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Introduction

It will not be long before we have mutant alleles for every

gene in the mouse genome. It also will not be long before

we can sequence an entire genome in a few hours and for

less than 1000 US$. But there is much more to come, and

the speed with which these developments will take place

will surprise you. Imagine following the fate of every

single cell during the development of a mouse from fer-

tilization to birth and even beyond. Imagine watching the

expression of a single molecule of any protein or the total

expression of all proteins in a single cell continuously over

time. Imagine titrating the expression of single genes in

specific cell populations at will.

High-throughput technologies have become the driving

force in the analysis of biological systems. Biologists are

increasingly taking advantage of automatization, minia-

turization, and computerization. In this sense biology fol-

lows the development of computer and information

technology: smaller size, higher speed and capacity, lower

cost. However, we should remember that the age of com-

puter and information technology was preceded by a pre-

exponential phase during which important theoretical

frameworks and concepts were developed: Alan Turing

(1936) and John von Neumann (1945) provided the

mathematical basis for an automatic computing machine

and a corresponding ‘‘computer architecture.’’ To Claude

E. Shannon (Weaver and Shannon 1949) and Norbert

Wiener (1948) we owe the mathematical theory of infor-

mation and cybernetics. The convergence of electronic and

mechanical engineering then triggered the development

and application of systems control theory, a key require-

ment for the modeling and simulation of the dynamics of

technical systems.

A major challenge in biology is to model, simulate, and

eventually predict the behavior of complex biological

systems. The identification of the individual components

that constitute a biological system, i.e., through the gen-

ome-wide transcriptome, proteome, and metabolome

analysis, will be required but will not be sufficient to

achieve this goal. We will also need detailed information

about the ‘‘network architecture’’ and the dynamics of

biological systems. This is where systems biology comes

into place (Kitano 2002; Kirschner 2005; Palsson 2006;

Alon 2007).

From perturbation to model building: an iterative cycle

in systems biology

Biological systems are emerging, adaptive systems, highly

complex and often nonlinear. Their behavior cannot be

explained solely on the basis of their individual parts. Deep

insight into the network structure, function, and dynamics

of biological systems can be obtained only through their

systematic perturbation, followed by a detailed character-

ization of the molecular, cellular, and phenotypic changes

that follow these perturbations. Based on the perturbation

consequences observed, a model can then be established or

existing models modified or further developed that grasp

the important features of the underlying mechanisms

(Sauro and Kholodenko 2004).

Mouse genetics has been an extremely powerful per-

turbation method for nearly a century. Loss-of-function and

gain-of-function mouse mutants are able to reveal causal
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relationships between specific genes and specific pheno-

types. An impressive mouse genetics toolbox is now

available that allows us to perturb a wide range of bio-

logical systems. Methods such as the production of trans-

genic mice, gene targeting through homologous

recombination in embryonic stem (ES) cells, phenotype or

gene-driven mutagenesis strategies, or RNAi-based

knockdown are now used on a routine basis. Sequence

diversity is also a form of natural perturbation. In combi-

nation with the analysis of gene expression and phenotype

analysis, a thorough comparison of the consequences of

allelic variants can be very powerful. The main challenge

will be the functional dissection of the combinatorial

activity of small sequence changes, forming the core of

‘‘Complex Trait Analysis.’’

Perturbing biological systems through genetic changes is

only one way to obtain information to dissect the structure

and function of genetic networks. Equally important and

increasingly appreciated is the use of small molecules, which

can act as agonists or antagonists of biological processes

(Schreiber 2005). Whereas a while ago combinatorial

chemistry was largely a domain of pharmaceutical drug

development, the power of small molecules as a means to

study the function of specific proteins or pathways is

increasingly appreciated. There are specific strengths and

weaknesses to the use of small molecules. One of the most

important aspects is specificity. Very rarely does a small

molecule bind to one and only one target; in many cases the

precise number and nature of targets is unknown. Small

molecules are more adaptable to the titration of dose-re-

sponse or pulse-chase studies. Similar to searching for

modifiers in a genetic screen, chemical biologists now are

starting to perform combinatorial screens to unravel redun-

dancies or pathway interactions that are not revealed by

single small-molecule screens. In fact, one may be able to

stay below the ‘‘toxic window’’ of a specific small molecule

by combining two or more of them, each of which acts on

different targets within the same pathway. Eventually we

will see a convergence between the fields of small molecules

and small animals, i.e., in the area of noninvasive imaging

(Sako 2006). Molecular markers will become available that

allow us to follow perturbations at the molecular and cellular

level and in real time.

