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Abstract: Radiotherapy for head-and-neck cancers frequently causes long-term hypofunction of
salivary glands that severely compromises quality of life and is difficult to treat. Here, we studied
effects and mechanisms of Sphingosine-1-phosphate (S1P), a versatile signaling sphingolipid, in
preventing irreversible dry mouth caused by radiotherapy. Mouse submandibular glands (SMGs)
were irradiated with or without intra-SMG S1P pretreatment. The saliva flow rate was measured
following pilocarpine stimulation. The expression of genes related to S1P signaling and radiation
damage was examined by flow cytometry, immunohistochemistry, quantitative RT-PCR, Western
blotting, and/or single-cell RNA-sequencing. S1P pretreatment ameliorated irradiation-induced
salivary dysfunction in mice through a decrease in irradiation-induced oxidative stress and con-
sequent apoptosis and cellular senescence, which is related to the enhancement of Nrf2-regulated
anti-oxidative response. In mouse SMGs, endothelial cells and resident macrophages are the major
cells capable of producing S1P and expressing the pro-regenerative S1P receptor S1pr1. Both mouse
SMGs and human endothelial cells are protected from irradiation damage by S1P pretreatment, likely
through the S1pr1/Akt/eNOS axis. Moreover, intra-SMG-injected S1P did not affect the growth and
radiosensitivity of head-and-neck cancer in a mouse model. These data indicate that S1P signaling
pathway is a promising target for alleviating irradiation-induced salivary gland hypofunction.

Keywords: sphingosine-1-phosphate signaling; salivary glands; irradiation; head and neck cancers;
endothelial cells; resident macrophages

1. Introduction

Head and neck cancers (HNCs) are the 7th most common cancers worldwide in 2020
with an estimated 931,931 new cases and 387,117 new deaths [1]. Radiation therapy is a
first-line HNC treatment but frequently causes irreversible hypofunction of the salivary
glands [2]. Even with the progress of intensity-modulated radiation therapy, the incidence
and severity of irradiation (IR)-induced dry mouth remain high [3]. IR-induced dry mouth
leads to difficulties in sleep, speech, chewing, and swallowing and increases the risk
of dental caries, which severely compromises the patients’ quality of life [4]. Current
treatments, such as artificial saliva and saliva secretion stimulators, only partially and
temporarily alleviate these symptoms. Therefore, effective therapies for IR injury of salivary
glands are critically needed.
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In both mouse and miniature pig models, microvascular endothelial cells in the
salivary glands were rapidly (from 4 h after IR) and persistently damaged by IR [5,6]. Our
recent findings indicated that salivary gland resident macrophages also decreased rapidly
after IR and were essential for preserving salivary gland function through homeostatic
paracrine/juxtacrine interactions with endothelial cells and epithelial progenitors [7,8].
Therefore, approaches targeting these two types of cells are promising for the preservation
or restoration of saliva secretion after IR [5–8].

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by ceramide
metabolism and functions, mainly in the secreted form through cell surface S1P receptors [9].
S1P receptors (S1pr1-5) are G-protein-coupled receptors, and S1P/S1pr interactions acti-
vate intracellular signaling molecules such as protein kinase B (Akt) to regulate vari-
ous pathophysiological processes including cell proliferation, migration, apoptosis, and
angiogenesis [9]. S1P is mainly produced and secreted by endothelial cells, erythrocytes,
and platelets, while the major cells responsive to extracellular S1P in most organs are
endothelial cells and macrophages [9].

We previously showed that, in a miniature pig model, intra-parotid administration
of S1P alleviated IR-induced parotid injury [10], but the underlying mechanisms remain
unclear due to the limited tools for studying pig molecules. Therefore, we switched to a
mouse model with sufficient established research tools for mechanism study and focused on
the submandibular glands (SMGs) that are the major source of both resting and stimulated
saliva [11]. Here, we report that intra-SMG-injected S1P alleviates the deleterious effects
of IR on salivary gland function, which is achieved by decreasing oxidative stress and
consequent DNA damage, apoptosis, and cellular senescence, mainly in endothelial cells
and resident macrophages, likely through the activation of the S1pr1/Akt pathway and the
enhancement of Nrf2-regulated antioxidative responses.

2. Materials and Methods
2.1. Animal Experiments

C57BL/6 mice for single-cell RNA sequencing and flow cytometry were purchased
from the Jackson Laboratory (Maine, USA). Other C57BL/6 mice and nude mice were
purchased from SPF Biotechnology (Beijing, China). S1P (Cayman Chemicals, Ann Arbor,
MI, USA) was first dissolved in a PET vehicle (5% polyethylene glycol 400, 2.5% ethanol,
and 0.8% Tween-80 diluted in PBS) [10] at a concentration of 1 mg/mL and then diluted
with PBS before use. C57BL/6 mice were randomly grouped to the following treatments:
non-treated (NT), intra-SMG PET injection (vehicle), intra-SMG S1P injection (S1P), PET
injection followed by 15 Gy irradiation (IR), and S1P injection followed by IR (IR + S1P).
S1P was injected percutaneously into mouse SMGs 30 min prior to IR at the dose of 0.05,
0.1, or 0.2 mg/kg body weight. PET was similarly injected at an equivalent dose to that
for 0.2 mg/kg S1P. The pilocarpine-stimulated salivary flow rate was measured weekly
from one week before treatment for 5 weeks and then at day 60 and 90 after treatment from
mice anesthetized intraperitoneally with ketamine (100 mg/kg) and xylazine (10 mg/kg).
Blood was collected from tail vein for detecting plasma S1P concentration. Nude mice
were injected subcutaneously with CAL27 cells in their flanks, as previously reported [12].
Tumor volumes were monitored every three days, and mice were randomly grouped when
tumor sizes reached approximately 0.3 cm3. Tumor-carrying mice were treated with intra-
SMG injection of 0.2 mg/kg S1P as mentioned above, 15 Gy single-dose irradiation at the
tumor site, as we previously reported [13], or both. These mice were observed for 15 days
after the above treatment and then euthanized.

