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Abstract: A venipuncture is the most common non-invasive medical procedure, and is frequently
used with patients; however, a high probability of post-injection complications accompanies intra-
venous injection. The most common complication is a hematoma, which is associated with puncture
of the uppermost and lowermost walls. To simplify and reduce complications of the venipuncture
procedure, and as well as automation of this process, a device that can provide information of the
needle tip position into patient’s tissues needs to be developed. This paper presents a peripheral
vascular puncture control system based on electrical impedance measurements. A special electrode
system was designed to achieve the maximum sensitivity for puncture identification using a tradi-
tional needle, which is usually used in clinical practice. An experimental study on subjects showed
that the electrical impedance signal changed significantly once the standard needle entered the blood
vessel. On basis of theoretical and experimental studies, a decision rule of puncture identification
based on the analysis of amplitude-time parameters of experimental signals was proposed. The
proposed method was tested on 15 test and 9 control samples, with the results showing that 97%
accuracy was obtained.

Keywords: puncture identification; electrode system; electrical impedance

1. Introduction

The venipuncture is a common procedure in clinical practice for medical conditions
such as requiring blood draw and drug and fluid administration, which can be performed
by the use of needles and catheters within the lumen of a vein [1]. For the correct execution
of these manipulations, an accurate understanding of the position of the injection needle
relative to the blood vessel is necessary, otherwise post-injection complications associated
with both walls of the vessel being punctured or partial penetration of the needle into
the vein lumen might occur. Nowadays, this procedure is mainly based on the surgeon’s
experience. Automation of this process, based on objective information of the needle tip
position, obtained by instrumental methods, can reduce the post-injection complications
and increases the success rate of peripheral venous cannulation. Several methods and
systems have been developed for guiding the needle insertion. The use of ultrasound
guidance for peripheral intravenous has become standard practice; however, this method
is associated with the involvement of complex, expensive equipment and a specialist in the
ultrasound diagnostics system [2]. Recently, optical methods have been widely used for
peripheral vein visualization; however, the optical-based methods cannot allow controlling
the penetration of the injection needle into the lumen of the vein [3]. The most popular
methods are those based on sensing. However, this method is very sensitive to motion
artifacts, which cannot be avoided during the venipuncture procedure. Several studies
have been carried out to determine the tissue types based on the difference in electrical
conductivity of biological tissues through which the needle electrode moves, such as skin
tissue, connective and muscle tissues, bone, and blood [4]. These methods use a special
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needle-electrode with a conductive end and an insulating base, which limits their use for
daily procedures such as venipuncture. In this paper, we present a novel bio-impedance
sensor for guiding traditional needle insertion, which is used in daily medical practice
and absolutely does not require special needle manufacturing. To use the bio-impedance
guidance, a biotechnical system was considered, which is physically based on a biological
object—an area of the forearm, consisting of a complex of biological tissues.

The tissues in the region of interest have different electrical properties, as illustrated in
Table 1. Thus, an electrical current with 100 kHz was considered in this work as the impact
of the capacitive part, which was determined by the heterogeneity of tissue structures in
the region of interest to be less than 10% [5].

Table 1. The electrical resistivity of forearm biological tissues at 100 kHz frequency.

The Biological Tissue The Electrical Resistivity Value, Ohm·m
Subcutaneous fat 25 ± 0.7

Nerve 12.5 ± 0.5
Blood vessel wall 3.13 ± 0.2

Muscle tissue 2.76 ± 0.3
Connective tissue 2.5 ± 0.5

Blood 1.42 ± 0.6

Moreover, as the specific electrical resistance of venous blood is several times lower
than that of the surrounding tissues [6], it is in principle possible to determine the moment
of needle-electrode penetration into the blood [7–16] because, in this case, the measured
impedance of the needle relative to the reference electrode decreases. Figure 1 shows a
simplified diagram of the proposed measuring scheme, with the sensor based on sending a
small current through the needle for electrical impedance recoding in a two-electrode setup.
An alternating current of frequency 100 kHz and current force up to 1 mA were used to
avoid nerve and muscle stimulation [17–26].
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Figure 1. Schematic setting of the electrode system. 1, 2—electrode system, 3—blood vessel, and
4—the surrounding tissues.