A need for integrative network analysis

Analyzing the individual components of a network is not

sufficient. We need to understand how these components

interact with each other and which are in direct or indirect

contact. We must know how the components dynamically

interact, what compensatory mechanisms are triggered, and

when components are defective or are inactivated. An

understanding of a system therefore requires knowledge

about the system’s structure and architecture (Papin et al.

2005). Once we have sufficient information about the

structure of a system, we can begin to study systems

dynamics. This will then help us to understand the control

measures that are responsible for the overall behavior of

the system or its modules under external perturbations

(Carpenter and Sabatini 2004; Barabasi and Zoltva 2004;

Alon 2007). These cannot automatically be inferred from

the parts list of a system. Biological information is passed

through a number of highly integrated networks, including

transcriptome, proteome, or metabolome networks

(Khammash and El-Samad 2004; Saez-Rodriguez et al.

2004). Methods to reconstruct or analyze biological net-

works have become an active field of research (Oda et al.

2005; Oda and Kitano 2006). Since Leonard Euler and Paul

Erdöz, the field of network analysis and graph theory has

developed tremendously. Network analysis is also the basis

of understanding disease pathogenesis and disease traits.

Modules: Making sense out of black boxes

A common theme in advanced technologies and engi-

neering is to divide systems into modules that can be

treated individually or in terms of connecting different

modules as part of a higher-order system. Since the dis-

covery of the double-helix structure of DNA, a reductionist

approach to analyze biological systems has proved to be

extremely successful. However, we feel that we are

reaching a limit as to how much we can learn about

complex biological systems by looking with increasing

resolution at individual components of a system. No doubt,

at the end we would like to understand biological phe-

nomena on the basis of atomic resolution. On the other

hand, the rise of systems biology reflects our increased

appreciation and desire of looking at all the scales of

biology, including the molecular, cellular, organismic, and

population-based levels.

Partitioning biological systems into modules helps to

achieve a more integrated picture. To understand causal

relations among individual parts and modules, we need

information about the directionality of flow of information

or material between the edges within a network (Natarajan

et al. 2006). We already know that systems behave dif-

ferently depending on whether we deal with one or a few

molecules or millions of molecules. Stochastic and statis-

tical approaches, i.e., Bayesian network reconstruction

algorithms, need to be applied to deal with the uncertainties

and probabilities of biological systems (Needham et al.

2006). The role of noise in biological systems is just being

unraveled. Some of the most important contributions are

currently made by physicists who are able to apply the
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repertoire of statistical physics to biological problems (Rao

et al. 2002; Samoilov et al. 2005; Sprinzak and Elowitz

2005; Kussell et al. 2005; Alon 2007).

Given their complexity, a remarkable feature of biologi-

cal systems is their robustness with respect to environmental

perturbations (Kitano 2004a,b; Kitano and Oda 2006; Kurata

et al. 2006). How do biological systems preserve their

function despite environmental conditions that can differ

over magnitudes of scale leading to tremendous fluctuations

in metabolic components or ligands? We do not yet under-

stand the underlying mechanisms that are responsible for this

robustness. Genetic redundancy, i.e., the presence of multi-

gene families that can at least partially substitute for each

other, is apparently one way to increase the robustness of a

system. Similarly, a redundancy of pathways could con-

tribute to the potential of a cell to maintain the robustness of a

biological system. On the other hand, there might be a price

to be paid, i.e., under different environmental conditions,

leading to a tradeoff of robustness versus fragility dependent

on the external factors that act on the system (Kurata et al.

2006). Robustness or fragility of biological systems can be

understood only if we obtain insight into the structure and the

dynamics of elements responsible for feedback control, an

essential element in almost all complex systems (Schmidt

and Jacobsen 2004).

Systems biology and drug development

Robustness and fragility are also highly important on

understanding disease pathogenesis or the susceptibility or

resistance toward the development of diseases (Butcher et al.

2004; Kitano 2004b; Fishman and Porter 2005; Wagner

2005). What are the factors that drive a physiologic system

toward its disease state? How can we interfere with an

unbalanced situation through preventive or therapeutic

measures and maybe push back a disease state toward a more

buffered state? What are the critical components that could

be selected as a drug target? We are just at the beginning of

identifying specific molecular components as indicators of

the state of a system and more important as predictors for the

future development of the system, i.e., as an early marker for

disease development (Lage et al. 2007). These ‘‘biomarkers’’

do not necessarily need to be the same as those that qualify as

drug targets. One of the frustrating issues in the drug

development pipeline is the lack of sufficient preclinical

predictability for safety and efficacy. Although many of the

animal models are able to predict side effects of drug can-

didates, in many cases we miss adverse reactions and identify

them at later stages of clinical development. By combining

network analysis, statistics, and high-throughput genetic and

genomic approaches to identify new relevant biomarkers,

systems biology bears great potential to improve the pre-

dictability of our preclinical in vitro and vivo models (Hood

et al. 2004).

