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Abstract

Psycholinguistic research over the past decade has suggested that children’s linguistic

knowledge includes dedicated representations for frequently-encounteredmultiword

sequences. Important evidence for this comes from studies of children’s production: it

has been repeatedly demonstrated that children’s rate of speech errors is greater for

word sequences that are infrequent and thus unfamiliar to them than for those that

are frequent. In this study, we investigate whether children’s knowledge of multiword

sequences can explain a phenomenon that has long represented a key theoretical fault

line in the study of language development: errors of subject-auxiliary non-inversion in

question production (e.g., “why we can’t go outside?*”). In doing so we consider a type

of error that has been ignored in discussion of multiword sequences to date. Previ-

ous work has focused on errors of omission – an absence of accurate productions for

infrequent phrases.However, if childrenmakeuseof dedicated representations for fre-

quent sequences of words in their productions, we might also expect to see errors of

commission – the appearance of frequent phrases in children’s speech evenwhen such

phrases are not appropriate. Through a series of corpus analyses, we provide the first

evidence that the global input frequency of multiword sequences (e.g., “she is going” as

it appears in declarative utterances) is a valuable predictor of their errorful appearance

(e.g., the uninverted question “what she is going to do?*”) in naturalistic speech. This find-

ing, we argue, constitutes powerful evidence that multiword sequences can be repre-

sented as linguistic units in their own right.
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1 INTRODUCTION

Traditionally, language development has been seen as a matter of

rapidly abstracting away from concrete linguistic experience and mas-
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tering the types of abstract categories and structures long posited

under formal linguistic analyses. The resulting knowledge of language

is thenassumed to consist of separate knowledgeofwords (e.g., [“man”]

[“walk”]), categories (e.g., [NOUN], [VERB]) and rules (e.g., [SUBJECT]
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[VERB] [OBJECT] word order). The past decade, however, has seen

an explosion of psycholinguistic research suggesting that language

users remember and actively utilize specific sequences of words taken

directly from experience. The frequency of these units—or “chunks”—

has been shown to facilitate processing in adult comprehension (e.g.,

Arnon & Snider, 2010; Bannard, 2006; Reali & Christiansen, 2007) as

well as production (e.g., Janssen & Barber, 2012). These findings have

received further support from event-related brain potentials (Trem-

blay & Baayen, 2010) and eye-tracking data (Siyanova-Chanturia et al.,

2011).

Psycholinguisticworkwith children has served to bolster these find-

ings, highlighting a key role for multiword sequences in development

(see Theakston & Lieven, 2017 for an overview). For instance, Bannard

andMatthews (2008) found that,whencontrolling for substring (words

and word pairs) frequency, overall four-word sequence frequency pre-

dicted the speed and accuracywith which 2- and 3-year-olds produced

compositional phrases. As an example, the high-frequency sequence “a

lot of noise” is produced faster and more accurately than the matched,

low-frequency sequence “a lot of juice.” Moreover, multiword units

exhibit the same type of age-of-acquisition effects as do individual

words, when age-of-acquisition is determined by either subjective rat-

ings or by corpus-based metrics (Arnon et al., 2017). Taken together,

these findings underscore the possibility that multiword chunks serve

as building blocks for language learning.

Such findings have played a role in more general theoretical

debates over the nature of grammatical development, as highlighted

by computational modelingworkwhich has shown that children’s early

productive speech can be well accounted for by productive grammars

which have multiword sequences as a core component (Bannard

et al., 2009), and that abstraction over stored sequences can lead to a

considerable amount of linguistic productivity (e.g., Solan et al., 2005).

Even models lacking abstraction have served to demonstrate that

associative learning of chunks from naturalistic input can account for

a substantial portion of children’s language production (McCauley &

Christiansen, 2019a), while subsequent work has shown that compu-

tationally straightforward processes of prediction and recognition can

give rise to item-based schemas of the sort postulated in usage-based

theories of development (McCauley & Christiansen, 2019b).

While there is much evidence that children’s fluency in produc-

ing word sequences can be related to the familiarity of the target

phrase, this only represents one of the types of errors that we might

expect to result from variation in children’s knowledge of different

sequences. Another type of error that is known to arise under such

circumstances is the error of commission or “habit slip” (see e.g., Rea-

son, 1990), whereby a well-learned behavior occurs even in contexts

where it is inappropriate. Evidence that familiar multiword sequences

“intrude” inappropriately into children’s productions would constitute

particularly powerful evidence that children have dedicated represen-

tations for such sequences.

