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ABSTRACT: Genome-wide association studies (GWAS) have led to the discovery of over 200 single nucleotide polymorphisms
(SNPs) associated with type 2 diabetes mellitus (T2DM). Additionally, East Asians develop T2DM at a higher rate, younger
age, and lower body mass index than their European ancestry counterparts. The reason behind this occurrence remains
elusive. With comprehensive searches through the National Human Genome Research Institute (NHGRI) GWAS catalog
literature, we compiled a database of 2,800 ancestry-specific SNPs associated with T2DM and 70 other related traits. Manual
data extraction was necessary because the GWAS catalog reports statistics such as odds ratio and P-value, but does not
consistently include ancestry information. Currently, many statistics are derived by combining initial and replication samples
from study populations of mixed ancestry. Analysis of all-inclusive data can be misleading, as not all SNPs are transferable
across diverse populations. We used ancestry data to construct ancestry-specific human phenotype networks (HPN) centered
on T2DM. Quantitative and visual analysis of network models reveal the genetic disparities between ancestry groups. Of the
27 phenotypes in the East Asian HPN, six phenotypes were unique to the network, revealing the underlying ancestry-specific
nature of some SNPs associated with T2DM. We studied the relationship between T2DM and five phenotypes unique to
the East Asian HPN to generate new interaction hypotheses in a clinical context. The genetic differences found in our
ancestry-specific HPNs suggest different pathways are involved in the pathogenesis of T2DM among different populations.
Our study underlines the importance of ancestry in the development of T2DM and its implications in pharmocogenetics and
personalized medicine.
Genet Epidemiol 40:293–303, 2016. Published 2016 Wiley Periodicals, Inc.∗
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Introduction

Type 2 diabetes mellitus (T2DM) is a complex disease char-
acterized by hyperglycemia, impaired insulin secretion from
pancreatic beta cells, and insulin resistance of peripheral tar-
get tissues [Ashcroft & Rorsman, 2012; Hara et al., 2014;
Samuel & Shulman, 2012]. It leads to a reduced quality of
life and a long list of comorbidities, including heart disease,
stroke, renal disease, blindness, and amputation [Freeman &
Cox, 2006]. In 2013, the International Diabetes Federation
reported that 382 million people worldwide have T2DM, rep-
resenting 8.3% of the total adult population [Sun et al., 2014].
The alarming prevalence of T2DM is already a major global
challenge for both population health and the economic sta-
bility of healthcare systems, but it is projected to get even
worse. T2DM incidence is expected to increase by 69% in
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developing countries and 20% in developed countries by
2030 [Shaw et al., 2010; Zhao et al., 2012].

The rapid rise of T2DM in East Asian countries in par-
ticular has been unprecedented. In China, for example, the
prevalence of T2DM has surged from 1% of adults in 1980
to 11.6% in 2013 [Xu & Wang, 2013]. This dramatic rise
in T2DM incidence has been mirrored in India, Japan, and
many other East Asian countries over the last 20 years [Ma &
Chan, 2013]. Mysteriously, the enormous increase in T2DM
incidence has not been accompanied by a similar increase
in body mass index (BMI) for East Asians. Although T2DM
in Caucasian populations is strongly associated with obesity,
East Asian populations show a weaker association between
T2DM and BMI [Chan et al., 2009]. Previous studies have
shown that people of East Asian ancestry have increased risk
of T2DM and other cardiometabolic risk factors starting at a
BMI of 23 kg/m2, well within the normal healthy range spec-
ified by the World Health Organization [Chan et al., 2009].
East Asian diabetic patients are also characterized by early
beta cell dysfunction, increased insulin resistance, lower waist
circumference, and increased adiposity [Ma & Chan, 2013].
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These unexplained observations suggest there may be differ-
ent genetic architectures behind the pathogenesis of T2DM
across ancestries. This hypothesis has been the motivation for
an increased effort over the last 5 years to study interethnic
differences in genetic variants associated with T2DM.

It is already known that the risk of developing T2DM is
determined by a strong genetic component, as well as envi-
ronmental factors. A study on Finnish twins in 1992 revealed
that the concordance rate of T2DM in monozygotic twins is
around 70%, while the concordance rate in dizygotic twins is
only 20–30% [Kaprio et al., 1992]. Additionally, significant
disparities in T2DM prevalence and risk allele frequencies
[Chen et al., 2012] across different ancestries suggest ge-
netic involvement in determining disease risk [Ahlqvist et al.,
2011].

Over the last decade, linkage analysis, candidate gene ap-
proach, large-scale association studies, and genome-wide as-
sociation studies (GWAS) have been performed to identify
loci that contribute to T2DM susceptibility. To date, over
65 susceptibility loci have been identified for T2DM, almost
40% of which were first identified in East Asian population
studies [Hara et al., 2014; Sun et al., 2014]. Many of the ge-
netic variants were found to be transferrable across ancestries,
but many others were unable to replicate in other ancestry
groups [Sim et al., 2011]. The significant number of ancestry-
specific susceptibility loci and the extreme directional differ-
entiation of risk allele frequencies across human populations
suggested that the manifestation of T2DM may have different
intermediate mechanisms in different ancestry populations
[Chen et al., 2012].

