.07 (−0.22, 
0.07)

0.32 0.08 (−0.08, 
0.24)

0.32 0.04 (−0.13, 
0.21)

0.64

T2 64 (8.4%) −0.05 (−0.13, 
0.04)

0.30 −0.1 (−0.18, 
−0.02)

0.011 0.00 (−0.09, 
0.09)

0.99 −0.07 (−0.16, 
0.02)

0.15

U and U5 104 (13.6%) 0.00 (−0.07, 
0.07)

0.90 0.01 (−0.06, 
0.07)

0.86 0.01 (−0.07, 
0.08)

0.85 0.03 (−0.04, 
0.11)

0.42

U 42 (5.5%) −0.05 (−0.16, 
0.06)

0.36 0.05 (−0.05, 
0.14)

0.35 0.01 (−0.10, 
0.12)

0.83 0.04 (−0.07, 
0.15)

0.48

U5 61 (8.0%) 0.03 (−0.06, 
0.12)

0.57 −0.03 (−0.11, 
0.06)

0.54 0.00 (−0.10, 
0.09)

0.92 0.02 (−0.08, 
0.11)

0.72

K 56 (7.3%) 0.02 (−0.08, 
0.11)

0.73 0.01 (−0.08, 
0.09)

0.90 0.01 (−0.08, 
0.11)

0.77 0.03 (−0.07, 
0.13)

0.61
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Another limitation is the lack of a replication series. 
Although relatively large numbers of PSP and CBD cases 
were included in this study, considering the rarity of 
these two diseases, independent validation of our find-
ings, as well as meta-analytic studies, will be important. 
Furthermore, power to detect associations was limited in 

the smaller CBD series and for rare haplogroups in both 
series.

Given the complex nature of mtDNA variation, lev-
els of heteroplasmy may also be a concern in brain tis-
sue. We used a PCR amplification-based MALDI-TOF 
MS technology which is considered sensitive enough to 
accurately determine alleles from pools of recombinants 

Table 4 Associations of individual mitochondrial DNA haplogroups with CB, NFT, TA, and NT tau pathology scores in CBD 
cases with measured tau pathology scores (N = 150) from linear regression models that were adjusted for age at death, 
sex, Braak, and Thal phase

Regression coefficients are interpreted as the increase in mean CB, NFT, TA, or NT tau pathology scores for patients in the given mitochondrial DNA haplogroup 
compared to patients not in the given haplogroup (non-haplogroup). P values ≤ 0.0045 are considered statistically significant after applying a Bonferroni correction 
for multiple testing
a Statistical tests were not performed for these haplogroups owing to their rare frequency (< 10 PSP cases in the given haplogroup, with the exception of haplogroup 
H4 which was examined despite the fact that it occurred in only 8 cases owing to the fact that it was of specific interest due to its significant association with risk of 
CBD). CB = coiled bodies; NFT = neurofibrillary tangles; TA = tufted astrocytes; NT = neuropil threads; CI = confidence interval

Mitochondrial 
DNA 
Haplogroup

No. (%) 
in haplogroup 
(N = 150)

Association with CB tau 
pathology score

Association with NFT tau 
pathology score

Association with TA tau 
pathology score

Association with NT tau 
pathology score

Regression 
coefficient 
(95% CI)

P Value Regression 
coefficient 
(95% CI)

P Value Regression 
coefficient 
(95% CI)

P Value Regression 
coefficient 
(95% CI)

P Value

Ia 1 (0.7%) – – – – – – – –

Wa 3 (2.0%) – – – – – – – –

Xa 4 (2.7%) – – – – – – – –

R and  R0a 2 (1.3%) – – – – – – – –

HV and  HV0aa 2 (1.3%) – – – – – – – –

H, H1, H2, H3 
and H4

71 (47.3%) 0.02 (−0.07, 
0.11)

0.68 −0.02 (−0.10, 
0.06)

0.65 0.00 (−0.04, 
0.05)

0.83 −0.04 (−0.13, 
0.05)