In the present study, we test the possibility that knowledge of

multiword sequences might account for errors (of both omission and

commission) in wh- questions; one of the few sentence types for

which English-speaking children reliably make word-order errors (e.g.,

RESEARCHHIGHLIGHTS

∙ Recent decades have seen mounting evidence that chil-

dren are sensitive to the properties (e.g., frequency) of

compositional word sequences.

∙ Previous research has focused on the role of multiword

units in protecting against errors of omission.

∙ By analyzing wh- questions appearing in children’s spon-

taneous productions, we find the first evidence that the

global input frequency of multiword sequences is a pre-

dictor of their errorful appearance, or intrusion into utter-

ances.

∙ Our finding that multiword units can shape errors of com-

mission constitutes particularly powerful evidence that

such sequences constitute linguistic units in their own

right.

Estigarribia, 2010; Klima & Bellugi, 1966; Stromswold, 1990), specifi-

cally non-inversion (or uninversion) errors:

1. *What they are doing over there ? *

2. *Why I can’t go outside ? *

3. *Where the biscuits have gone ? *

Traditionally, such errors have been explained in terms of children’s

failure to master syntactic movement (of the auxiliary to pre-subject

position; e.g., they are → are they), particularly for adjunct wh-words

such as how and why (e.g., de Villiers, 1991; Stromswold, 1990)

and/or auxiliary DO (e.g., Santelmann et al., 2002; Stromswold, 1990).

Although some studies have found higher error rates for these types

of questions (e.g., Hattori, 2003; Pozzan & Valian, 2017), others have

not (e.g., Ambridge et al., 2006; Rowland, 2007; Ambridge & Rowland,

2009).

Evidence suggesting the importance of multiword chunks in chil-

dren’s question formation comes from the studies of Rowland and Pine

(2000), Dabrowska (2001), Rowland (2007), Dabrowska and Lieven

(2005) and Ambridge and Rowland (2009). All of these studies found

some link between the occurrence of particular question types in chil-

dren’s input and the frequency of correct productions versus errors.

However, only the latter touched upon the crucial question of whether

multiword sequences can yield errorswhenused incorrectly, anddid so

only informally.

In the present study, we systematically investigate the possibility

that stored multiword sequences shape children’s wh-question non-

inversionerrors. Take, for instance, the following correctly invertedand

non-inverted (errorful) forms (4-5):

1. What is she going to do ?

2. *What she is going to do ? *
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If strings that appear in the (potential) non-inverted form, such as

“is going,” and “she is going,” are highly frequent in the child’s input, we

might expect—given evidence that multiword sequences play a role in

learning and processing—that the child will be more likely to produce

the errorful form of this question. By the same token, we might expect

the frequency of “she going” and “is she going” to alter this likelihood

in the opposite direction. From this perspective, multiword sequences

appearing in the correctly inverted and non-inverted forms may be

viewed as competing. This would be consistent with findings for indi-

vidual words, where forms compete and high-frequency items appear

to “intrude,” leading to errorful productions (see Ambridge et al., 2015

for an overview of such findings).

In the present study, we therefore evaluate the role of multiword

units in early wh-question production by using distributional statistics

from child-directed speech to predict children’s spontaneous errors of

non-inversion. We collect, from the entire English language portion of

theCHILDESdatabase (MacWhinney, 2000)1, occurrence statistics for

words and higher-order n-grams, which are then used as predictors in

logistic regression models of children’s correctly inverted and errorful

(uninverted) wh- questions. This method allows us to evaluate the role

played by multiword sequences identical to those that appear in the

child’s errorful, uninverted forms of questions while controlling for the

statistics of sequences appearing in the correctly inverted forms, and

vice-versa.

2 METHODS

The corpus analysis can be divided into three distinct stages: (1) extrac-

tion of all child-produced wh- questions from a set of target corpora,

followedby identificationof uninversionerrors; (2) collectionofn-gram

statistics reflecting the ambient language environment; (3) mixed-

effects logistic regression modeling to determine which n-gram statis-

tics are predictive of uninversion errors in the extracted question set.