Despite the progress in identifying susceptibility loci, the
underlying pathophysiology and causal variants of T2DM
remain largely unknown [Sun et al., 2014] and a molec-
ular explanation for the disparities in T2DM incidence
and phenotypic differences in patients of different ances-
tries has yet to be discovered. This is in large part be-
cause many of the characteristics of complex disease—
epistasis, heterogeneity, polygenicity, and pleiotropy—have
obscured the true relationship between genotype and phe-
notype [Zhou et al., 2014]. Complex diseases such as
T2DM are not the consequence of a single gene muta-
tion, but reflect the nonlinear additive and epistatic effects
of many interdependent genetic variants of modest effect
[Moore, 2003].

To study the complex interaction between phenotype and
genotype, we propose the use of networks, an intuitive and
powerful approach built on mathematical and statistical
foundations. Network models are robust tools to study the
epistatic and pleiotropic effects of a number of common
complex diseases [Darabos et al., 2014a; Hu et al., 2014].
These networks allow us to systematically explore and visual-
ize the shared biology of diseases and their interactions at the
gene and biological pathway level. This approach has proven
successful at establishing de novo relationships between phe-
notypes previously thought to be unrelated [Darabos et al.,
2013, 2014b,c; Goh et al., 2007]. Identifying common ge-
netic backgrounds in seemingly unrelated diseases helps with

hypothesis generation about clinically relevant biological
pathways and particularly useful drug targets.

In this study, we curated data from over 1,800 GWAS,
extracting ancestry information along with genetic vari-
ants strongly associated with T2DM. This allows us to con-
struct ancestry-specific human phenotype networks (HPN)
centered on T2DM. We analyze these networks to bet-
ter characterize the genetic variants, genes, and pathways
involved in T2DM for both European and East Asian
populations, looking for elements that transfer across an-
cestries as well as elements specific to ancestry groups. By
doing this, we aim to gain a better understanding of genetic
contributions to T2DM development and identify possible
clinical implications of the networks.

Methods

In this section, we present the methods developed to ob-
tain T2DM-centered HPN specific to each ancestry group
considered.

Data Collection and Curation

GWAS identify single nucleotide polymorphisms (SNPs)
associated with phenotypical traits (physical or behav-
ioral). We accessed the catalog of published GWAS liter-
ature from the National Human Genome Research Insti-
tute (NHGRI) and considered hundreds of T2DM-associated
studies (http://www.genome.gov/gwastudies/, March 2014).
The GWAS catalog reports over 1,800 studies and 900+ phe-
notypes associated with 7,000+ genes and 12,000+ SNPs.
For each study, it lists the key information retrieved from
PubMed, including associations between SNPs, gene(s), and
traits (including genetic disorders and physical and behav-
ioral traits). We extracted ancestry-specific data from each
relevant study by surveying the full text, figures, tables, and
supplementary material, recording all SNPs with a P-value
< 10–4. (Note: Because of this this study, the NHGRI GWAS
catalog has been moved to the European Molecular Biology
Laboratory-European Bioinformatics Institute [EMBL-EBI]
at http://www.ebi.ac.uk/gwas, which features a new search
interface and updated content.)

For each associated SNP, we recorded the risk allele fre-
quency (RAF), odds ratio (OR), P-value, initial study size,
and ancestry of the study subjects. We manually curated a
comprehensive database of ancestry-specific data for 3,815
SNPs associated with T2DM and more than 70 other pheno-
typic traits. Ethnicities, such as Han Chinese, Korean, Iceland,
Scandinavian, etc., were collapsed into three broad ancestry
groups: European, East Asian, and African. Specific ethnic
groups that did not fit into any of these three categories—such
as South Asians, Pima Native Americans, and Micronesians—
were excluded from the analysis. Studies that were con-
ducted in mixed ancestry populations or unspecified pop-
ulations were also excluded from the study. Because of the
strong bias of GWAS performed in European and East Asian
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populations, there is significantly more data for these popu-
lations compared to African populations.

We recorded the P-value and OR from the replication stages
whenever possible. When there was no available replication
stage data, we recorded the P-value and OR from the initial
GWAS discovery stage. When multiple GWAS replicated the
same SNP in the same population, the data from the largest
GWAS study was recorded and used to construct the network.
Data from GWAS that did not specify the ancestry of their
study subjects or used mixed ethnicities for their study were
excluded from network construction.