2.2. Cell Culture

Human umbilical vascular endothelial cells (HUVECs) and VascuLife medium were
purchased from Lifeline Cell Technology (FC-0003 and 08837, San Diego, CA, USA) and
cultured at atmospheric oxygen levels (20% O2; 5% CO2). Passage 3 (P3) HUVECs were
used in all experiments. Human CAL27 head and neck cancer cells were purchased from
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ATCC (CRL-2095) and cultured as previously described [12]. S1P was dissolved in a PET
vehicle to 0.1, 0.5, or 1 µM and added to the cell culture 30 min before IR. A selective S1pr1
antagonist, W146 (Tocris Bioscience, Bristol, UK), was dissolved in 10% DMSO+ 25% Tween
20 as a 20 mM stock and added 1 h before IR into culture medium with a final concentration
of 10 µM. Akt inhibitor, MK2206 (MCE, HY-10358, Monmouth Junction, NI, USA), was
dissolved in PBS.

2.3. Irradiation

Animals were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) and
then received a 15 Gy single dose of IR at the submandibular gland area (Supplementary
Figure S1). The IR was performed with a photon energy of 6 mV at 3 Gy/min using an
Elekta Synergy accelerator (Trilogy Varian, Palo Alto, CA, USA). HUVECs received 10 Gy
single-dose IR at 1.48 Gy/min using the same accelerator.

2.4. Biochemical Test

SOD activity in the submandibular gland homogenate was detected using the Total
Superoxide Dismutase Assay Kit (S0101, Beyotime, Shanghai, China) according to the
manufacturer’s instructions.

2.5. Immunofluorescence (IF) and Immunohistochemistry (IHC) Staining

SMG sections and HUVECs were fixed in 4% paraformaldehyde for 30 min, rinsed
using PBS 3 times, and then blocked with 10% goat serum for 1 h at room temperature.
These samples were incubated overnight at 4 ◦C with following primary antibodies: anti-p-
H2ax (1:200, 80312, CST, Danvers, MA, USA), anti-Nrf2 (1:50, 16396, Proteintech, Rosemont,
IL, USA), anti-S1pr1 (1:500, PA11040, ThermoFisher Scientific, Waltham, MA, USA), anti-
Cd31 (1:50, ab281583, Abcam, Waltham, MA, USA), and anti-F4/80 (1:100, bs7058R, Bioss,
Beijing, China). After washing, samples were incubated for 1 h at room temperature with
corresponding secondary antibodies: Alexa Fluor® 594-conjugated goat anti-rabbit IgG
(1:500, AS039, ABclonal, Wuhan, China), Alexa Fluor® 488-conjugated goat anti-mouse IgG
(1:500, ABclonal AS037), Alexa Fluor® 488-conjugated goat anti-rabbit IgG (1:500, Abcam
ab150077), and Alexa Fluor® 594-conjugated goat anti-mouse IgG (1:500, Abcam ab150115).
After washing, samples were counterstained with 4′,6-diamidino-2-phenylindole (DAPI)
(F6057, Sigma, St. Louis, MO, USA). For IHC, the secondary antibody used was labeled with
HRP (1:10,000, Abcam ab205718), DAB was used as the chromogen, and the sections were
counterstained with hematoxylin. All IF and IHC images were captured using a microscope
(BX61, Olympus, Tokyo, Japan). Six representative fields from three independent samples
in each group were quantified to calculate the positively stained areas or positive cells.

2.6. Detection of Reactive Oxygen Species (ROS)

Intracellular ROS levels in HUVECs were detected using an ROS assay kit (S0033,
Beyotime, Shanghai, China) according to the manufacturer’s instructions. The stained
ROS signals were then photographed using a fluorescent microscope (OLYPUS BX 61,
Tokyo, Japan).

2.7. Western Blot

The submandibular glands and HUVECs were ground on ice, and proteins were
harvested using lysis buffer (C1055, Applygen, Beijing, China) containing a protease
inhibitor cocktail (P8340, Sigma, Saint Louis, MO, USA) and phosphatase inhibitors (P1261,
Applygen, Beijing, China). Protein concentration was determined using the Bradford
method (Bio-Rad Laboratories, Hercules, CA, USA). Equal amounts of protein (25 µg)
were separated by protein electrophoresis and transferred to PVDF membranes. PVDF
membranes were incubated overnight with primary antibodies including Aqp5 (0.1 µg/mL,
ab78486, Abcam, Waltham, MA, USA), Bax (1:1000, Abcam ab32503), Bcl2 (1:2000, Abcam
ab182858), p-H2ax (1:1000, CST 80312, Danvers, MA, USA), cleaved Caspase3 (1:1000, CST



Antioxidants 2022, 11, 2050 4 of 18

9664P), p53 (1:1000, 10442-1-AP, Proteintech, Rosemont, IL, USA), Nox4 (1:1000, Proteintech
14347), Nrf2 (1:1000, Proteintech 16396), Akt (1:1000, Proteintech 10176-2), p-Akt (1:2000,
CST 4060T), Sod2 (1:1000, Abcam ab137037) eNOS (1:500, Abcam ab76198), p-eNOS (1:1000,
CST 9570), and β-actin (1:50,000, Abclone AC026). After washing, the membranes were
incubated with secondary antibodies (Goat anti-rabbit or anti-mouse IgG, 1:10,000, Abcam
ab97051 and ab97040) for 1 h at room temperature. The proteins examined were visualized
with Clarity Western ECL Substrate (Bio-Rad 170-5060, Hercules, CA, USA). Protein levels
were analyzed as band intensities with the Image J software, normalized with the loading
control β-actin first, and then shown as relative levels compared to normalized levels of
corresponding proteins in nontreated group or vehicle group.