2. Materials and Methods
2.1. Numerical Modeling

To perform the desired electrical impedance measurements, a special electrode system
should be designed to achieve the maximum sensitivity for puncture identification [27].
However, to substantiate the adequate electrode system position as well as the optimal
parameters of the electrode system, such as the distance between needle and attached
electrode, as well as the contact area size of the attached electrode, it is necessary to
understand the current line distribution between the electrodes; hence, numerical modeling
using SEMCAD X 14.8 (SPEAG AG, Zurich, Switzerland) was proposed in this study.

To mimic the study area, a 3D model was developed that consists of two spaces.
The first space is a homogeneous space and has the electrical resistivity of muscle tissues,
which is equal to 5 Ohm·m [28], while the second space is the simulated venous vessel
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with electrical resistivity close to the blood resistivity and equal to 1.5 Ohm·m [28]. The
geometrical size of the designed model with vessel was selected according to the real size of
the forearm as well as the possible location and depth of venous blood vessels. The overall
dimensions of the model shown in Figure 2 are 200 × 150 × 50 mm, while the vessel has a
5 mm diameter and is located at a 5 mm depth. To simulate the electromagnetic field and
study the current distribution, an electrode system was added to the model. The electrode
system comprises two electrodes; the first electrode was attached on the surface of the
model directly above the vessel, while the second electrode is the needle itself, and the
overall parameters of the needle electrode correspond to the size of a standard injection
needle of G21 caliber: length 40 mm and diameter 0.8 mm.
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Figure 2. The location change (a) and size (b) of the electrode system (I—needle-electrode; II—the
attached electrode; III—venous vessel; IV—soft tissue).

2.2. Experimental Setup

The experimental studies on subjects were carried out in the medical and technological
center of Bauman Moscow State technical university, and research ethics was followed.
All subjects were informed about the whole procedure as well as the mythology before
experiments, and then provided written informed consent. Five human subjects were
involved during this study and 15 venipunctures were performed for the five subjects.
The corresponding electrical impedance measurement was performed using the ReoCar-
dioMonitor system, which was developed at the Department of Medical and Technical
Information Technology at Bauman Moscow State technical university and has certification
documents for clinical trials [29]. The RheoCardioMonitor allows real-time recording of
electrical impedance on a personal computer and provides a four-electrode technique setup;
the technical specification of this system is illustrated in Table 2. The bio-sensor proposed
in this study requires electrical impedance recoding in a two-electrode setup, thus the
RheoCardioMonitor system was adapted to provide the bio-impedance recording with this
type of electrode configuration by combining the current and measuring channels.

Table 2. Technical specification of the measuring system ReoCardioMonitor.

The Technical Parameter The Value

The current 2.8 mA ± 20%
The frequency 100 kHz ± 0.5%

The impedance range 1 ÷ 240 Ohm
Sampling frequency 500 Hz

Accuracy ±0.2 Ohm
Channels number 2

2.3. The Puncture Identification Algorithm

This work provides a solution for the daily routine procedure of venipuncture, thus
several mechanisms accompany manual needle insertion, which can mask the detection of
internal puncture. In order to decrease the effect of these mechanisms, a smart algorithm
that allows accurate detection should be developed. However, the procedure of venipunc-
ture using a needle-electrode with some assumption can be considered as a procedure of
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current flowing through the earth using a ground rod, hence the mathematical model pre-
sented in Equation (1) was used to study the influence of mechanisms that can accompany
manual insertion.

