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Abstract
Background: Renal cell carcinoma (RCC) contributed to 403,262 new cases 
worldwide in 2018, which constitutes 2.2% of global cancer, nevertheless, suni-
tinib, one of the major targeted therapeutic agent for RCC, often developed inva-
lid due to resistance. Emerging evidences suggested sunitinib can impact tumor 
environment which has been proven to be a vital factor for tumor progression.
Methods: In the present study, we used ssGSEA to extract the immune infil-
trating abundance of clear cell RCC (ccRCC) and normal control samples from 
GSE65615, TCGA, and GTEx; key immune cells were determined by Student's 
t-test and univariable Cox analysis. Co-expression network combined with dif-
ferentially expressed analysis was then applied to derive key immune-related 
genes for ccRCC, followed by the identification of hub genes using differential 
expression analysis. Subsequently, explorations and validations of the biological 
function and the immune-related and sunitinib-related characteristics were con-
ducted in KEGG, TISIDB, Oncomine, ICGC, and GEO databases.
Results: We refined immature dendritic cells and central memory CD4 T cells 
which showed associations with sunitinib and ccRCC. Following, five hub genes 
(CRYBB1, RIMBP3C, CEACAM4, HAMP, and LYL1) were identified for their 
strong relationships with sunitinib and immune infiltration in ccRCC. Further 
validations in external data refined CRYBB1, CEACAM4, and HAMP which play 
a vital role in sunitinib resistance, immune infiltrations in ccRCC, and the devel-
opment and progression of ccRCC. In conclusion, our findings could shed light 
on the resistance of sunitinib in ccRCC and provide novel biomarkers or drug 
targets for ccRCC.
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1   |   INTRODUCTION

Cancer of the kidney led to 403,262 new cases worldwide 
in 2018, which constituted 2.2% of global cancer.1 Renal 
cell carcinoma (RCC) has various histological subtypes 
with a unique molecular landscape for each sort, of which 
clear cell renal cell carcinoma (ccRCC) is the most prev-
alent subtype and contributes to 75% of all RCC cases.2 
Sunitinib, a tyrosine kinase inhibitor (TKI), was the 
main targeted therapeutic agent for ccRCC in the last 
decade,2,3 nevertheless, most patients develop resistance 
in 6–15  months.4 Thereby, further understanding of the 
action of sunitinib on ccRCC is necessary for the improve-
ment of therapeutic for ccRCC.

Recently, tumor microenvironment (TME), including 
immune cells, inflammatory cells, and fibroblasts, plays 
a vital role in tumor growth and progression. Different 
sorts of carcinoma accompanied diverse TME in which 
communications can promote tumor development and 
metastasis.5,6 Meanwhile, increasing evidences sug-
gested that TKIs can remodel the vascular network or 
the immune component in TME.7 Sunitinib can inhibit 
the development of tumor disordered vessels and in-
duce vascular normalization. In addition, sunitinib was 
revealed to influence the infiltration of regulatory T 
cells, M2 macrophages, and CD4+ or CD8+ T cells.7–10 
Nevertheless, limited comprehensive analysis has been 
conducted to reveal the impact of sunitinib on TME in 
ccRCC, the present study aimed to explore specific-TME 
of ccRCC and identify biomarkers for the synergy with 
sunitinib.

In this study, we used single-sample Gene Set 
Enrichment Analysis (ssGSEA)11,12 to enumerate im-
mune infiltration levels of 28 immune cell sorts in ccRCC 
samples and normal control samples from GSE65615,13 
The Cancer Genome Atlas (TCGA), and Genotype-Tissue 
Expression (GTEx) databases. Student's t-test and uni-
variable Cox analysis were applied to derive key immune 
cells for ccRCC. Subsequently, Co-expression networks 
were developed in ccRCC samples, followed by the iden-
tification of immune-related genes most associated with 
sunitinib and ccRCC. Hub genes were further identified 
by differential expression analysis comparing sunitinib-
treated ccRCC with untreated ccRCC. We then explored 
the biological functions of hub genes and the associations 
with tumor stages. Finally, we validated the associations 
with sunitinib and immune in Kyoto Encyclopedia of 
Genes and Genomes (KEGG),14 GEO, and tumor–immune 
system interactions (TISIDB)15 databases, respectively. 
Our findings could shed light on the resistance of suni-
tinib in ccRCC and provide novel biomarkers or drug tar-
gets for ccRCC.