2.8. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

RNAs were extracted from SMGs using the RNeasy Mini Kit (Qiagen, Redwood City,
CA, USA) and reverse transcribed using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Waltham, MA, USA). The primer sequences were retrieved from
Primerbank (http://pga.mgh.harvard.edu/primerbank, accessed on 11 October 2021) and
synthesized by Invitrogen (Waltham, MA, USA). qPCR was performed using SYBR Green
Master Mix (Bio-Rad, Hercules, CA, USA) on a 7900HT Fast Real-Time PCR System (Ap-
plied Biosystems, Waltham, MA, USA). mRNA levels were normalized with the reference
gene Gapdh first, and then shown as relative levels compared to normalized levels of
corresponding genes in nontreated group unless stated otherwise.

2.9. Assays on Apoptosis and Cellular Senescence

Fixed frozen sections (5 µm) were prepared from the SMGs. Terminal deoxynu-
cleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and senescence-associated
β-galactosidase (SA-βgal) staining were performed using the One Step TUNEL Apoptosis
Assay Kit (C1090, Beyotime, Shanghai, China) and SA-β-gal staining kit (C0602, Beyotime,
Shanghai, China) according to the manufacturer’s instructions. TUNEL-positive cells and
SA-β-gal-positive areas were calculated using the ImageJ software (Version 1.53t 24, NIH,
Bethesda, MD, USA). Six representative fields from three independent samples in each
group were quantified to calculate the positively stained areas or positive cells.

2.10. Single-Cell RNA Sequencing (scRNA-Seq) and Bioinformatics Analyses

Single-cell suspensions were isolated from mouse SMG as previously reported [7].
Briefly, SMGs were minced and digested for 1 h with RPMI 1640 medium containing
1 mg/mL collagenase IV, 5 mM CaCl2, 50 mg DNase I, and 8% fetal bovine serum with
continuous shaking at room temperature. scRNA-seq libraries were generated in TAMU
Genomics Core using the 10× Chromium platform and the version 3 Chromium Single Cell
3′ reagent kit following the manufacturer’s instructions (10× Genomics, Pleasanton, CA,
USA). Samples were pooled in equimolar concentrations and sequenced on a single lane of
an S4 2 × 150 PE flow cell on an Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA).
Bioinformatics analyses were performed by researchers blinded to the treatments using
the methods detailed in our recent paper [7]. The uniform approximation and projection
method (UMAP) was used to visualize the clusters. The normalized data are shown as
feature plots. Approximately 18,000 cells were sequenced at a depth of 1420 median genes
per cell. The heatmap of S1P-related genes in major types of SMG cells was generated with
globally distinguishing fold-change data exported from the Loupe Browser (Version 6.2.0,
10× Genomics, Pleasanton, CA, USA).

2.11. Flow Cytometry

Single cells from mouse SMGs were generated as mentioned above. These cells were
stained with fluorescent-labeled antibodies against F4/80 (BD Pharmingen 123116, 123107,
San Diego, CA, USA), Cd31 (BioLegend 102410, San Diego, CA, USA), S1pr1 (R&D Systems
FAB7089P, Minneapolis, MN, USA), S1pr2 (Biorbyt orb319083-FITC, St Louis, MO, USA),
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S1pr3 (Bioss Bs-7541R-PE, Woburn, MA, USA), or the corresponding isotype controls
(BioLegend 400608, 400511, 400612, 400207, 1:100, San Diego, CA, USA). Dead cells were
excluded using a LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Invitrogen, Waltham,
MA, USA). The stained cells were analyzed on an FC500 flow cytometer (Beckman Coulter,
Brea, CA, USA). Data were analyzed using the FlowJo software (Version 10.8.1, FlowJo,
Ashland, OR, USA).

2.12. Statistical Analysis

All data were analyzed with Prism 9 software (Version 9.4.1, GraphPad, San Diego,
CA, USA) using One-way ANOVA with Tukey’s multiple-comparison test. Charts were
generated using Prism 9. Statistical significance was set at p < 0.05.