Z =
ρ

2πl
ln

4x
d0

(1)

where Z—the electrical impedance changes, ρ—the apparent electrical resistivity of tissues,
x—the depth of needle electrode penetration, and d0—the needle diameter.

However, the normalization of the experimental signal that can be obtained from
subjects by the proposed mathematical model can allow the detection of venipuncture as
a linear dependence should be observed when the needle moves in soft tissues; once the
needle penetrates the vessel, the electrical impedance signal will change the trajectory, in
contrast to the mathematical model approximation. According to this criterion, it will be
possible to express a puncture of the vein wall. However, in this case, the experimental
signal should be obtained with some assumptions. During the electrical impedance record-
ing, the rate of needle insertion should be uniform and the patient should not perform any
movement. However, these assumptions cannot be realized because, when performing
venipuncture in real clinical conditions, it is impossible to achieve from medical personnel
a uniform rate of needle insertion during the procedure of venipuncture without special
equipment. Therefore, it is necessary to take into account the speed of needle insertion and
the depth of its penetration into soft tissues during the normalizing of the experimental
recording; consequently, Equation (1) was presented in the following form:

dz
dt

=
dz
dx

V(t) (2)

where V(t)—the rate of needle electrode motion in tissues and dz/dx—the spatial sensitiv-
ity function.

The proposed mathematical model shows that the dz/dt dependence has two compo-
nents: the needle-electrode speed and the spatial sensitivity function. The needle-electrode
speed depends on human factors, while the detail analysis of spatial sensitivity function can
determine the normalization factor to reduce the motion artifacts. Thus, according to the
mentioned concepts, the spatial sensitivity function can be characterized by Equation (3).

dz
dx

=
2π

ρd0

(
1 − ln 4x

d

ln2 4x
d

)
·Z2 (3)

The function before Z2 is a relatively small value and can be neglected. Thus, if dz/dt
is normalized to Z2, the impedance changes will mainly be determined by the puncture of
the vessel wall and uneven speed, and not by the depth of the blood vessel, which in turn
will improve the accuracy of determining the puncture of the vein wall.

3. Results
3.1. The Result of Numerical Modeling

Figure 3 shows the results of numerical modelling, which was conducted using SEM-
CAD X 14.8 to select the appropriate specification of the electrode system as well as the
right placement of the attached electrode. In Figure 3a, several needle positions were
considered during the modeling, thus the needle was removed from the attached electrode
by 20, 40, 60, 80, and 100 mm. For every location, the needle-electrode was submerged
by 3, 7.5, and 13 mm. The 7.5 mm insertion depth corresponds to the first puncture of the
vessel wall, whereas the 13 mm insertion depth of needle electrode corresponds to a double
puncture of a venous vessel, when the needle penetrates the uppermost and lowermost
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walls. For each needle position, the relative change in electrical impedance due to puncture
was estimated by Equation (4).

δ =
Zmax − Zmin

Zmax
∗ 100% (4)

where Zmax—the electrical impedance value for needle-electrode insertion to a depth of
3 mm, and Zmin—the electrical impedance value for needle-electrode insertion to a depth
of 7.5 mm.
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The needle insertion depths at 3 mm and 7.5 mm were considered as a criterion for
assessing the relative change in impedance because, at these depths, the needle intersects
the plane of the second medium, which is a simulation of the first puncture of the blood
vessel wall. As shown in Figure 3a, the smaller the distance between the attached electrode
and the needle, the larger the relative change in electrical impedance to puncture. As a
result, a minimum distance of 20 mm was set for further experimental studies.

The results of the optimal selection of attached contact area size are shown in Figure 3b.
During this modelling, the distance between the attached electrode and the needle was
fixed to 20 mm, while the contact area of the attached electrode was changed by this order
1 × 1, 3 × 3, 5 × 5, 10 × 10, 20 × 20, and 30 × 30 mm. The attached electrode was installed
above the imitation vessel on the surface of the model and, correspondingly, the needle
electrode was inserted into 3 and 7.5 mm depths. As shown in Figure 3b, when the contact
area reached 20 × 20 mm, the values of the relative change in electrical impedance began to
approach the maximum value. Thus, the optimal contact area should be at least 20 × 20 mm
for the best visualization of the moment of the first puncture of the blood vessel wall during
venipuncture in the forearm region on the peripheral veins.