2   |   MATERIALS & METHODS

2.1  |  Data source and Data preprocessing

Gene expression data of 122 ccRCC samples, which were 
sunitinib untreated (n = 47) or treated (n = 75) before cy-
toreductive nephrectomy, were derived from GSE6561513 
in GEO database. The RNA-seq raw counts and FPKM 
values data, along with detailed clinical information, 
including 539 ccRCC and 72 normal control samples, 
were downloaded from TCGA database16; after filtering 
8 replicated samples and 8 samples without correspond-
ing clinical data, a total of 523 ccRCC and 72 normal 
control samples were applied to downstream analysis. 
Furthermore, the raw RNA-seq counts and TPM values 
of 85 normal control kidney samples were obtained from 
GTEx database,17 we also confirmed no duplicated sam-
ples in GTEx in subsequent analysis. GSE2960918 and 
GSE7373119 datasets and RECA-EU20 dataset were also 
downloaded from GEO database and ICGC20 database, 
respectively, for the validation of our findings. The ap-
proval from the ethics committee and informed consent 
were waived as the data in this study came from the GEO, 
TCGA, GTEx, and ICGC databases. We used the R pro-
gram (version: 4.0.5)21 for the analysis of most of our study.

2.2  |  Exploring the relationships 
between sunitinib and immune infiltration

MSigDB22 immunologic signature gene sets (C7) were 
searched to investigate the association between suni-
tinib and immune using Gene Set Enrichment Analysis 
(GSEA).23 Genes were ranked decreasingly according to 
the log2FoldChange, which compared sunitinib-treated 
and sunitinib-untreated ccRCC by limma,24 clusterPro-
filer25 was then utilized to implement GSEA algorithm, 
and adjusted p < 0.25, minimal gene sets 15, and maximal 
gene sets 500 were regarded as the cutoff which is recom-
mended by GSEA for exploratory analysis.26

2.3  |  Immune cell infiltrating abundance

The infiltrating levels of 28 immune cell sorts were enu-
merated using ssGSEA11,12 as many studies27–31 did, an 
enrichment score from ssGSEA analysis was used to 
represent the infiltration abundance of immune cell, the 
enrichment score was scaled to unity distribution, so 
the minimal of the score is zero and the maximal is one. 
The gene expression data were first rank normalized and 
then employed into ssGSEA analysis. The immune cell 
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infiltration levels of ccRCC and normal control samples 
were all estimated.

2.4  |  Significant immune cell sorts 
related to sunitinib in ccRCC

The different infiltration abundances were tested by stu-
dent's t-test, survival implications of each immune cell 
sort were analyzed by univariable Cox analysis with refer-
ence to overall survival (OS) and progression-free interval 
(PFI),32 OS represents the period from the date of diagnosis 
until the date of death from any cause; PFI stands for the 
period from the date of diagnosis until the date of the first 
occurrence of a new tumor event; a cutoff of p < 0.05 rep-
resented statistical significance. Only immune cell types, 
which infiltrated differently in both comparisons between 
sunitinib-treated ccRCC and untreated ccRCC and between 
ccRCC samples and normal control samples, meanwhile, 
they should significantly implicate in both OS and PFI of 
ccRCC, were then employed to downstream analysis.

2.5  |  Co-expression network analysis and 
immune-related genes

Co-expression network analysis was utilized to iden-
tify genes most related to immune infiltration using 
WGCNA.33,34 Gene significance (GS), module significance 
(MS), and module membership (MM) were defined by 
biweight midcorrelation coefficients. Genes in modules 
with maximal MS were regarded as immune-related genes 
for downstream analysis35,36 as many studies did.37–41 A 
threshold of 5 for softpower, 25 for minModuleSize, and 
0.20 for mergeCutHeight, was used to explore the gene co-
expression network among the top 15,000 genes with max-
imal median absolute deviation (MAD) in ccRCC samples 
treated with sunitinib. With regard to the construction of 
the network in ccRCC samples from TCGA, we first iden-
tified differentially expressed genes comparing ccRCC 
with normal control samples from TCGA and GTEx using 
DESeq2,42 genes with a threshold of |log2FoldChange| >1 
and adjusted p < 0.01 were considered as statistically sig-
nificant. Subsequently, genes with a zero MAD were fil-
tered, which yielded 8752 genes for the development of 
the co-expression network with a parameter of softpower 
7, minModuleSize 25, and mergeCutHeight 0.20.