3. Results
3.1. Locally Injected S1P Alleviates Irradiation-Induced Salivary Gland Hypofunction in Mice

We previously reported that S1P administered into the parotid gland by retrograde
ductal instillation alleviates irradiation (IR)-induced parotid injury in a miniature pig model,
but the underlying mechanisms are largely unclear [10]. The mechanisms of IR-induced
dry mouth and corresponding treatments have mostly been studied in mouse models,
while submandibular glands (SMGs) produce approximately 2/3 of the total resting saliva
and 40% of the total stimulated saliva [11]. Therefore, we used the mouse SMG model to
determine the effects and mechanisms of intra-SMG-injected S1P on IR-induced salivary
gland hypofunction. In brief, we percutaneously injected 0.05, 0.1, or 0.2 mg/kg S1P into
SMGs of adult C57BL/6 mice and then radiated mice with or without S1P pretreatment
30 min later at the SMG region (Supplementary Figures S1 and S2). The doses of S1P used
in our mouse study was based on our related study in mini-pigs (0.02 mg/Kg) [10] and the
dose conversion ratio around 11 between these two species [14]. The pilocarpine-stimulated
whole saliva flow rate in all mice was measured at 7 days before and 7, 14, 28, 60 and 90 days
after S1P and/or IR treatment and normalized with body weight, and SMGs were collected
on days 1, 7, and 90 after these treatments (Figure 1A and Figure S3). The normalized
saliva flow rates at all time points were greatly reduced in the IR group compared with
the nontreated (NT) group, as expected, while the pretreatment of S1P at 0.1 or 0.2 but not
0.05 mg/kg significantly improved the saliva flow rate compared with the IR group at 28,
60 and 90 days after IR (Figure 1B). Consistently, the expression of Aquaporin5 (Aqp5), a
marker of saliva-producing acinar cells, was significantly decreased by IR, but preserved
by 0.1 or 0.2, but not 0.05 mg/kg, S1P pretreatment at both the mRNA and protein levels
at day 90 (Figure 1C–E). These data indicate that locally administered S1P alleviates IR
damage in mouse SMGs. Since no significant differences in the above indexes were found
between 0.1 and 0.2 mg/kg S1P groups, and the polyethylene glycol 400 in S1P vehicle
should be minimized to avoid potential negative effects [15], we used 0.1 mg/kg S1P for all
following experiments.

3.2. S1P Decreases Irradiation-Induced Apoptosis and Cellular Senescence in Salivary Glands

IR-induced dry mouth is related to apoptosis and the senescence of salivary gland
cells in both mouse and pig models [16–20]. TUNEL staining of SMGs collected 24 h and
7 days after IR indicated that the number of apoptotic cells significantly increased after IR,
as expected, which was significantly repressed by S1P pretreatment (Figures 2A,B and S4).
Consistently, at both 24 h and 7 d after IR, pro-apoptotic proteins p53, Bax, and cleaved
caspase 3 were upregulated in the IR group and decreased in the IR + S1P group, while
the anti-apoptotic protein Bcl2 was downregulated by IR and increased in the IR + S1P
group (Figure 2C–G). Senescence-associated β-galactosidase (SA-β-Gal) staining indicated
that the cellular senescence induced by IR was significantly inhibited by S1P pretreatment
7 days after IR (Figure 2H,I). Consistently, the expression of the senescent marker p21 was
significantly increased after IR but decreased by S1P on day 7 after IR (Figure 2J). In all
the above assays, S1P treatment alone did not significantly affect any of the measured
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indexes. Taken together, these data suggest that S1P alleviates IR damage in mouse SMGs
by decreasing IR-induced apoptosis and cellular senescence.
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before and 7, 14, 28, 60 and 90 days after IR (N = 6). (C–E) RT-qPCR and Western blot analysis of Aqp5
level in SMGs collected at 90 days after IR (N = 3). Data are expressed as mean ± SD, **: p < 0.01, ***:
p < 0.001, ns: not significant. Quantitative data were analyzed using one-way ANOVA with Tukey’s
multiple comparisons.

3.3. S1P Ameliorates IR-Caused Oxidative Stress and DNA Damage by Upregulating
Nrf2-Related Antioxidant Responses

Cellular senescence in irradiated salivary glands is caused by oxidative stress and
consequent DNA double-strand breaks (DSB) [18,19]. As indicated by immunofluorescence
staining and Western blotting, the level of phospho-H2A.X variant histone (p-H2ax), a
DSB marker, was remarkably increased in SMGs 4 and 24 h after IR, as expected, and was
significantly repressed by S1P pretreatment (Figure 3A–D and Figure S5). Oxidative stress
caused by IR is related to an increase in NADPH oxidase 4 (Nox4) in endothelial cells [21]
and a decrease in superoxide dismutase 2 (Sod2) in mouse SMGs [22]. The expression of
Sods and many other antioxidant enzymes is enhanced by nuclear factor erythroid 2-related
factor 2 (Nrf2/Nfe2l2) in various mammalian tissues, including salivary glands [23,24],
whereas Nrf2 protein levels are downregulated by IR [25] but upregulated by S1P signaling
in cultured cells from several other organs [26,27]. As indicated by Western blot analyses of
SMG homogenate at 4 and 24 h after S1P or IR treatment, IR decreased the expression of
Sod2 and Nrf2 but increased Nox4 expression as expected, while S1P treatment alone did
not significantly affect the expression of these three proteins in non-irradiated SMGs, but
significantly reversed the effects of IR on these proteins (Figure 3E–H). Similar changes in
the total SOD activity were found in the SMG homogenate using a commercial kit (Figure 3I).
Consistently, the mRNA levels of multiple Nrf2-regulated anti-oxidative genes, including
Gpx2, Gsr, Gsta2, Nqo1, and Txn2 [28,29], in SMGs collected 24 h after IR were significantly
decreased by IR but restored by S1P treatment before IR (Figure 3J). Taken together, these
data indicate that the radioprotective effects of S1P are related to the upregulation of
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Nrf2-related antioxidant responses and the consequent decrease in oxidative stress and
DNA damage.
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(A–D) Levels of p-H2ax in SMGs collected at 4 or 24 h after IR were examined with immunofluo-
rescence staining and Western blot analyses. Magnification: ×400. (E–H) Levels of Sod2, Nox4 and
Nrf2 proteins in SMGs were examined with Western blot. (I) Sod activities in SMG homogenate were
examined with a commercial kit. (J) mRNA levels of Nrf2 target genes in SMGs collected at 24 h
after IR were examined with RT-qPCR. Data are shown as mean ± SD, N = 3, ns: not significant vs.
NT, #: p < 0.05 vs. NT, *: p < 0.05, **: p < 0.01, ***: p < 0.001. Quantitative data were analyzed using
one-way ANOVA with Tukey’s multiple comparisons.
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3.4. Genes Required for S1P Production, Secretion, and Pro-Regenerative Signaling Are Mainly
Expressed in Salivary Gland Endothelial Cells and Resident Macrophages