As a result of numerical modeling, the electrode system shown in Figure 4 was
designed for experimental studies on subjects. The electrode system is attached to the
skin current electrode, the contact area of the attached electrode is 20 × 30 mm, and it is
made of medical-grade stainless steel. A special clamp was developed to make a traditional
standard injection needle work as a needle electrode without breaking the rules of asepsis.
The clamp is a bent rod fastener; a compression spring is attached to the rod, which is
placed in a rectangular plastic case. Pressing on the end part of the body from the opposite
side causes a curved rod to extend and the injection needle can be fixed. After fixing the
injection needle, the end is released and the spring is released. The curved rod rushes into
the body and grips the injection needle. The rod is made of AISI 304 stainless steel. The
overall dimensions of the clamp are 40 × 5 mm. The size of the area for needle fixation
is 2 mm. However, the electrode system based on a bio polar setup, and the same pair
of electrodes is used both for excitation and measurement. Thus, the electrode system is
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attached to the skin electrode shown in Figure 4a with a dimension greater than the vessel
diameter, and should be placed over the vein from where the blood is drawn, while the
second electrode is the clamp, which should be connected to the needle to make it work as
an electrode, as shown in Figure 4b.
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3.2. The Results of the Experimental Study

The experimental setup is shown in Figure 5. The cephalic vein was selected because
this vein is peripheral, easily available, and commonly used for blood collection [30]. The
attached electrode system was positioned around the vein from which the blood was drawn
in the arm area above the needle insertion location. The needle was inserted at about 10–20◦

degrees to the skin and moved towards the attached electrode. However, the angle of
needle insertion did not affect the bio-impedance sensing for the venous entry detection
during venipuncture [31–35].
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Figure 6 shows the obtained electrical impedance change and it first derivative. The
electrical impedance value decreases in correspondence with the rate of needle electrode
injection; once the needle entered the blood vessel, the signal changed significantly. The
analysis of the electrical impedance signal obtained during experimental studies showed



Sensors 2022, 22, 665 7 of 13

that it is advisable to identify a puncture using a differential signal because, at the moment
of venous vessel puncture, a jump occurs, indicating a transition from a less conductive
medium to a more conductive medium. To study the differential signal, the received signal
was transformed by Equation (5), which provides the smoothed derivative.

H(Z) =
1

10T

(
−2Z−2 − Z−1 + Z1 + 2Z2

)
(5)

where T—the sampling period and Z—the recoding bio-impedance signal.
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As shown from the corresponding first signal derivative, the similar complexes of
puncture impedance changes can cause the puncture to be masked and hard to detect.
However, the detailed analysis of the impedance signal and its derivative shows that, in the
process of needle-electrode penetration into soft tissues, complexes of impedance changes
similar to a puncture can appear that mask the main desired event and make it hard to
identify. Thus, for the obtained experimental samples, consisting of fifteen experimental
signals, the normalization procedure proposed in Section 2.3 was applied to decrease the
influence of the processes affecting the electrical impedance changes associated with the
puncture event. As shown in Figure 7, the applied normalization procedure could increase
the signal to noise ratio (SNR) to an average of 24 dB, which helps to determine the moment
of the first puncture of the blood vessel wall.

The collected data from all subjects were analyzed and the corresponding amplitude-
time characteristics are illustrated in Table 3. As shown in Table 3 for every signal,
the following amplitude-time characteristics were determined: ∆Zcommon—the mea-
sured impedance range; ∆Zpuncture—the impedance change during vein wall puncture;
Tpuncture—the time of puncture of the vein wall.
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Table 3. Characteristics of electrical impedance recording during venipuncture.