2.6  |  Determination of hub genes

We first acquired the candidate immune-related genes 
by intersecting sunitinib-immune-related genes with 

ccRCC-immune-related genes from the respective co-
expression network. Limma was then used to identify 
differential expression genes between sunitinib-treated 
ccRCC and untreated ccRCC with a cutoff of adjusted 
p  <  0.05, which contributed to the identification of five 
hub genes.

2.7  |  Exploring the biological process of 
hub genes

The hallmark gene sets in MSigDB22 were first utilized to 
dissect the immune, proliferation, and signaling pathway 
hub genes implicated in using GSEA. A heatmap imple-
mented by ComplexHeatmap package43 was used to depict 
the results of GSEA. GSEA was also utilized to determine 
the biological process and functional pathways of hub 
genes by clusterProfiler25 R package. Adjusted p  <  0.05 
was regarded as the cutoff value. The expression levels of 
hub genes across varied tumor stages were explored. t-test 
and analysis of variance were applied to test the statistical 
difference.

2.8  |  Exploring the importance of hub 
genes to ccRCC

Oncomine44 was first analyzed to explore the differen-
tial expression of hub genes in varied tumor types with a 
threshold of p < 0.05. Log-rank analysis was further used 
to determine the association with OS, PFI, or disease-
specific survival (DSS) in TCGA, ICGC RECA-EU, and 
GSE29609 datasets based on groups separated by the me-
dian expression level of each hub gene.

2.9  |  Validation of sunitinib–immune-
related characteristics of hub genes

To validate the association with sunitinib, sunitinib-
related pathways (MAPK signaling pathway, VEGF sign-
aling pathway, and pathways in cancer)45 were searched 
in KEGG,14 and GSEA was used to analyze the enrich-
ment of hub genes in these pathways with p < 0.05 re-
garded as the statistical significance. Subsequently, 
immune subtypes information of ccRCC and genes cod-
ing immunomodulators and chemokines were collected 
from Thorsson's study46 and Charoentong's study27 re-
spectively. A total of six immune subtypes including C1 
(wound healing), C2 (IFN-gamma dominant), C3 (in-
flammatory), C4 (lymphocyte depleted), C5 (immuno-
logically quiet), and C6 (TGF-b dominant) were found. 
Kruskal–Wallis rank sum test was used to explore the 
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differential expression of hub genes across different im-
mune subtypes. Spearman correlation coefficient analy-
sis was utilized to determine the association between 
hub genes and genes coding immunomodulators and 
chemokines. Furthermore, the relationship of hub genes 
with the abundance of tumor-infiltrating lymphocytes 
across different tumor types in TCGA was investigated in 
TISIDB. We also employed GSE7373119 dataset to explore 
the above correlation for hub genes in ccRCC.

2.10  |  Statistical analysis

All statistical tests were based on a significant p < 0.05, 
Benjamini–Hochberg method was used to adjust the P-
value followed by a cutoff of adjusted p  <  0.05 when 
it is involved in multiple comparisons problem, except 
for exploratory analysis using GSEA to reveal the re-
lationships between sunitinib and immune where ad-
justed p  <  0.25 recommended by GSEA26 was used as 
the cutoff.

3   |   RESULTS

The workflow of this study is depicted in Figure 1.

3.1  |  Key immune infiltrating cells

GSEA was first applied to reveal the relationships between 
sunitinib and TME. A total of 4872 immune gene sets 
were examined, which led to a statistically significant en-
richment in 3718 gene sets, the most related 10 gene sets 
are depicted in an Upsetplot (Figure 2A). Following, the 
immune infiltration levels of 28 immune cell types were 
quantified by ssGSEA (Table S1 and Table S2), Student's 
t-test showed CD56bright natural killer cell, CD56dim 
natural killer cell, central memory CD4 T cell, effector 
memory CD4 T cell, gamma delta T cell, immature den-
dritic cell, memory B cell, natural killer T cell, Type 17 T 
helper cell, and Type 2 T helper cell were infiltrating dif-
ferently between sunitinib-treated ccRCC and untreated 
ccRCC (Figure  2B and Table  S3). Then, the infiltration 
abundance of these cells was tested comparing ccRCC 
samples and normal control samples, which showed 
only CD56bright natural killer cell was not statistically 
significant with a threshold of p < 0.05 (Figure 2C and 
Table S4), meanwhile, univariable Cox analysis indicated 
that immature dendritic cells (p-value: OS 7.63e−04, PFI 
1.71e−04) and central memory CD4 T cells (p-value: OS 
0.016, PFI 0.018) were associated with both OS and PFI 
(Figure 2C).