To determine which types of SMG cells produce S1P and/or respond to S1P signaling,
we performed single-cell RNA-sequencing (scRNA-seq) of SMGs from non-treated adult
C57BL/6 mice and analyzed data as we recently reported [7]. Sphingosine is produced at
the plasma membrane from ceramides by ceramidases (Acer1/2/3 and Asah1/2) and then
phosphorylated by sphingosine kinases (Sphk1/2) to form S1P, while the exportation of
S1P is mediated by spinster 2 (Spns2) from endothelial cells and ABC transporters from red
blood cells [30]. Ceramide levels increase immediately after IR through the hydrolysis of
sphingomyelin in cell membranes by the acid and neutral sphingomyelinases Smpd1 and
Smpd2, which leads to apoptosis [31–33]. In our scRNA-seq data, most cells in the “Endo”
cluster are Pecam1+ endothelial cells and about 20% of them are peri-endothelial cells (Acta2+

vascular smooth muscle cells, Pcp4l1hi pericytes, and Pecam1−Cd34+ progenitors, Supple-
mentary Figure S6A–E,Q), as reported in various other tissues [34–36]. Smpd1 and Smpd2
are most abundant in the Endo cluster, Sphk1 and Sphk2 are widely expressed in most types
of cells, while all detectable ceramidases (Acer2/3 and Asah1/2) and the S1P transporters
Spns2 are enriched in the Endo cluster and resident macrophages (rMϕs), suggesting that
they are the main sources of extracellular S1P in mouse SMGs (Figure 4A–C). Notably,
among the five S1P receptors, S1pr1 and S1pr5 signaling showed anti-inflammatory, vas-
cular protective, and pro-regenerative effects [37–39], whereas S1pr2, S1pr3, and S1pr4
signaling pathways are reported to be pro-inflammatory and pro-fibrotic [40–42]. S1pr1
mRNA was enriched in the Endo cluster and present in multiple types of cells, including
resident macrophages; S1pr2 mRNA was present in macrophages and ductal cells, while
S1pr3/4/5 mRNAs were enriched in lymphocytes such as innate lymphoid cells (ILCs) and
NKT cells (Figure 4A–C). In the Endo cluster, >93% S1pr1+ cells are Pecam1+ endothelial
cells, while <7% S1pr1+ cells are either Pecam1−Cd34+ progenitors or Pcp4l1hi pericytes but
not Acta2+ smooth muscle cells (Supplementary Figure S6F,G,R). Among all other S1pr
genes, only S1pr4 was detected in the Endo cluster in a few cells (<5%), mostly in Pecam1+

endothelial cells and occasionally in Pcp4l1hi pericytes (Supplementary Figure S6K–P,S).
The expression of Nrf2 (Nfe2l2), an S1P target gene essential for its radioprotective effect, is
also enriched in rMϕs (Figure 4A–C). SMG endothelial cells, another major S1P-responsive
cell, are highly expression growth factors essential for the homeostasis of other cells, such
as Csf1 for rMϕs [7] and Kitl (stem cell factor) for Kit+ epithelial progenitors (Figure 4A–C).
Since most F4/80+ cells in SMGs are Ly6clow resident macrophages (~90%) [7], we used
F4/80 as a surrogate marker for SMG rMϕs in flow cytometry assays. The expression
patterns of the above genes were validated by RT-qPCR assays on CD31+, F4/80+, and
CD31−F4/80− (double negative) cells isolated from nontreated SMGs with FACS (Supple-
mentary Figure S7). The RT-qPCR assay on mRNA from whole SMGs indicated that S1pr1,
S1pr2, and S1pr3 are expressed at much higher levels than S1pr4 and S1pr5 (Figure 4D).
Consistently, as indicated by flow cytometry assays, most S1pr1+ cells in SMGs express
either the endothelial marker CD31 (~40%) or F4/80 (~45%), while the percentages of these
two types of cells in S1pr2+ or S1pr3+ cells are much lower (Figure 4D–I). Moreover, in both
CD31+ and F4/80+ cells, S1pr1 is the most common type of S1P receptor (~50% and ~25%,
respectively), while the presence of S1pr2 or S1pr3 is much rarer (Figure 4E–J). Together,
these data indicate that endothelial cells and resident macrophages in mouse SMGs are the
major sources of extracellular S1P and the major cells responsive to the pro-regenerative
S1pr1 signaling.
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Figure 4. Expression patterns of S1P metabolic genes and receptors in salivary glands.
(A–C) Expression pattern and relative levels of genes essential for S1P production and secretion,
S1P receptors, and potential target genes of S1P signaling were shown in the feature plots (A) and
heatmaps (B,C) of scRNA-seq data of nontreated SMGs. Endo: endothelial and peri-endothelial
cells; rMϕ: resident macrophages; iMϕ: infiltrating macrophages; Epi: epithelial cells; ILC: innate
lymphoid cells; NKT: natural killer T cells. The color scales in (B,C) are log2 fold changes vs. all other
clusters. (D) mRNA levels of S1P receptors in nontreated SMGs were examined with RT-qPCR and
shown as relative to S1pr1. N = 3. *: p < 0.05 vs. S1pr1; ns: not significant vs. S1pr1. (E–J) Expression
patterns of major S1P receptors in SMG endothelial cells and macrophages were confirmed with flow
cytometry. N = 3. *: p < 0.05, ns: not significant. Quantitative data were analyzed using one-way
ANOVA with Tukey’s multiple comparisons.
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3.5. S1P Protects Salivary Gland Macrophages and Endothelial Cells from Irradiation Damage