2.1 Corpus selection and preparation

We began by identifying, within the English portion of the CHILDES

database (MacWhinney, 2000), the corpora with the greatest number

of child wh- questions. We used the top 12 such corpora rather than

including the entire set of corpora in the database, in order to avoid

additional noise arising from the large number of corporawith very few

child wh- questions (and thus little or nothing in the way of uninver-

sion errors). Each of the 12 target corpora already fit our selection cri-

teria of involving a single target child (rather than aggregating across

multiple children) and spanning at least 1 year of development. The

age range of each target child is provided in Table 1 along with citation

information.

Prior to analysis, each corpus was submitted to an automated

procedure whereby codes, tags, and punctuation were removed,

1 CHILDES data downloaded January 2017.

TABLE 1 Details of CHILDES corpora used in analysis of
uninversion errors

Target Child Corpus Age Range

Abe Kuczaj, 1977 2;04–5;00

Adam Brown, 1973 2;03–5;02

Eleanor Lieven et al., 2009 2;00–3;00

Ethan Demuth &McCullough, 2009 0;11–2;11

Fraser Lieven et al., 2009 2;00–3;01

Laura Braunwald, 1976 1;05-7;00

Lara Rowland & Fletcher, 2006 1;09-3;03

Lily Demuth &McCullough, 2009 1;01-4;00

Naima Demuth &McCullough, 2009 0;11-3;10

Ross MacWhinney, 1991 1;04-7;08

Sarah Brown, 1973 2;03-5;01

Thomas Maslen et al., 2004 2;00-4;11

leaving only speaker identifiers and actual utterances. As an additional

part of this procedure, contractions were split into their component

words: for example, “what’s she doing” was re-coded as “what is she

doing.” As corpus annotation differs in terms of how contractions are

transcribed (leading to arbitrary noise), this step helped to standardize

n-gram frequencies for wh- words and auxiliaries across all questions.

As a final step, we collapsed the pronouns “she” and “he” into a single

form to control for individual differences across children’s exposure to

gender pronouns.

2.2 Wh- question and uninversion error candidate
extraction and coding

For each of the 12 target corpora, child-produced wh- questions were

automatically extracted by utilizing the standard default morphologi-

cal tagging included inCHILDES. All extracted questions featured awh-

word in the initial position and were followed immediately by an auxil-

iary. This yielded ≈13,000 child-produced wh- questions across the 12

corpora.

In order to automatically identify potential uninversion errors, we

also extracted all child-produced questions featuring a wh- word in

the initial position but not immediately followed by an auxiliary. These

candidate items were then manually coded for error type by the first

author, yielding a total of 300 uninversion errors produced across the

target children.Wh- questions featuring an error type other than unin-

version (such as doubling [∼100; e.g., “Why can I can’t eat the crisps?*”] or

omission [∼5000; “What you doing out there?*”] errors) were excluded

from the dataset. Analyses were restricted to non-subject wh- ques-

tions produced before the age of 5 years, given that only two of the

corpora extended beyond this point in the target child’s development.

Finally, as discussed below, our analyses focused on the role of n-

grams up to the third order, including the first 5 unigrams, 4 bigrams,

and 3 trigrams occurring at the beginning of each question (questions
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without at least 5 unigrams were excluded). The final resulting dataset

consisted of 5499 questions, with an uninversion error rate of 4.4%.

Within this final dataset, there were individual differences in the

rate of uninversion errors across the 12 children, ranging from 16%

(Adam) to 0% (Lily and Ethan), with a range in between: 11% (Abe), 8%

(Naima), 6% (Sarah), 4% (Laura), 3% (Fraser), 2% (Thomas and Ross),

and 1% (Eleanor and Lara). We include child as a random factor in our

analyses (see below).