3.2  |  Immune-related genes in ccRCC

A co-expression network including 21 modules (Gene 
numbers in every module; black: 495, blue: 882, brown: 
874, cyan: 146, green: 631, green yellow: 224, gray: 5951, 
gray60: 107, lightcyan: 134, lightgreen: 96, lightyellow: 92, 
magenta: 251, midnightblue: 143, pink: 378, purple: 226, 
red: 625, royal blue: 72, salmon: 174, tan: 186, turquoise: 
2607, yellow: 706) was developed in ccRCC samples treated 
with sunitinib by WGCNA, the clustering dendrogram 
and topological overlap matrix (TOM) of the network are 
displayed in Figure S1A–B. Biweight midcorrelation coef-
ficients analysis revealed central memory CD4 T cell was 
most related to brown module and immature dendritic cell 
was mainly associated with pink module (Figure 3A). The 
relationships between MM and GS in both modules were 
then analyzed, which showed that GS in both immune 
cells was significantly associated with corresponding 
MM (Figure 3B). Hence, genes in brown module or pink 
module were defined as the significant immune-related 
genes in sunitinib-treated ccRCC. On the other hand, a 
total of 11,200 genes were found to express differentially 
between ccRCC and normal control samples (Figure 3C), 
followed by the identification of 12 modules (Gene num-
bers in every module; black: 218, blue: 789, brown: 472, 
green: 304, green yellow: 84, gray: 2543, magenta: 183, 
pink: 215, purple: 130, red: 237, turquoise: 3187, yellow: 
390) in the co-expression network among ccRCC samples 
from TCGA using WGCNA (Figure S1C,D). As shown in 
Figure  3D, central memory CD4 T cells and immature 
dendritic cells were most related to blue and yellow mod-
ules respectively, which both indicated a significant cor-
relation between GS and MM (Figure 3E).

3.3  |  Identification of hub genes

Immune-related genes from above both co-expression 
networks were first intersected, which generated 37 
immune-related genes (Figure 4A). These genes were then 
scrutinized for the five differentially expressed genes be-
tween sunitinib-treated ccRCC and untreated ccRCC with 
a cutoff of adjusted p < 0.05 (Figure 4B). These five genes 
(CRYBB1, RIMBP3C, CEACAM4, HAMP, and LYL1) 
were defined as hub genes for downstream analysis.

3.4  |  Biological function of hub genes

GSEA indicated CRYBB1, CEACAM4, HAMP, and LYL1 
were highly involved in immune-, proliferation- and 
signaling-related pathways (Figure  5). Gene Ontology 
analysis suggested all hub genes were mostly referred to 
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protein targeting-related pathways like establishment of 
protein localization to membrane, protein targeting to ER, 
and protein targeting process (Figure 6A). KEGG analy-
sis revealed all hub genes were highly related to the ribo-
some pathway (Figure 6A). The expression levels of hub 
gene across varied stages of ccRCC were compared, which 
showed CRYBB1 was significantly correlated with T stage 
(p-value: 0.033), N stage (p-value: 4.17e−03), and tumor 
grade (p-value: 4.60e−05), RIMBP3C with T stage (p-value: 
0.034), and LYL1 with tumor grade (p-value: 9.13e−04) 
(Figure  6B and Figure S2). In addition, CEACAM4 and 
HAMP were revealed to express differently across T stage 
(p-value; CEACAM4: 1.47e−06; HAMP: 8.02e−08), N 
stage (p-value; CEACAM4: 2.34e−06; HAMP: 6.41e−10), 
M stage (p-value; CEACAM4: 5.52e−04; HAMP: 
9.69e−05), tumor stage (p-value; CEACAM4: 3.06e−05; 
HAMP: 4.71e−07), and tumor grade (p-value; CEACAM4: 
3.92e−05; HAMP: 1.58e−06) (Figure 6B).