SMG-resident macrophages and endothelial cells are essential for maintaining salivary
function, are severely damaged by IR [5,7], and highly express pro-regenerative S1pr1
(Figure 4). Therefore, we examined the effects of IR with or without S1P treatment on S1pr1+

cells, endothelial cells, and macrophages by the immunofluorescence staining of SMGs
collected 7 days after IR or S1P treatment. The numbers of S1pr1+ cells, Cd31+ endothelial
cells, and S1pr1+Cd31+ cells were not significantly affected by S1P treatment alone, greatly
decreased by IR, as reported previously [5,43], and preserved by S1P treatment before
IR (Figure 5A–D). In the NT and S1P groups, no Cd31+ endothelial cells were positive
for the DSB marker p-H2ax, whereas many remaining Cd31+ endothelial cells in the IR
group became p-H2ax+, which was also significantly decreased by S1P treatment before IR
(Figures 5E,F and S8). Similarly, the number of F4/80+ macrophages was not significantly
affected by S1P treatment alone, was greatly decreased by IR, as we recently reported [7],
and was preserved by S1P treatment before IR (Figure 5G,H). In the NT and S1P groups,
no F4/80+ macrophages were p-H2ax+, whereas most F4/80+ macrophages in the IR
group became p-H2ax+, which was also significantly decreased by S1P treatment before
IR (Figure 5G,I). Consistently, the mRNA levels of rMϕ-enriched Hgf [7] and endothelia-
enriched Kitl in SMGs collected 7 days after IR significantly decreased compared with
the NT group, which was reversed by S1P treatment before IR (Figure 5J). These data
indicate that SMG endothelial cells and resident macrophages are key targets for the
radioprotective effects of S1P, while the preservation of epithelial homeostatic factors
produced by macrophages and endothelial cells contributes to the radio-protective effect of
S1P on SMG function.

3.6. S1P Activates S1pr1/Akt/eNOS Pathway in Radiated Endothelial Cells and Salivary Glands

To explore the underlying mechanisms of S1P in preserving endothelial cells after
IR, we treated human umbilical vein endothelial cells (HUVECs) with 0.1, 0.5, or 1 µM
S1P at 30 min before receiving 10 Gy IR. At 24 h after IR, immunofluorescent staining
and Western blot analyses indicated that IR significantly increased ROS levels and NOX4
expression and decreased NRF2 expression, which were both inhibited by S1P treatment
in a dose-dependent manner (Supplementary Figure S6A–E). These results demonstrated
that S1P protected HUVECs from IR damage through anti-oxidative effects as found in
mouse SMGs. In endothelial cells from other organs, S1P activates Akt and the endothelial
isoform of nitric oxide synthase (eNOS) signaling pathways [44], while both Akt signaling
and nitric oxide can enhance Nrf2-dependent antioxidant functions [45,46]. In HUVECs
examined 4 h after IR, phosphorylation levels of AKT and eNOS were not significantly
affected by PET vehicle, S1P alone, or IR alone but upregulated by S1P treatment before IR
in a dose-dependent manner (Figure 6A–C). The effect of S1P itself on Akt/eNOS pathway
in cultured HUVECs was reported transient (5–20 min) [47], and we did not detect a
significant effect of S1P alone treatment at 4 h. Therefore, the prolonged activation of
Akt/eNos pathway by S1P plus IR might be due to the increased production of endogenous
S1P from ceramides induced by radiation [32,33]. S1PR1 is the major S1P receptor in
endothelial cells, including SMGs (Figure 4). To determine whether the protective effect
of S1P on endothelial cells was mediated by S1R1 signaling, HUVECs were treated with
a selective S1PR1 inhibitor, W146 [48], either alone or in combination with 1 µM S1P and
IR. W146 treatment did not significantly affect the phosphorylation levels of Akt and
eNOS, but upregulation of these indices was significantly inhibited by S1P in irradiated
HUVECs (Figure 6D–F). Consistently, in HUVECs, W146 treatment did not significantly
affect the protein levels of NOX4 and Nrf2 but abolished the inhibitory effects of S1P on
IR-induced NOX4 upregulation and Nrf2 downregulation (Supplementary Figure S9F–H).
The restoration of Nrf2 expression after IR by S1P was also blocked by the inhibition of
Akt signaling with MK2206 (Supplementary Figure S10). These results showed that S1P
pretreatment protected HUVECs from IR damage through the S1PR1/AKT/eNOS pathway.
In mouse SMGs collected at 4 and 24 h after IR or S1P treatment, levels of phosphorylated
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Akt and eNOS were not significantly affected by IR alone but increased by S1P treatment
with or without IR (Figure 6G–I). The in vivo effects of S1P alone treatment on Akt/eNOS
pathway were much more persistent than that on cultured endothelial cells, which is likely
due to the involvements of other S1P-responsive cells such as macrophages. These data
collectively suggest that S1P protects SMGs from IR injury through the S1pr1/Akt/eNOS
pathway, as observed in cultured endothelial cells.
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Figure 5. Effects of S1P on endothelial cells and macrophages in radiated salivary glands.
(A–D) Expression of S1pr1 and Cd31 in SMGs collected at 7 days after IR were examined with
double immunofluorescence staining and quantified. (E,F) Levels of p-H2ax in Cd31+ endothelial
cells in SMGs collected at 7 days after IR were examined with double immunofluorescence staining
and quantified. (G–I) Expression of F4/80 and levels of p-H2ax in F4/80+ macrophages in SMGs
collected at 7 days after IR were examined with double immunofluorescence staining and quantified.
(J) mRNA levels of macrophage-enriched Hgf and endothelia-enriched Kitl in SMGs collected at
7 days after IR were examined with RT-qPCR. Quantified data are shown as mean ± SD, N = 3, NS:
not significant vs. NT, ND: not detected, #: p < 0.05 vs. NT, *: p < 0.05, ***: p < 0.001. Quantitative
data were analyzed using one-way ANOVA with Tukey’s multiple comparisons.
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and total AKT and eNOS. (G–I) In mouse SMGs collected 4 or 24 h after IR and/or S1P treatment, 
activation of Akt/eNOS pathway was examined with Western blot. Quantified data are shown as 
mean ± SD, N = 3, ns: not significant, *: p < 0.05, **: p < 0.01. Quantitative data were analyzed using 
one-way ANOVA with Tukey’s multiple comparisons. 
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potential. First, intra-SMG S1P injection at the highest dose (0.2 mg/kg) did not signifi-
cantly affect the plasma S1P level (Supplementary Figure S11). Second, in cultured CAL27 
human head and neck cancer cells [12] with or without 10 Gy radiation, 1 μM S1P treat-
ment did not significantly affect the proliferation of CAL27 cells (Supplementary Figure 
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Figure 6. Effects of S1P on S1pr1/Akt/eNOS pathway in radiated endothelial cells and SMGs.
(A–F) HUVECs were treated with IR, IR + S1P, S1PR1 inhibitor W146, or IR + S1P + W146 for 4 h.
Activation of AKT/eNOS pathway in these cells was examined with Western blot for phosphorylated
and total AKT and eNOS. (G–I) In mouse SMGs collected 4 or 24 h after IR and/or S1P treatment,
activation of Akt/eNOS pathway was examined with Western blot. Quantified data are shown as
mean ± SD, N = 3, ns: not significant, *: p < 0.05, **: p < 0.01. Quantitative data were analyzed using
one-way ANOVA with Tukey’s multiple comparisons.