Look at the similarities and treasure the differences

Maybe we have focused too much on the similarities of

model organisms instead of also trying to understand the

differences. Maybe we should increase our efforts in com-

parative systems biology. We might have to take a much

closer look at the differences between mice and humans in

terms of their relevance for drug development and try to

understand the mechanisms of species-specific absorption,

distribution, metabolism and excretion (ADME). Some of

the species differences can be overcome by, for example,

introducing human genes into the mouse genome or by xe-

nografting human stem cells into mice (Shultz et al. 2007).

These efforts in ‘‘humanizing mice’’ are still at the ‘‘trial and

error’’ stage. We urgently need a comparative systems

analysis that could guide us in selecting the most relevant

genes or cell types that are the cause of differences in drug

responses or disease pathogenesis and that should be prior-

itized in our efforts to improve the predictability of mice as a

model system for human disease.

Biological systems are complex adaptive systems that

emerge during the development from a fertilized egg to the

development of an adult organism. During evolution

changes in the environment lead to different constraints

and fixation of certain degrees of freedom in genome

structure and function. Components of genome networks

can be added or changed only when the workability and

functionality of the biological system is maintained, at least

to a certain degree (Ottino 2004; Weitz et al. 2007).

Comparative systems analysis needs appropriate data-

bases (Albeck et al. 2006; Kersey and Apweiler 2006).

These are not yet sufficiently developed. The mouse

comparative ontology database (http://www.informat-

ics.jax.org/menus/homology_menu.shtml) is useful but

does not provide information about the components,

interactions, and dynamics of physiologic systems.

We need all the information available, i.e., a user–

friendly, easily retrievable information system on the level

of transcripts of a given cell, the dynamic response of

mouse vs. human cells to small molecules, the levels of

redundancy in the two species, species-specific genes,

splicing patterns, and post-translational modification.

A need for modeling and simulation

Networks of biological systems are so complex that they

cannot be understood by intuition. Some systems properties

are even counterintuitive! It is the iteration of experiment
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and simulation that will characterize future systems biol-

ogy. We need to describe biological systems mathemati-

cally and treat them in an integrated and quantitative

manner to come up with predictions about their behavior

(Gershenfeld 2006; Szallasi et al. 2006). So far biologists

often formulate their conceptional picture of a biological

system as a flowchart-type model. These are more or less

static and do not encompass information about the behavior

of a system over time, i.e., after a specific environmental

perturbation. Model building has often been done by

biologists on an intuitive basis. Biologists are often not

aware that there already exists a rich literature and toolbox

in systems control theory (Csete and Doyle 2002; Tyson

2003; Brent 2004). We need to get used to applying sys-

tematic perturbations, observing the reaction of the system

to these perturbations, developing a first-approximation

model, and testing this model by further perturbation

studies (Locke et al. 2005; Aldridge et al. 2006; Janes and

Yaffe 2006). Biologists are fairly well trained in hypothesis

testing but not in hypothesis generation. This is where

systems biology has its greatest potential. Description will

converge with prediction.

Do not be afraid of mathematics

Systems biology often tries to apply formal mathematical

descriptions based on time-series analysis of biological

response. So far the sheer amount and the quality of data

constituted significant roadblocks to tackle the dynamics of

biological systems. Technological advances help us to

overcome these problems. A more severe problem, at least

for the current generation of biologists, is the limited

training in mathematics. The first two years of engineering

training provides the mathematical toolbox necessary for a

mathematical description of technical systems and is

essential for modeling or simulating the behavior of com-

plex systems. It will be neither possible nor useful to turn

every biologist into a mathematician. However, we need to

improve the dialog between biologists and mathematicians,

physicists, and engineers. The basics of linear algebra,

vector analysis, and graph theory have to enter the cur-

riculum of a biologist’s training (Wingreen and Botstein

2006).

Unfortunately, formal tools for model production do not

yet exist. In addition, model building is not easy and re-

quires a very good understanding of the biological system

under study. A question often raised is where to start:

bottom up, top down, or a combination of both. An inter-

esting suggestion is to start ‘‘middle out,’’ where the

modeling begins at the level at which there are rich bio-

logical data and then reach up and down to other levels

(Noble 2002). Another major difficulty is the transfer of a

model from one application to another. We need to develop

standardization frameworks so that even novices in com-

putational biology or systems biology are able to build,

access, and work with existing models (Wall et al. 2004).