3.5  |  The importance of hub genes 
to ccRCC

Oncomine was searched to verify the significance of all 
hub genes in each tumor, which presented all hub genes 
expressed differently across varied tumor sorts when 
compared with corresponding normal control samples 
(Figure  7). Log-rank analysis further indicated CRYBB1 
(HR: 1.56 [95% CI: 1.15−2.12]; p-value: 3.67e−03), 
RIMBP3C (HR: 1.52 [95% CI: 1.12−2.07]; p-value: 
7.07e−03), CEACAM4 (HR: 1.54 [95% CI: 1.13−2.08]; 
p-value: 5.46e−03), and HAMP (HR: 2.18 [95% CI: 
1.58−3.00]; p-value: 9.57e−07) were hazard factors to 
ccRCC with reference to OS in TCGA dataset (Figure 8A) 
and CRYBB1 (HR: 1.38 [95% CI: 1.00−1.88]; p-value: 
0.046), CEACAM4 (HR: 1.49 [95% CI: 1.08−2.04]; p-value: 
0.013), and HAMP (HR: 1.69 [95% CI: 1.23−2.33]; p-value: 
1.17e−03) were also involved in PFI of ccRCC (Figure 8A). 

F I G U R E  1   The workflow of the identification of sunitinib-related immunotherapeutic biomarkers for renal cell carcinoma
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Furthermore, RECA-EU dataset showed RIMBP3C (HR: 
0.47 [95% CI: 0.22−1.00]; p-value: 0.045) and CEACAM4 
(HR: 2.37 [95% CI: 1.10−5.08]; p-value: 0.023) were signifi-
cantly related to OS of ccRCC (Figure 8B and Figure S3A). 
GSE29609 further gave the same result for CEACAM4 
(HR [95% CI]; OS: 3.58 [1.25−10.3], DSS: 3.30 [1.14−9.61]; 
p-value; OS: 0.011, DSS: 0.020) when referred to OS and 
DSS (RIMBP3C was not found in GSE29609) (Figure 8C 
and Figure S3B).

3.6  |  Investigation of sunitinib 
characteristics of hub genes

Sunitinib-related pathways (hsa04370: VEGF signal-
ing pathway; hsa04010: MAPK signaling pathway; and 
hsa05200: pathways in cancer) were analyzed by GSEA, 
which indicated CRYBB1 (p-value; Pathways in cancer: 
1.57e−04; MAPK signaling pathway: 2.65e−03; VEGF 
signaling pathway: 0.018) and LYL1 (p-value; Pathways 

in cancer: 5.22e−07; MAPK signaling pathway: 7.89e−07; 
VEGF signaling pathway: 1.80e−03) were implicated in 
all sunitinib-related pathways. In addition, CEACAM4 
was enriched in VEGF signaling pathway (p-value: 0.027) 
and MAPK signaling pathway (p-value: 0.040) and HAMP 
was significantly associated with pathways in cancer (p-
value: 3.24e−04) and MAPK signaling pathway (p-value: 
6.98e−03) (Figure 9).

3.7  |  Validation of immune association 
for both hub genes

We first confirmed the differential expression of all hub 
genes across different immune subtypes (Figure 10A) and 
the correlation with immunoinhibitor, immunomodu-
lators, chemokines, receptor, and MHC (Figure  10B) in 
TCGA. TISIDB was further employed to authenticate the 
interaction between hub genes and immune infiltrasion. 
Spearman correlations analysis indicated that CRYBB1, 