2.3 N-gram data collection

For every question that a child produced (whether they produced the

correct or the uninverted form), we (1) generated both the correct and

the uninverted form, then (2) collected the input n-gram statistics for

each. The first step was achieved as follows: For questions produced in

uninverted form, we simply created a corresponding “correct” version

by hand. For the far greater number which were produced in a correct

form,we employed an automated procedure to generate the hypothet-

ical, corresponding uninverted form. The second and thirdwords could

not simply be swapped because many questions featured multiword

subject noun phrases, such as “where is my red truck?” Thus, to automat-

ically achieve the appropriate uninverted form,we first shallow-parsed

utterances (Punyakanok & Roth, 2001). Shallow parsers function to

segment out the non-overlapping, non-embedded phrases in a text. For

instance, the shallow parser output for the previous examplewould be:

“[where] [is] [my red ball].” After submitting correctly inverted ques-

tions to the shallow parser, we simply switched the second and third

chunks, yielding the relevant, uninverted errorful forms, such as “where

my red ball is?”

The second step was to calculate n-gram statistics for both the cor-

rect and the uninverted forms of each question. With the aim of cap-

turing statistics which accurately reflect the nature of child-directed

speech in English, we gathered n-gram frequencies from the entire

English (UK and US) portion of the CHILDES database. This allowed us

to reduce potential issues of data sparseness arising from corpus size

(e.g., Manning & Schütze, 1999). The resulting aggregated corpus was

prepared for data collection following the sameprocedure described in

the above subsection. Frequencies were collected for unigrams (single

words), bigrams (word pairs), and trigrams (word triplets), which were

then applied to each of the wh- questions extracted for the 12 target

child corpora. As an example, for the question “what are you doing there,”

five unigram counts (one for each of five word positions: “what,” “are,”

“you,” “doing,” and “there”), four bigram counts (one for each of three

word pair positions: “what are,” “are you,” “you doing,” and “doing there”),

and three trigram counts (one for each word triplet: “what are you,” “are

you doing,” and “you doing there”) were calculated, with the frequencies

themselves being derived from across all utterances in the aggregated

corpus. For the same example question, the n-gram frequencies for the

corresponding uninverted form (“what you are doing there?”) were also

calculated: four bigram counts (one for eachword pair: “what you,” “you

are,” etc.) and three trigram counts (one for eachword triplet: “what you

are,” etc.). Thus, the above procedures resulted in unigram, bigram, and

trigram statistics for each position across all questions in their correct

aswell as uninverted forms. These n-gramswere all based on individual

words; no words were bound together into compounds except where

already existing as compounds in the corpus.2

2.4 Analysis

To evaluate the predictive relationship between multiword sequence

frequency and uninversion errors, we used mixed-effects logistic

regression modeling (e.g., Agresti, 2002).3 We carried out a set of

model comparisons to determine which n-gram frequencies were

uniquely predictive of uninversion errors. This involved selecting pre-

dictors at each n-gram level separately using a leave-one-out proce-

dure, starting at the unigram level before moving to the bigram level,

followed by the trigram level. As we moved from one level to the next,

any lower-level predictors that were found to explain unique variance

were carried over. Thus, for a higher-order n-gram (e.g., the trigram “he

can go” from the errorful question “where he can go?*”) to reach sig-

nificance, it would need to provide predictive value over and above

that provided by individual words (e.g., the unigram “can”) or shorter

sequences (e.g., the bigram “can go”). Thus, the model comparison pro-

cedure was designed to privilege lower-order n-grams in the selection

process; this not only allowed us to provide a more conservative test

of the hypothesized role for higher-order n-grams, but also offered

greater transparency and interpretability, as it enables direct evalu-

ation of the relative informativity of n-grams at each level as well as

overall. Moreover, this incremental procedure allowed us to sidestep

issues presented by multicollinearity (which would logically be great-

est between rather than within levels, since unigrams are nested in

bigrams, and so on) in selecting predictors. The emphasis is on uncov-

ering which variables, at each step, explain unique variance over and

above the others.