Human Phenotype Network

HPNs [Darabos et al., 2013, 2014c] are general mathemat-
ical graph models in which the nodes represent human ge-
netic disorders, physical traits, or behavioral traits. The edges
represent shared attributes, such as shared genetic variants,
genes, pathways, or protein-protein interactions, to name a
few. HPNs rely on GWAS data for genetic information on
diseases, behavioral traits, and physical attributes. The un-
derlying connections of the HPN contribute to the under-
standing of the basis of disorders, which in turn leads to a
better understanding of human disease.

In their seminal work, Goh et al. [2007] explored the hu-
man disease network, limiting its analysis to the genes shared
by different diseases. In 2009, Suthram et al. [2010] ana-
lyzed diseases by their related messenger RNA in combi-
nation with the human protein interaction network. They
found significant genetic similarities between certain dis-
eases, suggesting shared drug treatments and targets. In 2014,
Zhou et al. [2014] presented yet another way of finding over-
lap in disease commonalities by linking disorders that share
symptoms.

In the present work, we build on the phenotype-to-
SNP HPN presented in our previous study [Darabos
et al., 2014a] and construct ancestry-specific phenotype-to-
pathway HPNs. The most recent version of the GWAS cat-
alog (last accessed June 5, 2014) was used as the primary
phenotype-genotype association dataset. To maximize cov-
erage, we included unique genotype-phenotype associations
found in the database of genotypes and phenotypes (db-
GaP). To map SNPs to genes, we used data from the GWAS
catalog, which includes an automated pipeline from the Na-
tional Center for Biotechnology Information (NCBI) that
provides each SNP’s mapped genes. To map genes to path-
ways, we used the Kyoto Encyclopedia of Genes and Genomes
(KEGG), “a collection of manually curated databases deal-
ing with genomes, biological pathways, diseases, drugs, and
chemical substances” [Kanehisa & Goto, 2000] and Reac-
tome, a “free, open-source, curated and peer reviewed path-
way database” (http://www.reactome.org/). Even though the
gene-to-pathway mappings are not ancestry-specific, the
pathways found using ancestry-specific genes are relevant
to that particular ancestry group. Because GWAS and dbGaP
phenotype labels are not standardized, we used the Interna-
tional Classification of Diseases ninth revision (ICD-9) codes
to manually identify redundancies in the phenotype data and

merge them into single nodes. For example, reported traits
such as “diabetic retinopathy in type 2 diabetes,” and “neu-
ropathic pain in type 2 diabetes” were all grouped under the
broader phenotype category of “type 2 diabetes mellitus.”

The pathway-based HPNs are constructed with the follow-
ing extraction and annotation method, illustrated in supple-
mentary Figure S1:

1. extract all phenotypes from the NHGRI GWAS catalog
and link them to their mapped SNPs and genes using the
GWAS catalog and dbGaP. Phenotypes with no mapped
SNPs or genes are omitted,

2. manually merge redundant phenotypes with guidance
of ICD-9 codes,

3. extract all genes in the database and link them to their
associated pathways using KEGG and Reactome, and

4. connect phenotypes with overlapping pathways with an
undirected edge.

From the NHGRI GWAS catalog and dbGaP, we extracted a
total of 1,252 phenotypic traits, annotated with 37,681 SNPs
in 16,411 loci. By merging redundant phenotype labels, we re-
duce the number of phenotypic traits to 986 (supplementary
Table S1). With the method presented above, we constructed
the “raw” unfiltered bipartite network from these traits and
1,424 associated pathways. Bipartite means that the network
is built from two distinct sets of vertices: phenotypes and
pathways (Figs. 1 and 2). The bipartite network is projected
in the space of phenotype vertices to obtain the HPN. Sup-
plementary Figure S2 depicts an example of the mechanism
used to identify pathway overlap between phenotypes. In
the resulting HPN, the nodes represent phenotypes and the
connecting edges represent shared biological pathways based
on the SNPs associated with each phenotype. We associate a
strength, or weight, to each edge by computing the Jaccard
similarity coefficient. The Jaccard index is defined as “the
size of the intersection divided by the size of the union of the
sample sets” [Anderberg, 2014].

J (A, B) =
|A ∩ B |
|A ∪ B | , 0 ≤ J (A, B) ≤ 1,

where A and B are the sets of biological pathways associated
with the traits at the endpoints of the considered edge. Iso-
lated phenotypes are removed, as our focus remains on the
connection between phenotypes. By building these associ-
ations, we are able to link phenotypes by shared biological
pathways based on genetics. The result of the projection is
depicted in Figure 3.

The HPN encompasses all phenotypes listed in the GWAS
catalog and dbGaP, provided that they are connected to at
least one other trait. The unfiltered HPN contains 985 phe-
notypic traits and over 26,000 edges, with an average con-
nectivity of 500+. It is clearly a very dense network, even
after filtering, and suffers from the “hairball” effect. Thus,
we use a simple global edge-weight minimum threshold ap-
proach to filter out the weakest links within the HPN. This
method is self-explanatory: all edges with a Jaccard similarity
coefficient below a predefined threshold are removed. Be-
yond the scope of this work, it is worth mentioning smart,
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Figure 1. A schematic representation of a bipartite network (middle) and its projections in each vertex space. In our example, the circles are
phenotypes and the rectangles are pathways, or vice versa.