Subjects The Number of
Measurements

∆Zcommon,
Ohm

∆Zpuncture,
Ohm

Tpuncture
Sec

1 5 5274 63 0.03
2 4 6470 139 0.04
3 2 8120 59 0.045
4 2 6958 28 0.04
5 2 7707 24 0.04

4. Discussion

To propose an algorithm of puncture identification, the function X1 in Equation (6),
which describes the normalization of the signal first derivative by the Z2, was analyzed for
such cases like puncturing and in the absence of puncture.

X1 =
dz
dt

d0

Z2 (6)

During this study, it was noted that the amplitude-time characteristics of X1 function at
the puncture moment and at artifact moment were absolutely different. For more detailed
descriptions of these events, it was proposed to conduct a function contour analysis,
which allows developing an algorithm for puncture identification. Figure 8 shows the
change of X1 function (complex—a puncture candidate). In Figure 8, the signal was
inverted and multiplied by (–) for simplification as well as to get rid of the minus before
the function in Figure 7b. To determine the boundaries of events, the X1 function was
integrated and differentiated. The analysis of the integral and differential signals made it
possible to determine the time intervals between the reference points of the function, which
characterize the event under study. Thus, the obtained parameters of X function are the
result of needle electrode interaction with the venous vessel wall during venipuncture and
the needle electrode insertion into soft tissue.

According to the proposed algorithm and the contour analysis, the following amplitude-
time parameters were obtained: ∆t1—the time of ascending front formation of X1 function
at the vessel wall puncture moment; ∆t2—the time of descending front formation of X1
function at vessel wall puncture moment; ∆t3—the time of ascending front formation of
X1 function at the moment of needle movement in surrounding tissues near the venous
vessel; x1—the value of the integration function at the moment when the needle-electrode
touches the wall of the venous vessel; x2—the value of the integration function at the vessel
wall puncture moment; x3—the value of the integration function at the moment when the
needle penetrates the lumen and stops; maxPr1—the maximum value of X1 function at the
first moment of vessel puncture; Pr1 (1)—the value of X1 function at the first moment of
vessel puncture; Pr1 (2)—the value of X1 function at the end moment of vessel puncture;
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Pr1 (3)—the value of X1 function at the moment of needle movement into soft tissues near
the venous vessel; maxPr2—the maximum value of the derivative function at the puncture
moment; minPr2—the minimum value of the derivative function at the puncture moment.
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As result of the contour analysis for fifteen experimental signals, sixty-five events
were received and analyzed. Among these events, fifteen events were associated with
venous vessel punctures and fifty events were associated with artifacts of the needle
electrode movement. Correlation analysis was performed in order to minimize the space of
significant parameters. As a result, five important parameters were left. According to the
results of the performed analysis, an algorithm based on logistic regression was proposed.
The algorithm can allow the peak detection that corresponds to puncture. Equation (7)
represents the logistic regression model [36]. To apply a logistic model, it must be adapted
to the tasks being analyzed. In order to achieve this task, the regression coefficient x
should be obtained, hence the regression coefficients were calculated using optimization
techniques and gradient descent method, as shown in Equation (8).

f (x) =
1

1 + e−x (7)

X = Z0 + A∆t1Z1 + A∆t1Z2 + A∆t1Z3 + AmaxPr1Z4 + Ax2Z5 (8)

where x—logistic function parameter; Z0—absolute term; Z—regression coefficient; A—
independent variable value.

STATISTICA 10 [37] was used to implement the calculation of the regression coefficient.
The regression model was trained firstly with the training sample previously obtained,
which comprises fifteen experimental signals and, subsequently, sixty-five analyzed events.
The puncture event was assigned a value of one, while the artifact is zero. As a result, fifteen
punctures and fifty artifacts were obtained. Table 4 illustrates the result of the regression
coefficients calculation.
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Table 4. The calculated regression coefficients.