To carry out the logistic regression analyses, questions originally

produced by the target children in correctly inverted formwere coded

as 0, while questions produced in an errorful, uninverted form were

coded as one. N-gram frequencies were then used as predictors of this

binary variable. Predictors were log-transformed, mean-centered and

scaled. All model comparisons were carried out using likelihood ratio

tests. All models included a random intercept for child, to reflect the

fact that the 12 target children differed from one another in overall

error rate, while by-child random slopes were also included for each

predictor, to reflect the fact that the 12 target children may differ in

the extent to which their errors could be predicted by the various n-

gram frequencies. It was possible to include random slopes for all pre-

dictors (Barr et al., 2013). The incremental way in which first unigrams,

then bigrams and then trigrams were considered for inclusion in our

2 Minimum, mean, and maximum frequency counts for each n-gram position is given for the

analyzed questions are included in Appendix A.
3 While non-inversion errors made up only 4.4% of the final dataset, this proportion was

large enough, and with a large enough n, that our situation would be considered low-risk for

problems arising from asymmetry according to previous work on logistic regression modeling

involving rare events data (cf. King & Zeng, 2001). Importantly, our analyses are not concerned

with estimated odds but, rather, with whether individual predictors explain unique variance.
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models meant that when unigrams were being considered, all unigram

positions were included as random effects; when bigrams were being

included, all unigrams that were found to explain significant variance

as well as all bigramswere included as random effects, and so on.

Beginning at theunigram level, the full baselinemodel included fixed

effects of the first five unigrams as well as random effects (by child).

This was then compared to five subsequent models, each leaving out

the fixed effect term for a different unigram. Where removal of a par-

ticular unigram frequency variable harmedmodel fit, according to like-

lihood ratio tests, that variablewasheld over for thenext level ofmodel

comparisons, where the same procedure described for unigrams was

then carried out for the first four bigrams. At this level, random (by

child) and fixedeffects for the surviving unigramswere included in each

model alongside random and fixed effects for bigrams from both the

correctly inverted and the corresponding errorful forms. Bigrams (from

either the correctly inverted or errorful, non-inverted forms of each

question) which harmed model fit to a statistically significant effect

by their removal were then retained for the final set of model com-

parisons. Thus, in addition to the surviving unigrams from the previ-

ous step, surviving bigrams (which could be from either the correctly-

inverted question forms, or the errorful, non-inverted forms), were

held over for the final set of model comparisons, which took place at

the trigram level. For this final set of comparisons, the same procedure

was followed once more (with random and fixed effects for the held-

over unigrams and bigrams included).4

3 RESULTS

The model comparison procedure (described above) yielded nine sep-

arate n-gram predictors (see Figure 1). Using the question “what are

you doing there?” as an example, these included: The first two unigrams

(what and are) and third and fourth bigrams from the correctly inverted

question forms (you doing and doing there); and the second (you are),

third (are doing), and fourth (doing there) bigrams as well as the sec-

ond (you are doing) and third (are doing there) trigrams from the errorful

(uninverted) question forms.5

The log-likelihood, chi-squared value, and p-value for each model

comparison is shown in Table 2, alongside example n-grams.

We report fixed effect estimates for the final model in Table 3. As

can be seen, the first and second unigram frequencies (corresponding

to the wh- word and auxiliary, e.g., what and are, in the example ques-

tion what are you doing there?) had negative estimates, indicating lower

likelihood of an uninversion error with more frequent items. The same

held for the third and fourth bigram frequencies (e.g., you doing and

doing there). Importantly, for n-gram predictors drawn from the error-

4 Dataframe and code may be accessed at https://osf.io/6t8fb/?view_only=f3b06308e14042

cca9047638e94fd067
5 Owing to previous research raising the possibility that questions featuring auxiliary DOmay

be qualitatively different (e.g., Santelmann et al., 2002; Stromswold, 1990), we carried out a

second set of analyses in which all questions featuring DO-support were excluded from the

dataset. All effects for n-grams emerging from the leave-one-out procedure were retained in

this version, with the exception of the second uninverted trigram, the exclusion of which lead

only to amarginal decrease in model fit (χ= 3.4, p= 0.065).

F IGURE 1 Unigrams (individual words), bigrams, and trigrams for
the correctly inverted (top) and corresponding errorful (bottom) forms
of the example questionWhat are you doing there?N-grams excluded
from the final statistical model are shown in black. N-grams retained in
the final statistical model are shown as green/red words (unigrams)
and green/red line (bigrams and trigrams). Note that this figuremixes
the example level with the general design level for illustration
purposes

ful, uninverted question forms, the estimate was positive. This means

that the higher the n-gram frequency for the uninverted formof a ques-

tion, the more likely it was for that question to have been produced in

its uninverted form (see Table 3 for further examples).6

4 DISCUSSION

The present study represents, to our knowledge, the most rigorous

treatment of input frequencies in an analysis of question errors to date.