Figure 2. An example of a subset of the phenotype-SNP bipartite network, filtered to increase readability (edge weight cutoff = 0.01). Phenotypes
are denoted with blue and pathways are denoted with red. Vertex sizes are proportional to the number of associated biological pathways.

Figure 3. The projected HPN filtered (edge weight cutoff = 0.01). Vertices are colored by “‘modules”’ [Darabos et al., 2014c] to increase readability
and are proportional to the number of associated biological pathways.

topology-based filtering methods such as Longbaugh’s [2012]
combing method or Serrano et al.’s [2009] multiscale back-
bone. Biological networks are generally expected to have het-
erogeneous connectivity with a “heavy-tailed” degree distri-
bution, placing them in the scale-free family. This means that
the degree distribution follows a power law, or exponential
decay. Within the network, this translates into the presence

of “hubs”—a minority of highly connected nodes. When the
degree distribution of a scale- free network is plotted on a
logarithmic scale, the resulting curve is approximately lin-
ear across the top [Newman, 2010]. According to the degree
distribution presented in Figures 4 and 5, on a linear and
logarithmic scale, respectively, the filtered HPN presented in
this work is no exception.
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Figure 4. The degree distribution postfiltering on a linear scale.

Figure 5. The degree distribution postfiltering on a logarithmic scale.

T2DM-Centric HPN

Although previous studies on HPNs, diseasomes, and
interactomes were thorough, none included the ancestry-
specific aspects of genetic diseases. It is clear, however, that
genetic disorder susceptibility is often closely related to an-
cestry [Marigorta & Navarro, 2013], for instance in the case of
Parkinson’s disease [Heckman et al., 2013] or Crohn’s disease
[Nakagome et al., 2010]. In the present work, we focus on
T2DM, comparing the subnetworks of different populations.

The data collection and curation stage described earlier
enables us to determine SNPs associated with T2DM for each
major ancestry group. We use this information to build in-
dividual T2DM-centered HPN subnetworks, using the same
method described in the previous section. For each ancestry
population, we retain only the phenotypes that share at least
one SNP associated with T2DM for that population. When
constructing the subnetwork, we also preserve the immediate
neighbors of each trait in order to build simple communi-
ties of phenotypes that are related through shared biological
pathways and that have been associated with the selected
SNPs.

Table 1. The number of SNPs and loci associated with T2D in
each specific ancestry

EU EA AF

SNPs 142 (106) 147 (99) 14 (10)
Loci 95 115 14

In parenthesis, we report the number of SNPs unique to that ancestry (i.e., SNPs that
cannot be found in other ancestry populations). The detailed breakdown of the
unique SNPs for each ancestry is listed in Table S3.

We first built a global T2DM-centered HPN that was not
ancestry-specific and encompassed all available GWAS data.
The global T2DM-HPN generated from combined ancestry
data may result in misleading conclusions about the patho-
genesis of T2DM, especially if the intermediary steps vary for
different populations. Thus, we used our ancestry-specific
data to generate T2DM-centered HPNs specific to European,
East Asian, and African populations. The four networks are
depicted in Figure 6A–D.

Results

In this section, we first present the results of the liter-
ature survey to identify genetic variations associated with
T2DM in different populations. We then analyze the resulting
population-specific T2DM-specific HPNs. Finally, we discuss
the clinical and biomedical implications of our findings.

Variations Associated With T2DM

Using the results of our methodical survey of GWAS litera-
ture detailed in the Methods section, we categorized the SNPs
associated with T2DM into three major ancestry groups: Eu-
ropeans, East Asians, and Africans. The number of T2D-
associated SNPs and loci we identified for each ancestry are
reported in Table 1. We report the number of unique SNPs for
each ancestry in parenthesis. The complete list of the unique
SNPs for each population can be found in supplementary
Table S3.

The number of SNPs and loci associated with T2DM in
populations of European and East Asian descent are compa-
rable at �140 SNPs and �100 loci. About half of the SNPs
reported to be associated with T2DM in the GWAS cata-
log were not used to generate our networks because their
data came from studies that did not take into account the
ancestry background of their subjects. Table 1 also reveals
that the number of genetic variations and loci for African
populations is approximately 10% that of either Europeans
or East Asians. This major discrepancy in available data is
due to the fewer number of GWAS conducted in African
populations.