The Regression Coefficients The Value

absolute term (z0) −0.47
∆t1 (z1) −167.61
∆t2 (z2) −77.21
∆t3 (z3) −77.95

maxPr1 (z4) 3.82
x2 (z5) 63.94

Figure 9 shows the results of training validation; it was considered that eleven punc-
tures and forty-nine artifacts were correctly detected.
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Figure 9. Training a logistic regression model on a test sample.

To verify the logistic model, a control sample was collected, which consisted of nine
experimental recordings and was obtained from five human subjects. For the nine ex-
perimental signals, thirty-four events were extracted, namely nine punctures and twenty-
five artifacts.

The amplitude-time characteristics of the recording bio-impedance are illustrated
in Table 5.

Table 5. Characteristics of electrical impedance for the control group.

Subjects The Number of
Measurements

∆Zcommon,
Ohm

∆Zpuncture,
Ohm

Tpuncture,
Sec

1 4 7220 338 0.035
2 2 6945 414 0.041
3 2 7270 317 0.04
4 1 7134 100 0.04

To verify the model, a contour analysis was carried out for the thirty-four events. The
parameters of the regression function were found taking into account the logistic regression
coefficients obtained during training. During the verification of the control samples, eight
of nine punctures and twenty-four of twenty-five artifacts were correctly detected. The
results of model verification on the control samples are shown in Figure 10.
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Figure 10. The result of model approbation on the control sample.

Model verification showed acceptable results in terms of using the logistic regression
model as the decision rule. Based on the results obtained, the sensitivity, specificity, and
accuracy were 88%, 100%, and 97%, respectively.

5. Conclusions

A novel method for guiding the needle insertion based on electrical impedance mea-
surement was proposed in this study. During this study, it was concluded that, in the
bipolar scheme, which consists of two electrodes, one of them is the needle itself and can
be used for guiding traditional needle insertion. The numerical modelling conducted to
determine the appropriate location of the attached electrode regarding the vein position
showed that the electrode should cover the selected vein for venipuncture in order to
ensure uniform current distribution through the vein, and hence increase the sensitivity
of puncture identification. However, the contact area of the attached electrode should
be at least 20 × 20 mm. The maximum relative change in electrical impedance owing to
a puncture of the venous vessel was achieved when the needle was removed from the
attached electrode of not more than 20 mm. This arrangement of the electrode system
was chosen because the relative change in electrical impedance to the first puncture of the
venous vessel wall is 62%, which can be identified with high precision.

The results of theoretical studies on the influence of anatomical structures in the study
area, which have different electrical resistivity, showed that, at the moment of venous vessel
puncture, a jump occurs, indicating a transition from a less conductive medium to a more
conductive medium. This result indicated the adequate selection of the current parameters
such as the frequency and the amplitude. As shown by the results of the experimental
studies, the amplitude-time characteristics of the event associated with venipuncture were
determined; these parameters can be used for the technical specification of the bio-sensor
such as the dynamic range and the sampling rate. Through the detailed analysis of the
processes affecting the electrical impedance change, it was concluded that taking into
account the influence of the needle-electrode penetration into soft tissues could help to
increase the signal-to-noise ratio by an average of 24 dB, which helps to determine the
moment of the first puncture of the blood vessel wall. In the course of the contour analysis,
biomechanical processes of interaction between the needle electrode and the venous vessel
were revealed during the first puncture of its wall.

A conclusion was made about the effectiveness of using the logistic regression model
as a decisive rule for distinguishing the first puncture of the venous vessel wall from
artifacts associated with the uneven speed of movement of the needle-electrode in the
patient’s soft tissues. In this case, the accuracy of determining the puncture is more than
90%, which is acceptable in clinical practice, for example, to patients with poorly contoured
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or moving veins. This method is a prerequisite to the development of a robot-assisted
venipuncture system.
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