We find that corpus frequencies for n-gram sequences appearing in the

correctly-formed, “target” question are predictive of lower uninver-

sion rates, while n-gram frequencies from the non-inverted form pre-

dict higher uninversion rates. This finding is consistent with previous

evidence that children actively draw upon stored, multiword units (e.g.,

“go to the store”) during on-line language processing (e.g., Arnon&Clark,

2011; Bannard & Matthews, 2008). Consider, as an example, our find-

ing that non-inverted trigrams are predictive of non-inversion errors

such as “*Where we can go today?*” The more strongly a sequence like

”we can go” holds together as a unit for an individual child, the less likely

the child may be to disrupt that sequence by fronting the auxiliary can.

This general notion is consistent with findings that frequent items pro-

tect against error across a number of linguistic domains (cf. Ambridge

et al., 2015), as well as findings that errors can be caused by the intru-

sion of overlearned sequences across all kinds of human action (e.g.,

Bannard et al., 2019).

6 In order to ensure that repeated questions (both within and across children) did not bias our

results, we re-ran the entire set of analyses after randomly excluding all but one instance of

questions that occurred more than once in the dataset. Approximately 86% of the questions

in the final dataset were unique, with most repeated items being correctly inverted. The most

frequent errorful question (“what I am going to do?”) occurred only three times. The resulting

model comparisons lead to the exact same n-grams surviving the leave-one-out procedure as

reported for the full dataset.
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TABLE 2 Results of model comparisons

Left-out Predictor Log-likelihood χ2 p-value Ex.

Unigram (full/baseline) −702.13 – – –

Unigram 1 −705.6 6.95 0.00 ** what

Unigram 2 −707.16 10.07 0.00 ** are

Unigram 3 −702.27 0.29 0.59 you

Unigram 4 −702.13 0.00 0.97 doing

Unigram 5 −702.20 0.14 0.71 there

Bigram (full/baseline) −626.40 – – –

Bigram 1 −627.28 1.76 0.19 what are

Bigram 2 −627.20 1.59 0.21 are you

Bigram 3 −631.41 10.01 0.00 ** you doing

Bigram 4 −632.68 12.55 0.00 *** doing there

Trigram (full/baseline) −614.62 – – –

Trigram 1 −615.44 1.641 0.2002 what are you

Trigram 2 −615.69 2.141 0.1434 are you doing

Trigram 3 −614.67 0.103 0.748 you doing there

Uninverted Bigram (full/baseline) −626.40 – – –

Uninverted Bigram 1 −626.42 0.02 0.88 what you

Uninverted Bigram 2 −634.79 16.77 0.00 *** you are

Uninverted Bigram 3 −634.87 16.94 0.00 *** are doing

Uninverted Bigram 4 −632.5 12.19 0.00 *** doing there

Uninverted Trigram (full/baseline) −614.62 – – –

Uninverted Trigram 1 −614.87 0.505 0.4772 what you are

Uninverted Trigram 2 −617.55 5.874 0.02 * you are doing

Uninverted Trigram 3 −618.41 7.582 0.01 ** are doing there

Note. Errorful (uninverted) questions are coded as 1, while correctly inverted questions are coded as 0.

TABLE 3 Results of full model

Item β Std. Error Ex.

Intercept −4.24 0.34 –

Uni 1 −0.69 0.24 what

Uni 2 −0.78 0.12 Are

Bi 3 −0.73 0.14 you doing

Bi 4 −0.95 0.20 doing there

Bi 2 (uninv.) 0.67 0.15 you are

Bi 3 (uninv.) 0.59 0.15 are doing

Bi 4 (uninv.) 0.34 0.16 doing there

Tri 2 (uninv.) 0.10 0.15 you are doing

Tri 3 (uninv.) 0.56 0.16 are doing there

Note. Errorful (uninverted) questions are coded as 1, while correctly

inverted questions are coded as 0. Beta coefficients are included for trans-

parency; conclusions regarding the significance of variables are based,

instead, on themodel comparisons (described above).