Ancestry-Specific HPNs of T2DM

The networks resulting from the ancestry-specific SNP fil-
tering of the vertices of the general HPN are extremely densely
connected (95+%). The networks presented in Figure 6
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Figure 6. T2DM-centric ancestry-specific HPN subnetworks. (A) The global T2DM-HPN encompassing all ancestry backgrounds. (B) The
European ancestry T2DM-HPN. (C) The East Asian ancestry T2DM-HPN. (D) The African ancestry T2DM-HPN. All networks have been filtered
using a minimal edge-weight threshold (cutoff = 5 × 10−4) to increase the readability.

Table 2. Global statistical properties of the T2DM-specific HPNs

EU EA AF All populations

Nodes/traits (N) 40 27 4 51
Edges (E) 767/189 340/74 6 1250/232
Average degree (K) 38.35/9.45 25.185/5.481 3 49.02/12.67
Average weighted degree (W) 0.034/0.036 0.033/0.028 0.002 0.034/0.025
Density (D) 0.983/0.242 0.969/0.211 1 0.098/0.98
Average clustering coefficient (CC) 0.985/0.658 0.974/0.518 1 0.983/0.644
Average path length (APL) 1.017/2.597 1.031/2.741 1 1.02/2.416

Nodes and traits N is the count of vertices in the network. Edges E is the number of
edges. The average K degree is the average number of edges connected to each node
averaged over the entire network, K = 2E/N. The average weighted W degree is the sum
of the weights associated to all the edges impinging each node averaged over the entire
network. The density of the network D is the fraction of existing edges over all possible
edges in the network (complete network). The average clustering coefficient CC is the
probability that two neighboring nodes of any given vertex are also neighbors of each
other. Vertices are called neighbors when an edge connects them. The average path
length APL is the average minimal number of edges separating all pairs of vertices.
Newman’s [2010] textbook on networks contains a more complete mathematical
definition of these properties. The values pre- and postfiltering are separated
by a “/.”

have been edge-filtered according to the global edge-weight
threshold method introduced in the Methods section. From a
visual inspection, we note that the expected phenotypes stand
out in both Asian and the European networks (Fig. 6B and
C): BMI, body weight, cholesterol, etc. Because of the lack of
available African population data and the resulting sparse-
ness of the African HPN, we have focused our analysis and
discussion on the East Asian and European networks. A sum-
mary of the global statistical properties pre- and postfiltering
of all four networks is presented in Table 2.

The elevated (>0.5) average clustering coefficients and the
short path lengths of all networks after filtering place these
networks in the “nonrandom” category. Considering the net-

Table 3. The unique and overlapping phenotype nodes and edges
from the comparison of the East Asian ancestry and European an-
cestry HPNs

East Asians Europeans

Nodes Edges Nodes Edges

Unique to network 6 (22%) 135 (40%) 19 (48%) 562 (74%)
Overlapping 21 (78%) 205 (60%) 21 (52%) 205 (26%)
Total 27 340 40 767

“Overlapping” refers to nodes or edges that are found in both networks. Our study
focuses on the six phenotype nodes unique to the East Asian HPN. The corresponding
phenotypes are displayed in Table S2. The African HPN was not compared to other
networks because it is too small to depict any meaningful relationships.

work pair we are most interested in, we compare the East
Asian subnetwork and the European subnetwork. Table 3
recapitulates the total number of nodes and edges, the num-
ber of overlapping nodes and edges, and the number of nodes
and edges that are unique to each network. The actual unique
and overlapping phenotypes between East Asian and Euro-
pean ancestry populations are presented in supplementary
Table S2.

From Table 3, we conclude that there is a significant over-
lap between the East Asian and European T2DM HPNs.
However, each has an important number of unique ver-
tices and edges that are worth exploring in more detail. The
next section focuses on the clinical implications of unique
edges within the East Asian network and how it can help us
formulate novel hypotheses about phenotypic interactions
based on biological pathways that are specific to each ancestry
group.
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Clinical and Biomedical Implications

We used 3,815 manually curated SNPs associated with over
70 phenotypes to construct ancestry-specific subnetworks
around T2DM. In comparing networks, we identified phe-
notypes that were linked to T2DM in the East Asian network,
but not in the European network. GWAS performed in popu-
lations of European ancestry are significantly more abundant,
as well as larger and more statistically powerful than GWAS
done in East Asian populations. Because of this, many more
SNPs, genes, and pathways are associated with T2DM in the
European HPN compared to the East Asian HPN. There-
fore, a link that appears on the European HPN that is not
found on the East Asian HPN could be a result of publication
bias rather than an actual difference in the network archi-
tecture. In contrast, a link found on the East Asian network
likely denotes SNPs or loci that were unable to be replicated
in European populations, despite larger study sizes. Out of
the 27 phenotypes in the East Asian pathway network, 21
transferred across ancestries to appear in the European HPN
(Table 3; supplementary Table S2). The other six phenotypes
were myocardial infarction, ovarian cancer, ileal carcinoids,
schizophrenia, metabolites, and glycemic traits. These phe-
notypes are unique to the East Asian HPN.