F I G U R E  2   Identification of key immune cells for ccRCC. (A) The upset plot for the GSEA results in MSigDB immunologic gene set 
where the y-axis represented the log2FoldChange comparing sunitinib-treated ccRCC with untreated ccRCC. M4503 genes down regulated 
in comparison of naive CD4 [GeneID = 920] T cells versus unstimulated dendritic cells (DC). M4461 genes downregulated in comparison 
of monocytes cultured for 0 days versus those cultured for 7 days. M4463 genes downregulated in comparison of monocytes cultured for 
1 day versus those cultured for 7 days. M4529 genes downregulated in comparison of naive CD4 [GeneID = 920] T cells versus stimulated 
CD4 [GeneID = 920] Th2 cells at 48 h. M4465 genes downregulated in comparison of neutrophils versus dendritic cells. M4476 genes 
downregulated in comparison of naive CD4 [GeneID = 920] CD8 T cells versus unstimulated dendritic cells. M5446 genes up regulated 
in comparison of mast cells versus central memory CD4 [GeneID = 920] T cells. M5508 genes upregulated in comparison of macrophages 
versus NK cells. M6904 genes upregulated in macrophages with IL10 [GeneID = 3586] knockout treated by LPS: 10 min versus 30 min. 
M7611 genes upregulated in memory CD8 T cells: 2' versus 3'. (B) The differential infiltration abundances comparing sunitinib-treated 
ccRCC with untreated ccRCC were tested by student's t-test, label (*) means p < 0.05, label (**) means p < 0.01, and label (***) means 
p < 0.001. (C) Left panel showed the boxplot of the immune infiltration levels of differential infiltration immune cell between ccRCC 
and normal control samples, student's t-test was also used to test the differential infiltration between ccRCC samples and normal control 
samples, middle and right panels depicted the forest plot for the univariable Cox analysis for OS and PFI, respectively, label (*) means 
p < 0.05, label (**) means p < 0.01, and label (***) means p < 0.001
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CEACAM4, HAMP, and LYL1 were positively related to 
different kinds of tumor-infiltrating lymphocytes across 
many tumor types while RIMBP3C showed consistently 
statistical insignificance (Figure S4). Additionally, we also 
employed GSE73731 to explore the relationships between 
hub genes and tumor-infiltrating lymphocytes which 
gave similar results for CRYBB1, CEACAM4, HAMP, and 
LYL1 (RIMBP3C was not found in GSE73731). The abun-
dance of tumor-infiltrating lymphocytes was estimated 
by ssGSEA (Table  S5). Spearman correlations analysis 
showed that CRYBB1, CEACAM4, HAMP, and LYL1 
were highly positively associated with tumor-infiltrating 
lymphocytes in ccRCC (Figure 10C).

4   |   DISCUSSION

RCC constitutes 87% of renal carcinoma which contrib-
uted to 73,820 new tumor cases and 14,770 death in the 
USA in 2019.47 Increasing evidences suggested that TME 
played a vital important role in tumor progression. For 
another, sunitinib, one of the main tyrosine kinase inhibi-
tors for ccRCC, which has made a huge success in ccRCC 
treatment, was revealed to act with TME.5–7 Over here, 
we identified five sunitinib-specific hub genes related to 
TME in ccRCC by ssGSEA, differential expression, and 
co-expression network analysis using GSE65615, GTEx, 
and TCGA data.

F I G U R E  3   Identification of important immune-related genes using co-expression network analysis. (A) The heatmap of the 
relationships between modules and immune cell infiltrating abundance was investigated in sunitinib-treated ccRCC, where the color 
representing the biweight midcorrelation coefficients. Gene numbers in every module (black: 495, blue: 882, brown: 874, cyan: 146, green: 
631, green yellow: 224, gray: 5951, gray60: 107, lightcyan: 134, lightgreen: 96, lightyellow: 92, magenta: 251, midnightblue: 143, pink: 378, 
purple: 226, red: 625, royal blue: 72, salmon: 174, tan: 186, turquoise: 2607, yellow: 706). (B) Gene significance versus module membership. 
The x-axis stands for the biweight midcorrelation coefficients between genes expression levels and the corresponding module eigengene, the 
y-axis represents the biweight midcorrelation coefficients between genes expression levels with corresponding immune cell abundance. (C) 
The volcano of differential expression genes between ccRCC and normal control samples with further identified hub genes labeled in yellow 
circle. (D) The heatmap of the relationships between modules and immune cell infiltrating abundance was investigated in ccRCC, where 
the color representing the biweight midcorrelation coefficients. Gene numbers in every module (black: 218, blue: 789, brown: 472, green: 
304, green yellow: 84, gray: 2543, magenta: 183, pink: 215, purple: 130, red: 237, turquoise: 3187, yellow: 390). (E) Gene significance versus 
module membership. The x-axis stands for the biweight midcorrelation coefficients between genes expression levels and the corresponding 
module eigengene, the y-axis represents the biweight midcorrelation coefficients between genes expression levels with corresponding 
immune cell abundance
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Previous studies have shown immune cell as a funda-
mental ingredient of the TME, and varied immune cells 
in TME played a vital role in cancer progression and clin-
ical outcomes.48 In this study, we refined two types of im-
mune cells (immature dendritic cells and central memory 
CD4 T cells) which were important to both sunitinib and 
ccRCC. For the both immune cell types in TME, previous 
studies showed carcinoma can dislocate the metabolism 
of dendritic cells and influence their function by nutri-
ent competition and hypoxia, persistent activation of un-
folded protein response and lipid uptake.49 CD4 +T cells 
characterized by class II-restricted and tumor-specific 
has been validated to innately infiltrate in TME and exert 
anticancer duty with the assistance of CD8+ T cells or, 
with the secretion of type 1 cytokines, or with the direct 
killing of tumor cells CD4+ T cells.50 All these studies 
agree with our findings that immature dendritic cells and 
central memory CD4 T cells were of vital importance to 
ccRCC.