3.7. Intra-SMG Injected S1P Does Not Promote Growth or Radio-Resistance of Head and
Neck Cancer

Since the ultimate goal of our research was to preserve saliva secretion in patients
with head and neck cancer, it is necessary to determine whether S1P shows any pro-tumor
potential. First, intra-SMG S1P injection at the highest dose (0.2 mg/kg) did not significantly
affect the plasma S1P level (Supplementary Figure S11). Second, in cultured CAL27 human
head and neck cancer cells [12] with or without 10 Gy radiation, 1 µM S1P treatment
did not significantly affect the proliferation of CAL27 cells (Supplementary Figure S12A).
Lastly, we examined whether intra-SMG administration of S1P showed any pro-tumor
effect in nude mice carrying subcutaneous CAL27 tumors at their flanks. These mice were
treated with 0.2 mg/kg intra-SMG S1P, 15 Gy local irradiation of tumors, or S1P with
irradiation. Observation for 15 days after treatment indicated that S1P did not significantly
affect the tumor volumes or endpoint tumor weights, or the responses to local radiation
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therapy (Supplementary Figure S12B–D). Consistently, intra-SMG S1P treatment did not
significantly affect the levels of the endothelial marker CD31 and the proliferation marker
Ki67 in tumors with or without local IR (Supplementary Figure S9E–G). These data indicate
that intra-SMG injection of S1P did not promote the growth or radioresistance of tumors
outside the SMGs.

4. Discussion

S1P, a natural bioactive lipid, is an essential regulator of many physiological and
pathogenic processes in multiple vertebrate organs, and S1P metabolic enzymes, trans-
porters, and receptors are promising therapeutic targets for various diseases [9]. We found
that S1P pretreatment preserved salivary function after IR in mice by decreasing IR-induced
oxidative stress and the consequent DNA damage, apoptosis, and cellular senescence. Our
scRNA-seq data indicated that salivary gland endothelial cells and resident macrophages
are major sources of endogenous S1P and highly express the pro-regenerative S1P receptor
S1pr1. These two types of cells are essential early targets of IR damage [5–7], and S1P
pretreatment effectively protects these cells and SMGs from IR damage.

Saliva secretion is dependent upon the blood supply to salivary glands [49,50], whereas
the radiation-induced injury of microvascular endothelial cells led to diminished nourish-
ment and, thus, to long-term dysfunction of salivary epithelial cells [5,6]. SMG endothelial
cells also produce growth factors that regulate the homeostasis of other cells, such as
Csf1 for resident macrophages [7] and Kitl for Kit+ epithelial progenitors. Consistently,
Kitl expression was significantly decreased by radiation but restored by S1P pretreatment.
Therefore, the increased survival of endothelial cells by S1P pretreatment preserved the
overall function of SMGs through the restoration of blood supply, nourishment, and home-
ostatic paracrine factors. Besides endothelial cells, peri-endothelial cells, including smooth
muscle cells, pericytes, and their CD31/Pecam1−CD34+ progenitors, are also essential
for vascular morphogenesis and stabilization in salivary glands after irradiation [35]. Al-
though much rarer than endothelial cells, our data did find S1pr1 expression in some
peri-endothelial progenitors and pericytes. S1P has been reported to induce the differ-
entiation of smooth muscle cells from progenitors [51,52] and protect pericytes from the
inflammatory damage [53], which likely also contribute to the radio-protective effects of
S1P on salivary glands.