Thus, in addition to supporting the proposal that material learned

from declarative utterances can drive systematic errors, our findings

weigh in favor of previous proposals that children rely on lexically-

based representations in question formation (e.g., Rowland & Pine,

2000). Previous work has argued for the importance of wh- + auxiliary

combinations as units. In our model, this combination did not prove

to be among the selected variables. Instead, the frequencies of the

wh- word and the auxiliary were included as separate entities. This

is due to the collinearity between the component words and their

combination: the hierarchical, iterative way in which we determined

the significance of predictors meant that the lower-order unigrams

were selected at the expense of the higher.While this does not contra-

dict the finding that the wh+aux combination has predictive value, it

does indicate that the combinations may not have unique explanatory

value over their component words. We instead found that other

multiword sequences—those later in the question and those found

in the uninverted form, and thus not considered in prior work—were

significant predictors of non-inversion error. We therefore consider

our findings to be consistent with the spirit if not the letter of prior

usage-based work.

Importantly, our findings are also consistent with a number of the-

oretical proposals which do not assume holistic storage of multiword

units (cf. contributions in Wiechmann et al., 2013). Our interpretation

depends only on the idea that children have mental representations
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that derive from repeated exposure to particular word sequences:

whether or not those sequences are stored as concrete units, the key

notion we are arguing for is that a child’s competence with such a

sequence (and, therefore, the role of such a sequence in question pro-

duction) cannot be explained solely by experience with the compo-

nent parts, but depends also on prior experience with the entire string.

Such a view is compatiblewith, e.g., connectionist approaches, or those

based on discriminative learning (e.g., Baayen et al., 2013).

The present study offers an important additional line of evidence

supporting usage-based approaches, especially accounts of language

development which stress the importance of multiword chunks

(e.g., McCauley & Christiansen, 2019a; Theakston & Lieven, 2017),

including exemplar-based approaches (Ambridge, 2019). Accounts

of wh- question development rooted in theoretical models based

solely on structural considerations, or which eschew the notion of

lexically-based representations in early development, may not be able

to accommodate these findings so straightforwardly (e.g., de Villiers,

1991). Moreover, our findings make clear that any complete model

of language production must consider distributional statistics in the

broadest sense: rather thanmerely considering frequencies tied to the

context or construct of interest (e.g., studying wh- question formation

by looking only at frequencies for items occurring in wh- questions

themselves, such as wh- word + auxiliary combinations), researchers

must recognize that the frequency of word sequences encountered

across the input can play a role.
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APPENDIX A

TABLE A1 CHILDES (English) frequency counts for N-grams across dataset for all caregiver and child utterances

N-gram CaregiverMin. Freq CaregiverMean Freq. CaregiverMax. Freq ChildMin Freq. ChildMean Freq. ChildMax Freq.

Unigram 1 20,153 98,343.0391 219,514 7,414 30,833.4 50,444

Unigram 2 1,110 153,861.9 266,567 128 51,689.5 85,760

Unigram 3 0 241,017.3 508,191 1 68,353.7 187,512

Unigram 4 0 35,680.99 508,191 1 16,613.1 187,512

Unigram 5 0 71,296.2 508,191 1 25,878.5 187,512

Bigram 1 0 18,830.97 66,309 1 8,090.5 20,921

Bigram 2 0 16,062.03 66,796 1 2,978.7 7,216

Bigram 3 0 2,227.369 41,221 1 710.1 19,255

Bigram 4 0 2,622.009 66,796 1 737.4 14,432

Trigram 1 0 2,697.657 13,351 1 915.9 3,867

Trigram 2 0 609.1358 16,887 1 68.7 1,649

Trigram 3 0 265.8017 14,145 1 42.9 4,784

Bigram 1 (Uninverted) 0 1,348.902 6,884 1 669.9 20,921

Bigram 2 (Uninverted) 0 4,351.922 41,221 1 1,271.8 14,432

Bigram 3 (Uninverted) 0 593.7 43,418 1 336.4 9,373

Bigram 4 (Uninverted) 0 2762.7 66,796 1 780.8 20,921

Trigram 1 (Uninverted) 0 55.3 653 1 16.4 205

Trigram 2 (Uninverted) 0 84.9 3,540 1 24.3 1,977

Trigram 3 (Uninverted) 0 68.0 2,592 1 16.6 1,146
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