Myocardial Infarction

One edge found on the East Asian HPN that was
not seen in the European network is a connection be-
tween T2DM and myocardial infarction (MI). Coronary
artery disease (CAD) and T2DM have long been recog-
nized as comorbidities. More than half of T2DM patients
have signs of cardiovascular disease complications at di-
agnosis (http://www.diabetes.co.uk/diabetes-complications/
heart-disease.html, July 2014) and patients with T2DM are
at least two times more susceptible to myocardial infarction
[Scherrer et al., 2011]. Yet, despite a clear association between
these two complex diseases, the genetic causes of the link have
been uncertain. Several GWAS have identified genetic vari-
ants in the chromosome locus 9p21 that contribute to the
risk of both CAD and T2DM [Cheng et al., 2011; Helgadottir
et al., 2008]. The majority of these studies, however, were
conducted in European populations, and none were able to
identify a common SNP that associated with both diseases. In
other words, SNPs associated with T2DM did not associate
with any arterial disease and vice versa [Helgadottir et al.,
2008].

No risk variant was established to be associated with both
CAD and T2DM until a 2011 study found SNPs rs10811661
and rs10757283 in the Chinese Han population [Cheng et al.,
2011]. It is the only known study to report that the same SNPs
confer to both T2DM and CAD, providing evidence that the
genetics of T2DM and CAD may be varied between East Asian
and European populations.

This postulate is further supported by a study that has
associated the ALMS1 gene to early-onset myocardial infarc-
tion in East Asian populations. ALMS1 is best known for its
connection to Alstrom syndrome, a disease characterized by

obesity, insulin resistance, cardiomyopathy, and T2DM [Ichi-
hara et al., 2013]. The link between T2DM and MI in only
the East Asian HPN and the observed incidence discrepan-
cies between ancestries suggest that more population-specific
GWAS studying MI in the future would be valuable.

Ovarian Cancer

East Asian populations tend to have a significantly lower
incidence rate than Europeans in most cancers, including
ovarian cancer. The ovarian cancer incidence rate in females
of European ancestry ranges from 17.4 to 18.1 per 100,000,
while the incidence rate for East Asian females is much lower
at 9.2 to 15.5 per 100,000 [Forman, 2009]. This disparity
could be a cause of different environmental conditions, but it
also suggests a heterogeneous genetic structure behind ovar-
ian cancer across populations.

Indeed, HNF1B (hepatocyte nuclear factor 1 homeobox
B), a gene encoded by TCF2 (transcription factor 2), is an
East Asian specific link between ovarian cancer and T2DM.
HNF1B is highly associated with maturity onset diabetes of
the young (MODY), a rare form of diabetes that is character-
ized by beta-cell dysfunction and insulin resistance [Bellanne-
Chantelot et al., 2005; Gardner & Tai, 2012]. This link pro-
vides a possible explanation for the significant disparities in
incidence rate between ethnicities in ovarian cancer.

Clinical studies over the last few years have produced
mounting epidemiological evidence that metformin, the
most widely prescribed antidiabetic drug in the world, lowers
the incidence rate and improves the survival rate of ovarian
cancer [Kumar et al., 2013]. Libby et al. [2009] observed in
a large observational cohort study of 8,000 T2DM patients
that ovarian cancer was diagnosed among 7.3% of metformin
users compared to 11.6% of nonmetformin users. A case-
study done by Kumar et al. [2013] showed that the 5-year
survival rate for women with ovarian cancer who had re-
ceived metformin had a 67% survival rate compared to a
47% survival rate in women with ovarian cancer who had
not received metformin treatment.

Metformin was originally used to treat T2DM because it
increases insulin sensitivity and inhibits gluconeogenesis in
the liver. Its function in lowering blood glucose levels leads to
a decrease in insulin level, an effect that may indirectly inhibit
cell growth in ovarian cancer because insulin is a growth-
promoting hormone [Ben Sahra et al., 2010]. Metformin
also controls cell proliferation by activating AMPK, a kinase
that negatively regulates the mTOR pathway that controls cell
growth and proliferation [Ben Sahra et al., 2010; Rattan et al.,
2011].

The success of metformin provides evidence that ovarian
cancer development is significantly correlated with insulin
level. Similar to metformin, HNF1B’s function in impairing
beta-cell function lowers the amount of insulin in the body.
The link in the East Asian HPN indicates that HNF1B may
play a role in the decreased incidence rate of ovarian cancer
in East Asians compared to Europeans. The ability of the
HPN to detect this link shows its potential clinical value in
identifying novel therapies and drug targets in genes and
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pathways. It provides us with more information about the
pathophysiology behind both diseases, as well as clues about
the mechanism of the drug.