We have reported that salivary gland resident macrophages are the major source
of Hgf that regulates the homeostasis of Met+ epithelial progenitors, whereas radiation
rapidly and persistently decreased the number of resident macrophages and Hgf level [7],
which were both prevented by S1P pretreatment. Moreover, as in other tissues, resident
macrophages are capable of clearing dead and senescent cells without causing severe
inflammation through efferocytosis [54], which is also essential for the preservation of
salivary gland function after irradiation [18]. Therefore, the increased survival of resident
macrophages by S1P pretreatment preserved the overall function of SMGs through both
efferocytosis and homeostatic paracrine interactions with other cells.

We confirmed that the radioprotective effect of S1P on cultured endothelial cells
was mediated by S1PR1 and downstream AKT and eNOS signaling pathways [55]. In
mouse SMGs, S1P also enhances the activities of Akt/eNOS pathways that can upregulate
Nrf2-medicated anti-oxidative responses [45,46], suggesting that these pathways mediate
the in vivo radioprotective effect of S1P. Other mechanisms may also contribute to the
upregulation of Nrf2 by S1PR1 signaling. For instance, S1PR1 signaling cross-talks with
the signaling pathway of lysophosphatidic acid (LPA), another bioactive lysophospholipid
activating GPCR and abundant in saliva [56,57], while LPA signaling stabilizes Nrf2 through
PI3K/Akt signaling [58]. We will explore this potential mechanism in our future work.

Many SMG resident macrophages are associated with blood vessels [59] and interact
with endothelial cells through homeostatic paracrine/juxtacrine factors, such as Csf1
and C1q [7]. It has been reported that after myocardial infarction, endothelial S1pr1
signaling promotes tissue repair by stimulating tissue-resident (reparative) macrophage
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proliferation [60]. Therefore, the radioprotective effects of S1P on endothelial cells and
resident macrophages could be mediated by both the direct activation of S1pr1 signaling
in these two types of cells and the consequent enhancement of homeostatic interactions
between these cells. Besides S1pr1, whether other S1PRs are involved in the maintenance
of salivary glands is worth further exploring.

IR immediately increases ceramide levels through the hydrolysis of sphingomyelin by
Smpd1 and Smpd2 [32,33], which enhances apoptosis and leads to IR damage in multiple
organs, including the salivary glands [31]. Both Smpd1 and Smpd2 are abundant in
SMG endothelial cells and may contribute to the high sensitivity of endothelial cells to
IR, as reported in other organs [61]. However, ceramidases and sphingosine kinases
can metabolize ceramides to S1P, and extracellular S1P acts as a radioprotectant in other
organs [62]. We found that SMG endothelial cells and resident macrophages expressed
these S1P-producing enzymes and S1P-transporters at high levels, suggesting that the rapid
decrease in these cells after IR might trigger a vicious circle of imbalance between pro-
apoptotic ceramides and anti-apoptotic S1P, which enhances the apoptosis of more SMG
cells. Conversely, it is plausible that intra-SMG S1P pretreatment decreased IR-induced
apoptosis by preserving these two major types of S1P-producing cells and the consequent
balance between ceramides and S1P.

In multiple types of cancers, including some head and neck cancer, S1P signaling is
considered pro-tumoral as it promotes cell proliferation, survival, migration, inflammation,
and angiogenesis [9]. However, in some solid tumors, such as pancreatic cancer, increasing
plasma S1P levels is a promising strategy to decrease tumor hypoxia through vascular
normalization and enhance therapeutic efficacy [63]. To avoid the pro-tumor potential of
S1P, we injected S1P locally into the submandibular glands. In our mouse model of head
and neck cancer, intra-SMG S1P dosage did not promote cancer growth or resistance to
radiation therapy. These data suggest that local S1P appears safe for preserving saliva
secretion in patients with head and neck cancer treated with radiotherapy.

5. Conclusions

Our results demonstrate that S1P pretreatment mitigates salivary gland dysfunction
after IR by preserving endothelial cells and resident macrophages, likely through the
S1pr1/Akt/Nrf2 pathways. These data indicate that S1P signaling pathway is a promising
target for preserving saliva sections after radiation therapy for head and neck cancers. In
addition, our data also suggest that S1P signaling regulates the homeostasis of salivary
endothelial cells and resident macrophages, which is essential for salivary gland function.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11102050/s1, Figure S1: The setup of irradiation; Figure S2:
Proof-of-principle of percutaneous intra-SMG injections; Figure S3: Changes of salivary flow rate
over 90 days after IR with or without S1P pretreatment; Figure S4: Magnified images of TUNEL
staining shown in Figure 2A; Figure S5: Magnified images of p-H2ax staining shown in Figure 3A;
Figure S6: Further gene expression analyses of the Endo cluster shown in Figure 4A; Figure S7: The
validation of gene expression patterns with RT-qPCR of FACS sorted SMG cells; Figure S8: Single
channels of p-H2ax and CD31 signals without DAPI for merged images in Figure 5E; Figure S9: S1P
protected HUVECs from radiation-induced oxidative stress through S1PR1-mediated upregulation of
Nrf2; Figure S10: The restoration of Nrf2 expression after IR by S1P was blocked by AKT inhibition;
Figure S11: Plasma S1P levels after intra-SMG S1P injection; Figure S12: Effects of intra-SMG injected
S1P on established head and neck cancer. Reference [64] is cited in the Supplementary Materials.
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