Next, immune-related genes were derived by co-
expression network analysis and differential expression 
analysis, followed by the identification of five hub genes 

(CRYBB1, RIMBP3C, CEACAM4, HAMP, and LYL1) re-
lated to both sunitinib resistance and immune infiltra-
tion in ccRCC. Functional analysis showed that CRYBB1, 
CEACAM4, HAMP, and LYL1 were implicated in immune- 
and proliferation-related pathways (Figure 5). Phenotype 
association analysis suggested all of hub genes involved in 
tumor development, and it seems CRYBB1, CEACAM4, 
and HAMP correlated with ccRCC progression more than 
another two (RIMBP3C and LYL1) (Figure 6B). Survival 
analysis presented that CRYBB1, RIMBP3C, CEACAM4, 
and HAMP were highly implicated in the prognosis 
of ccRCC (Figure  8A). Nevertheless, RECA-EU and 
GSE29609 datasets only gave significance to RIMBP3C and 
CEACAM4, which may be due to small samples in both 
datasets (Figure  8B,C). GSEA further validated the cor-
relation with sunitinib for CRYBB1, CEACAM4, HAMP, 
and LYL1 (Figure 9). Tumor microenvironment analysis 
in TISIDB (Figure S4) and GSE73731 (Figure  10C) con-
firmed that CRYBB1, CEACAM4, HAMP, and LYL1 were 
highly related to tumor-infiltrating lymphocytes. Based 
on the above perspectives, we inferred that CRYBB1, 
CEACAM4, and HAMP played a vital role in the tumor 

F I G U R E  4   Determination of hub genes related to both sunitinib and immune. (A) Venn diagram for Sunitinib-immune-related genes 
and ccRCC-immune-related genes in the co-expression network of sunitinib-treated ccRCC from GSE65615 and ccRCC from TCGA, 
respectively. (B) A beeplot showed differential expression genes between sunitinib-treated ccRCC with untreated ccRCC, label (*) means 
p < 0.05, label (**) means p < 0.01, and label (***) means p < 0.001

F I G U R E  5   GSEA was applied to explore the associations between hub genes and hallmark gene sets. Normalized enrichment score 
(NES) is depicted in a heatmap. Gray means statistical insignificance

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29609
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73731
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65615
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progression of ccRCC, the development of sunitinib resis-
tance, and tumor-infiltrating lymphocytes.

With regard to these five hub genes, there are limited 
studies associated with CRYBB1 or RIMBP3C. The impli-
cation in sunitinib resistance, tumor-infiltrating, and the 

progression and development in ccRCC was first uncov-
ered for CRYBB1 and the prognostic implication in ccRCC 
was also first demonstrated for RIMBP3C in this study. 
CEACAM4 is a member of carcinoembryonic antigen-
related cell adhesion molecule (CEACAM) family, which 