Generating New Hypothesis

Ileal Carcinoids

So far, there has been no publication documenting a link
between T2DM and ileal carcinoids. Because of the link be-
tween T2DM and ileal carcinoids in the East Asian network,
however, a plausible hypothesis is that ileal carcinoids, like
ovarian cancer, are particularly sensitive to insulin levels and
AMPK activation. In other words, one could hypothesize that
metformin treatments benefit patients with ileal carcinoids
based on their shared genetic origins.

Schizophrenia

Another undocumented interaction found specifically in
the East Asian network is the three-way link between
schizophrenia, ovarian cancer, and T2DM. Higher rates of
schizophrenia are observed in East Asian populations, but
the reasons are currently unknown. It has also been observed
that patients with schizophrenia have an increased incidence
of T2DM. Recent studies found that the co-occurrence of
T2DM and schizophrenia in Han Chinese patients might
be partly explained by shared genetic variants, notably in
the IGF2BP2 gene [Ripke et al., 2013; Suthram et al., 2010;
Yuan et al., 2013]. This gene is responsible for an insulin-like
growth factor that stimulates beta-cell proliferation and is
widely acknowledged to be a susceptibility locus for T2DM.
The appearance of this link on our East Asian HPN suggests
that the genetic basis for the co-occurrence of T2DM and
schizophrenia in East Asian populations is worth studying
more extensively.

Metabolite Levels

Metabolites are the intermediates and products of
metabolic processes and include small molecules such as glu-
cose, amino acids, insulin, and uric acid. They play a key role
in many biological pathways but their genetic basis and phys-
iological impact is mostly unknown [Kettunen et al., 2012].
The relationship between T2DM and metabolite levels has
only recently been elucidated in a 2011 study, in which it was
suggested that elevated levels of a panel of amino acids was
both a marker and effector for insulin resistance as well as
impaired insulin secretion [Wang et al., 2011]. A genetic link
between metabolite levels and T2DM was unique to our East
Asian HPN, suggesting that metabolite levels play a larger
predictor role of T2DM in East Asian populations than in
European populations.

Indeed, a recent discovery of a novel locus associated
with T2DM supports this population-specific link. The lo-
cus SLC16A11, a gene that codes for proteins that transport
metabolites, was first associated with T2DM in Mexicans and

Native Americans [Consortium TST 2 D, 2014]. The higher
risk version of the gene has since been found to increase the
likelihood of developing T2DM by 25%. Its presence in about
50% of Native Americans may be a large accounting factor
for the extremely high prevalence of T2DM in Native popu-
lations [Consortium, 2014]. The gene is also found in about
20% of East Asians, but is very rare in European and African
populations.

The ability of the East Asian HPN to detect this link suggests
that there is indeed a genetic basis for the relationship between
raised metabolite levels and the development of T2DM. Fur-
ther research in this relationship may reveal more clues about
the pathogenesis of T2DM.

Discussion and Conclusions

In this study, we constructed ancestry-specific human phe-
notype subnetworks based on NHGRI GWAS data to com-
pare and contrast the underlying genetic architecture of
T2DM for European and East Asian populations. Most ge-
netic variants initially discovered in Europeans have been
confirmed by replication studies conducted in East Asian
populations, although many of these genetic variants show
significant differences in RAF and P values. This is most ev-
ident for rs7903146 in locus TCF7L2, a transcription factor
involved in insulin secretion from pancreatic β-cells and the
strongest risk allele identified so far in Europeans. Although
the P-value for European ancestry populations is 2.0 × 10–51,
the P-value for East Asian ancestry populations is barely sig-
nificant at 2.5 × 10–2 [Voight et al., 2010].

Conversely, rs2237892 in locus KCNQ1 was first identified
in an East Asian GWAS and has a much more significant
P-value (2.5 × 10–40) in East Asian populations than it does
in European ancestry populations (P-value = 7.2 × 10–04)
[Unoki et al., 2008]. The KCNQ1 gene encodes the pore-
forming subunit of a voltage-gated potassium channel, which
is a critical function for insulin-secreting INS-1 cells. The
discovery of population-specific genes such as UBE2E2 in
East Asians brought about suggestions that different pathways
may be involved in the pathogenesis of T2DM [Cho et al.,
2012; Yamauchi et al., 2010].

The ancestry-specific HPN allowed us to confirm the shar-
ing of T2DM genetic variants across populations [Sim et al.,
2011]. Perhaps more importantly, however, the networks
were also able to visualize individual genes that are specific to
different ancestries, adding to hypotheses that T2DM disease
risk and pathophysiology may vary [Cho et al., 2012]. It is
clear from the networks that populations of European ances-
try make up only a subset of genetic variation and are thus
insufficient in fully characterizing T2DM. Network visualiza-
tion allowed us to identify comorbidities that may be genet-
ically linked and generate hypotheses for underlying genes
involved in both phenotypes. The networks also provided a
genetic explanation for the observed comorbidity between
T2DM and myocardial infarction, as well as the genetic ba-
sis for the usage of metformin for the treatment of ovarian
cancer. It highlighted the role of insulin-sensitivity in East
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Asian populations in T2DM pathogenesis as compared to Eu-
ropeans, suggesting that targeting insulin resistance should
be more heavily emphasized in East Asians.