Complex trait analysis: the next frontier in systems

biology

For more than 100 years mouse genetics has relied on the

analysis of single monogenic mutants. The methods to

identify or produce mutants have changed considerably

over the years. Soon we will have in our catalogs and

freezers mouse mutants for every gene in the genome

(Collins et al. 2007). Extensive collections will also be

available as a result of phenotype-driven mutagenesis

screens (Balling 2001). Whereas the analysis of these

mutants might keep us busy for many years to come, the

next frontier of mouse genetics is already on the horizon:

systems genetics. We all know that the expressivity and

penetrance of mouse mutant phenotypes can vary tremen-

dously, depending on the genetic background. Modifier

screens can be used to identify some of the genetic loci

responsible for the strong influence of genetic background

on physiologic and pathophysiologic processes. Sequenc-

ing and, as a cheaper substitute, SNP typing have provided

us with a detailed picture of the genetic diversity of our

main inbred mouse strains. Most of them are derived from

a very limited pool of parental strains, and strong selection

was applied to obtain the handsome, highly adapted com-

mon lab strains of mice that we now use in our experi-

ments.

Recombinant inbred strains and other reference panels

of inbred strains are powerful tools for performing a gen-

ome-wide dissection of complex biological traits that are

the result of multiple, quantitative, and often highly inter-

acting genes (Churchill et al. 2004; Flint et al. 2005; Zou

et al. 2005; Hill et al. 2006; Peters et al. 2007). The series

of BXD strains has been a paradigm for the success of

analyzing complex traits. Unfortunately, the use of re-

combinant inbred strains does not fall under the category

‘‘quick and easy’’ but requires a fair amount of logistics,

infrastructure, and an appreciation for the power of

genetics. The major bottleneck, however, was the ‘‘power

of mapping resolution’’ that the analysis of 30-80 re-

combinant inbred strains provides. The Complex Trait

Consortium has tackled precisely this problem (Churchill

et al. 2004). The goal is to produce approximately 1000

recombinant inbred strains (The Collaborative Cross)

within the next five years and make them available as an

open source to the scientific community. Importantly, the

parental strains chosen include three strains that we would

classify as ‘‘inbred wild mice,’’ i.e., PWK/PhJ, WSB/EiJ,
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and CAST/EiJ. The inclusion of these genetically highly

diverse strains adds about 75% additional sequence diver-

sity. The availability of this large panel of diverse and well-

structured strains will allow experiments where mice with

an identical genotype can be produced in large numbers

and compared to an equally large number of mice with a

wide range of different genetic and even environmental

backgrounds. Sequencing of the parental strains and a

community-based complementary and additive phenotyp-

ing will eventually produce a resource that will help us to

answer questions about gene function, epistatic genetic

interactions, and genome-environment interactions that we

can currently only dream about.

There are other approaches, i.e., the development of

consomic mouse strains, that essentially target the same

questions (Peters et al. 2007). It will be important to not look

at these approaches as exclusive or competitive, but as a new

toolbox of quantitative trait analysis where each one has

specific pros and cons. New phenotyping methods, including

gene expression arrays, or phenotyping based on noninva-

sive imaging will have to be integrated into the described

complex trait studies. Microarrays are a new micropheno-

typing platform that allow us to look at the expression of

thousands and hundreds of thousands of different genes

(eQTLs). This shift to microphenotypes requires new sta-

tistical tools because of multiple-testing issues but it also

gives a much higher computational capacity then ever be-

fore. To quote Denis Noble: ‘‘Biology is set to become highly

quantitative in the 21st century. It will become a computer-

intensive discipline’’ (Noble 2002).

For many years mouse genetics has been the driving

force as a hypothesis generator for functional genomics.

Mouse models, i.e., transgenic mice, knockout mice, or

mouse mutants identified from phenotype-driven screens,

are great tools to identify candidates for human disease

genes. The construction of mouse inbred strain panels de-

rived from genetically diverse parental populations pro-

vides us with valuable model populations. At the same

time, the power of human association studies has reached a

point where some people even think that it heralds the end

of mouse genetics. I think the opposite is true. The avail-

ability of mouse reference populations will allow us to ask

questions that complement those addressed by human

association studies. More importantly, we can quickly

validate hypotheses derived from human population studies

not only by constructing equivalent mouse populations but

also by probing the function of individual genes through

the analysis of gene targeting or specific point mutation

alleles. The argument that we can find such mutations also

in human populations does not take into account that in

mice we are not only able to study the effect of genetic

variation, but also to ‘‘titrate the environment’’ much better

than it will ever be possible for humans.

At this time, mouse geneticists and human geneticists

have not connected well enough to exploit the power of

their respective toolboxes. To quote Rob Williamson:

‘‘There is still an impedance mismatch between human

association and reductionist mouse studies.’’ Maybe this

special issue of Mammalian Genome can contribute to

better cooperation between mouse and human geneticists.

It will pay off for all of us.
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