F I G U R E  6   Exploration of the function of hub genes. (A) The top three significant GO analysis results in biological process (BP) and top 
three significant KEGG analysis results using GSEA are depicted. (B) The correlation between hub genes and tumor stages. The categorical 
variable with two levels was tested by t-test, and the categorical variable with more than two levels was tested by analysis of variance
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is expressed highly in tumors and secreted in serum, and 
has been widely used as human tumor markers. The 
CEACAM family is also reported to refer to tumor growth 
and aggression.51,52 Additionally, CEACAM4 which is 
expressed in primary human granulocytes was reported 
to be involved in systemic inflammation.53–55 Moreover, 
CEACAM4 has been validated to be associated with esoph-
ageal squamous cell carcinoma56 and medullary thyroid 
carcinoma.51 All of these indicated CEACAM4 was highly 
related to both immune and tumor. But unfortunately, 
there were not any laboratory experiments evidence con-
ducted in RCC. HAMP is famous for the maintenance of 
iron homeostasis57,58 and the regulation of cell growth 
and cycle.59 Studies have showed iron metabolism was 
correlated with inflammation60 and malignant tumor, 
such as multiple myeloma,61 hepatocellular carcinoma,62 
and renal carcinoma.63 Moreover, conventional dendritic 
cells can secrete hepcidin, the product of HAMP, which 
is noticeable in the inflamed intestine of humans. HAMP 
has been uncovered to be associated with the prognosis of 
urothelial carcinoma of the upper urinary tract and RCC64 
and to contribute to the early stage of carcinogenesis.59 
HAMP has a strong correlation with immune and carci-
noma. Studies concerned about LYL1 mainly focused on 
lymphoblastic leukemia which indicated LYL1 acted as a 
oncogene in acute lymphoblastic leukemia and induced 
the development and progression of acute lymphoblastic 

F I G U R E  7   Exploration of expression levels of hub genes across 
varied types of carcinoma. Red represents over-expression, and 
blue stands for down-expression, the deeper of the color stands for 
the topper rank of hub genes

F I G U R E  8   Exploration of the prognostic implications of hub genes. Kaplan–Meier analysis was applied based on the median expression 
levels of hub genes in (A) TCGA dataset (B) ICGC RECA-EU dataset, and (C) GSE29609 dataset

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29609
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leukemia65–69 and LYL1 has been demonstrated to regulate 
the early lymphoid differentiation of immature hemato-
poietic cells,70 which suggested it is possible for the asso-
ciation between immune infiltration and LYL1 in ccRCC.

To the best of our knowledge, our study first explored 
the potential biomarkers related to immune infiltration 
and sunitinib resistance for ccRCC based on GEO, GTEx, 
and TCGA cohorts comprehensively, and further valida-
tions were also conducted in KEGG, TISIDB, Oncomine, 
ICGC, and GEO databases. Nevertheless, there remain 
some limitations in our study. First, other experimental 

validations for our findings are in demand and detailed 
molecular mechanism for the sunitinib-related and im-
mune infiltrating characteristics in ccRCC has not been 
investigated; second, other TKIs like axitinib and lenvati-
nib were not investigated in this study. Therefore, further 
efforts on the exact molecular mechanism of CRYBB1, 
RIMBP3C, CEACAM4, HAMP, and LYL1 both in vitro 
and in vivo are required and further exploration of other 
TKIs is necessary.

In conclusion, we identified five hub genes (CRYBB1, 
RIMBP3C, CEACAM4, HAMP, and LYL1) referred to 

F I G U R E  9   GSEA was used to validate the associations with sunitinib of hub genes. Sunitinib-related pathways: hsa04370: VEGF 
signaling pathway; hsa04010: MAPK signaling pathway; and hsa05200: pathways in cancer

F I G U R E  1 0   Validation of the associations with immune infiltration. (A) Kruskal–Wallis test was used to analyze the differential 
expression levels across different immune subtypes. C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte 
depleted); C5 (immunologically quiet); and C6 (TGF-b dominant). (B & C) Spearman correlation analysis was utilized to explore the 
associations between hub genes and (B) immunoinhibitory, immunostimulatory, chemokine, receptor, and MHC or (C) tumor-infiltrating 
immune cells
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both sunitinib and immune infiltration in ccRCC based 
on GSE65615, GTEx, and TCGA datasets and further 
validations refined CRYBB1, CEACAM4, and HAMP 
which presented a crucial role in the development and 
progression of ccRCC and implicated in sunitinib re-
sistance and immune infiltrations in ccRCC, which 
could lead to a better insight into the tumorigenesis 
and development of ccRCC and the ccRCC-special 
TME. Furthermore, CRYBB1, CEACAM4, and HAMP 
could serve as prognostic biomarkers or potential drug 
targets for ccRCC, especially for the combination with 
sunitinib.
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