Our networks are currently limited by lack of data. De-
spite breakthrough advances in GWAS technology in the last
few years, the susceptibility genes that have been identified
so far can only account for 10–15% of T2DM heritability
[Bonnefond et al., 2010]. To date, most of the published
GWAS have been performed in populations of European or
East Asian ancestry. Chen et al. [2012] found that T2DM
SNPs showed extreme differentiation of risk allele frequen-
cies across human populations and our manual curation con-
firmed that many T2DM risk alleles showed significantly con-
trasting RAFs. The variance in RAF values demonstrates the
importance of conducting genetic studies across different an-
cestry populations in the search for novel T2DM-associated
SNPs. This concept was successfully applied recently when
variants in SLC16A11 were reported to increase risk by up
to 50% in Mexican and other Latin American populations
[Consortium, 2014]. As the field of translational genomics
shifts toward next-generation sequencing technologies, the
possibilities of filling in the missing heritability gap and con-
structing a more complete network look promising [Qin et
al., 2012]. In particular, the growing search for rare variants
will be valuable to the ancestry-specific HPN because rare
variants are most likely to be unique to specific populations
[Sim et al., 2011].

Interestingly, the genetic variants with large differences in
allele frequencies had similar effect sizes between East Asian
and European populations, suggesting that the biological
consequences of these variants are similar across ancestry
groups. A link that appears specifically in the East Asian net-
work may not be a result of different biology behind the
disease, but rather a result of a low RAF in European pop-
ulations that left a genetic variant undetectable. Thus, these
links may actually be transferrable across populations.

Another factor that may have influenced our network
model is ancestry-specific linkage disequilibrium (LD),
which differs based on ancestry. Studies have shown, however,
that significant LD differences across ancestries are not very
common [Teo et al., 2009]. This is true especially between
European and East Asian ancestry populations, which are
known to have high haplotype sharing rates [Conrad et al.,
2006]. Because of the small proportion of SNPs with signif-
icant LD differences between European and East Asian an-
cestries, ancestry-specific linkage disequilibrium should have
minimal effects on our network models, though we can make
no guarantees. Additionally, because we map SNPs to biologi-
cal pathways, the effect of one high LD block on our network
model is greatly reduced. In subsequent studies, attempts
should be made to quantify the impact of ancestry-specific
linkage disequilibrium.

Although ancestry and race categorizations have long been
fiercely debated within scientific communities, the existing
literature suggests that human genetic variation tends to be
geographically structured. Because of humankind’s extensive
history of migration and gene flow, classification based on

race includes individuals that are not genetically pure, result-
ing in boundaries that are somewhat inaccurate and arbitrary.
Analysis of genetic variation has shown, however, that classifi-
cation based on ancestry reliably observes three distinct clus-
ters: African, Europeans, and East Asian populations [Jorde
& Wooding, 2004]. We generated three population-specific
HPNs with African, European, and East Asian ancestry data
for this reason. Our ancestry-specific networks show that,
similar to age and sex information, ancestry information may
prove useful in biomedical contexts, with possible implica-
tions for pharmocogenetics and personalized medicine.

The clinical implications of heterogeneous underlying
pathways are vast. Possible differences in metabolism and
transport would greatly influence pharmaceutical targets,
drug exposure times, and dosage [Man et al., 2010]. The
network view of T2DM recognizes the complexities of the dis-
ease. Studying individual risk variants or genes is not enough
to develop a full understanding of any complex disease be-
cause of the vast array of interactions at the molecular level.
An integrated approach will help us unravel the intricate rela-
tionships involved in T2DM and ultimately find drug therapy
cocktails that involve multiple targets.

One of the current limitations of our ancestry-specific
HPNs is there are multiple subpopulations such as Latin
Americans/Mexicans, Pima Native Americans, or South
Asians that do not fall into any of the three broad cate-
gories we used for our networks. At this time, we are not
able to construct robust HPNs for these populations because
there is simply not enough data available. Both Latin Amer-
ican and South Asian subpopulations have unusually high
incidence rates of T2DM and will likely be the subjects of
many future GWA studies. When enough data are gathered,
ancestry-specific HPNs could expand beyond the three pop-
ulations chosen in this study. In future studies, we plan on
implementing more sophisticated methods of filtering the
network in order to improve the signal-to-noise ratio. Ad-
ditionally, we are working on integrating environmental ex-
posure data into the HPN and its subnetworks. Although
high-quality environmental exposure data are challenging to
find, the potential of such integrated models is immense and
would greatly contribute to the study of complex disease.
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