0.43

H 25 (16.7%) 0.03 (−0.09, 
0.15)

0.66 0.11 (0.00, 0.22) 0.046 0.01 (−0.05, 
0.07)

0.78 0.09 (−0.03, 
0.21)

0.16

H1 26 (17.3%) 0.05 (−0.07, 
0.17)

0.45 −0.09 (−0.20, 
0.03)

0.13 0.00 (−0.06, 
0.06)

0.99 −0.04 (−0.17, 
0.08)

0.48

H2a 4 (2.7%) – – – – – – – –

H3a 8 (5.3%) – – – – – – – –

H4 8 (5.3%) −0.08 (−0.28, 
0.11)

0.41 0.12 (−0.07, 
0.30)

0.22 0.04 (−0.06, 
0.13)

0.43 0.10 (−0.10, 
0.30)

0.33

Va 3 (2.0%) – – – – – – – –

J1 and J2a 14 (9.3%) 0.09 (−0.06, 
0.25)

0.23 −0.01 (−0.15, 
0.13)

0.90 0.02 (−0.06, 
0.09)

0.65 0.09 (−0.06, 
0.25)

0.25

J1 13 (8.7%) 0.07 (−0.09, 
0.23)

0.40 −0.01 (−0.16, 
0.14)

0.90 −0.01 (−0.09, 
0.06)

0.73 0.08 (−0.08, 
0.24)

0.34

J2aa 1 (0.7%) – – – – – – – –

T, T1 and T2 21 (14.0%) 0.08 (−0.05, 
0.21)

0.24 0.03 (−0.09, 
0.15)

0.59 0.02 (−0.04, 
0.09)

0.44 0.01 (−0.12, 
0.14)

0.90

Ta 1 (0.7%) – – – – – – – –

T1a 4 (2.7%) – – – – – – – –

T2 16 (10.7%) 0.10 (−0.05, 
0.24)

0.19 0.02 (−0.12, 
0.15)

0.80 0.02 (−0.11, 
0.16)

0.73 0.00 (−0.14, 
0.15)

0.97

U and U5 18 (12.0%) −0.11 (−0.24, 
0.03)

0.12 0.01 (−0.11, 
0.14)

0.82 −0.05 (−0.11, 
0.02)

0.16 −0.06 (−0.20, 
0.08)

0.40

Ua 7 (4.7%) – – – – – – – –

U5 11 (7.3%) 0.02 (−0.15, 
0.20)

0.78 0.01 (−0.15, 
0.17)

0.94 −0.07 (−0.15, 
0.01)

0.11 0.02 (−0.15, 
0.20)

0.78

K 11 (7.3%) −0.16 (−0.33, 
0.01)

0.073 −0.05 (−0.21, 
0.11)

0.56 −0.01 (−0.09, 
0.07)

0.82 −0.03 (−0.21, 
0.14)

0.71
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and is thus suitable for mtDNA-based population studies, 
limiting the impact of heteroplasmy and determining the 
individual mtDNA background [49]. Furthermore, het-
eroplasmy levels are assumed to be low in our cases and 
controls due to tissue types used and should not interfere 
with genotyping results in this study. In the future, per-
forming mtDNA sequencing may identify higher impact 
and rarer penetrant variants. African and Asian haplo-
group clades were also not investigated in this study and 
would need to be explored in future work. Finally, func-
tional studies need to be performed to better understand 
the mechanisms by which mtDNA haplogroup back-
ground is contributing to disease risk and tau pathology 
severity.

Conclusions
This is the first study to characterise the role of mtDNA 
background in susceptibility to PSP and CBD and in tau 
pathology severity in general. Our data suggests that 
mtDNA haplogroup background may influence CBD risk 
and may also modify tau aggregation formation in PSP. 
Though larger validation studies will be key (particularly 
for CBD due to the smaller sample size of this group), it 
will also be important for future studies to investigate 
how established nDNA risk factors, such as the MAPT 
H1 haplotype, interact with mtDNA genetic background 
with regard to susceptibility to disease and severity of tau 
pathology.
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